等离子体束溅射镀膜机研制及工作机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物理气相沉积技术目前主要有热蒸发、溅射、离子镀等方式。溅射技术的出现和应用已经经历了许多阶段,从二极溅射、三极溅射、磁控溅射以及各种新型的溅射方法。相比较而言,二极溅射的结构简单、易于控制,但是由于放电形式决定了其等离子体密度较低,相应的沉积速率也较低。磁控溅射与二极溅射相比,则具有“高速”与“低温”的特性,沉积速率较高,且基片升温也较低,但由于磁控溅射磁场的分布不均匀,而磁场是其关键的因素,控制真空室中的等离子体的生成,因此由不均匀磁场所带来了等离子体不稳定、靶材利用率低等缺点。
     本文采用新型磁控溅射设计,取消了“磁控”靶,并应用在远位安装高密度等离子体源的设计,研制出了等离子体束溅射镀膜机。试验结果及国外的结果表明,这种新型的溅射镀膜方法解决了磁控溅射中的靶材利用率低及等离子体不稳定的缺点,并能够有效地控制成膜晶粒的大小。
     等离子体束溅射镀膜机中等离子体束在磁场与电场的共同作用下,形成了从等离子体源到真空室中的被引出、输运、溅射等的一系列过程。在成功研制出等离子体束溅射镀膜机后,对真空室内的电场与磁场应用COMSOL Multiphysics电磁模块进行了有限元分析,得出了在这种与已有方案都不同的结构中电场与磁场的分布。真空室中的电场通过溅射靶源接通负偏压后产生,而磁场则由发射线圈与汇聚线圈共同产生,电场与磁场相互独立,并共同对等离子体束产生影响。
     通过对等离子体束溅射镀膜机具体结构的分解,并应用单粒子轨道模型对镀膜机内部等离子体束的引出束流做出了分析,发射线圈从高密度等离子体源中引出等离子体束,其中包括电子与离子。等离子体束在磁场与偏压电场的共同作用下轰击靶面,使靶材产生溅射。通过对等离子体在磁场与电场中的运动进行定性分析,对等离子体束溅射镀膜中的原理进行了探讨。
Now Physical Vapor Deposition mainly includes heat evaporation, sputtering and ion plating. The appearance and application of sputtering technology come through lots of process such as diode sputtering, audion sputtering, magnetron sputtering and other novel sputtering system. The diode sputtering system has simple structure and can be controlled easily, but its plasma's density is low and the deposition rate is low because of its discharge structure. Compared with the diode sputtering, the magnetron sputtering system has higher deposition rate and lower temperature of its substrate. Since its magnetic field is the main factor of state of plasma, the asymmetry of magnetic field brings the instability plasma and low utilization target and others disadvantages.
     Beijing Leyfond Vacuum Technology Company Limited has manufactured the plasma beam sputtering system. There is not magnetron target in this system and there is a high density plasma source mounting in the side of the chamber. The experiment result that it has higher utilization target and stability plasma and it can controlled the grain size effectively.
     The plasma beam in the system is extracted from the plasma source, then transports in the chamber and sputters on the target under the effect of the electric field and the magnetic field. After we manufactured the plasma beam sputtering system, we analyzed the electric field and the magnetic field in the chamber using the electromagnetic module of the COMSOL Multiphysics, and we got the distribution of the electric field and the magnetic field. The electric field comes when the target was switched on with the negative deflection voltage, and the magnetic comes with the launch magnet and the steering magnet, they are independent with each other, and effect the plasma beam together.
     We analyzed the extracted beam stream of the high density plasma source through the decomposition of the plasma beam sputtering system and application of single particle orbit model., the plasma beam is extracted from the source by the launch magnet. The beam bombards the target and then sputters in the electric field and the magnetic field. We study the principle of the plasma beam sputtering system after the analysis of plasma's movement in the electric filed and magnetic field.
引文
1.陈兴.激光技术在薄膜科学中的应用[J],现代物理知识,2007,19(5):38-39.
    2.赵凯华,钟锡华.光学[M],北京:北京大学出版社,1984,335-336.
    3.陈雪莲.法拉第电解定律的发现和当量的确定[J],沈阳教育学院学报,2000,B12,220-222.
    4.张毅.辉光放电光谱仪及其在冶金分析中的应用[J],现代仪器,2001,2(14):25-27.
    5.郑伟涛.薄膜材料与薄膜技术[M],北京:化学工业出版社,2004,47-49.
    6.王宝义.ZnS基电致发光薄膜及其制备方法[J],材料导报,2003,17(11):33-35.
    7.李云奇.真空镀膜技术与设备[M],沈阳:东北工学院出版社,1989.123-147.
    8.遇衍澄.离子镀技术的发展和现状[J],薄膜科学与技术,1995,8(3):240-249.
    9.陈宝清.离子镀及溅射技术[M],北京:国防工业出版社,1990,110-115.
    10.M.J.Thwaites,方立武.一种崭新的镀膜技术——等离子体束溅射[J],真空,2005,42(1):43-45.
    11.M.Vopsaroiu, M. J. Thwaites, S.Rand, P.J.Grundy, K.O.Grady. Novel sputtering technology for grain-size control[J],IEEE Transactions,2004,40(4):2443-2445.
    12.G Claudio, M Thwaites, M Boreland, A New Remote Plasma Deposition System for Silicon Nitride Thin Films[J], INTERNATIONAL SOLAR ENERGY SOCIETY UK SECTION-CONFERENCE-C,2005.
    13.M.Vopsaroiu, M.J. Thwaites, S.Rand, P.J.Grundy, K.O'Grady. Deposition of thin films with controlled grain size [J], J.Appl. Phys.,2005,97(3):490-496.
    14.M.Vopsaroiu, M. Georgieva, P.J. Grundy, G. Vallejo Fernandez,S. Manzoor, M. J. Thwaites,K. O. Grady, Preparation of high moment CoFe films with controlled grain size and coercivity[J], J.Appl. Phys.,2005,97(10):303-308.
    15.M. Vopsaroiu, M.J.Thwaites, G.V.Fernandez, S.Lepadatu, K.O'Grady. Grain size effects in metallic thin films prepared using a novel sputtering technology[J], Journal of Optoelectronics and Advanced Materials,2005,7(5):2713-2720.
    16.Sadia Manzoor, M. Vopsaroiu, G. Vallejo-Fernandez and K. O'Grady, Grain-size effects in exchange-biased FeMn/NiFe bilayers[J],2005,97(10):118-123.
    17.宫野,宋远红,温晓军,邓新绿.ECR微波等离子体粒子输运的数值模拟[J],计算物理,2001,18(2):152-156.
    18.崔虎.射频磁控溅射镀膜过程中离子输运和溅射行为的模拟计算[D],西北工业大 学,2005.
    19.李阳平,刘正堂,耿东生.靶材溅射及溅射原子输运的计算机模拟[J],功能材料,2003,5(6):603-606.
    20.陈长琦,朱武,方应翠,干蜀毅,陈贤祥.离子注入和溅射率的蒙特卡罗模拟计算[J],合肥工业大学学报(自然科学版),2001,24(6):1105-1110.
    21.S.Desa,S.Ghosal, R.L.Kosut, J.L.Ebert, T.E.Abrahamson, and A.Kozak. Reactor-scale models for rf diode sputtering of metal thin films[J],1999 American Vacuum Society:1926-1933.
    22.Y.Takagi,Y,Sakashita, H.Toyoda, H.sugai. Generation processes of super-high-energy atoms and ions in magnetron sputtering plasma[J], Vacuum,80(2006):581-587.
    23.宋长安.纳米薄膜的制备[J],甘肃科技.2005,21(2):118-119.
    24.D. M. Mattox. The Foundations of Vacuum Coating Technology[M], William Andrew Inc.,2003,1-5.
    25.宋继鑫.国外光学镀膜的应用和真空镀膜工艺[J],光学技术,1994,1(1):32-38.
    26.王怡德.磁控溅射技术[M],北京:北京中方盖德真空技术有限公司,2007,18-20.
    27.侯鹤岚,张世伟.溅射靶的开发与应用[J],真空,2000,37(1):37-39.
    28.张继成.磁控溅射技术新进展及应用[J],材料导报,2004,18(4):56.
    29.徐万劲.磁控溅射技术进展及应用(上)[J],现代仪器,2005,11(5):5.
    30.张青来.溅射靶材综述[J],上海钢研,2002,4,30-41.
    31.叶志镇.磁控溅射技术及其在材料科学中的应用[J],材料科学与工程,1989,7(1):26-32.
    32.董闯.A12O3薄膜的应用和制备[J],真空与低温,2002,8(4):236-240.
    33.王怡德.磁控溅射技术[M],北京:北京中方盖德真空技术有限公司,2007,107-110.
    34.王贵义,王世忠.磁控溅射和它的应用[J],核聚变与等离子体物理,1989,9(2):125-128.
    35.赵嘉学,童洪辉.磁控溅射原理的深入探讨[J],真空,2004,41(4):74-79.
    36.Lievens H.Wide web coatings of complex materials[J], Surface &, Coatings Technology,1995,(76-77):744.
    37.刘翔宇,查良镇.磁控溅射镀膜设备中靶的优化设计[J],真空,2003,40(4):16-22.
    38.赵新民.外加磁场对磁控溅射靶利用率的影响[J],真空科学与技术,2003,23(2):104-106.
    39.Onishi Shinzo. Magnetron sputtering target for magnetic materials[J], US Pat,6623610B1, 2003-9-23.
    40.Chen Xiaohong, Fan Qihua, Chen Hongyou,et al. Symmetrical magnet magnetron sputtering method for improving target utilization[J], Rev Sci Instrum,1994,65(8):372.
    41.黄英,张以忱.圆柱旋转双面矩形磁控溅射靶磁场的设计计算[J],真空与低温,2001,7(4):233-237.
    42.M.J.Thwaites,方立武.一种崭新的镀膜技术——等离子体束溅射[J],真空,2005,42(1):43-45.
    43.汪礼胜,唐德礼,程昌明.线性阳极层离子源磁路设计与电磁场数值模拟[J],核聚变与等离子体物理,2006,26(1):54-58.
    44.赵凯华,陈熙谋.电磁学[M],北京:高等教育出版社,1984,89-93.
    45.倪光正,钱秀英.电磁场数值计算[M],北京:高等教育出版社,1996,5-9.
    46.郑春开.等离子体物理学[M],北京:北京大学物理学院,2006,15-16.
    47.张以忱.电子枪与离子束技术[M],北京:冶金工业出版社,2005,207-208.
    48.迈克尔·力伯曼.等离子体放电原理与材料处理[M],北京:科学出版社,2007,411-415.
    49.David B. Graves. Degradation of ethinyl estradiol by nitrifying activated sludge[J], IEEE Transaction Plasma Science,1994,22(1):31.
    50.Andre Anders. Plasma and ion sources in large area coating:a review[J], The International Conference On Metallurgical Coatings and Thin Films ICMCTF 2005,FEB,28th,2005.
    51.钱丹娜,王友年.平板直流负偏压碰撞鞘层Child-Langmuir定律的拟合公式[J],核聚变与等离子体物理,2006,26(1):71-74.
    52.黄光周,张书生.高密度等离子体源的新发展[J],真空与低温,1998,4(1):52-56.
    53.李国卿.等离子体源特性及其应用[J],真空,1998,35(3):39-42.
    54.许沭华,任兆杏.射频ICP离子源设计研究[J],真空科学与技术,2002,22(4):310-312.
    55.潘永强,朱昌,方勇.用于离子束辅助镀膜的两种模式端部霍尔离子源的比较[J],真空,2004,41(5):38-41.
    56.Harold R Kaufman. End-Hall ion source[J], J.Vacuum Science Tech.,1987, A5(4):2081-2084.
    57.朱红连,王德武.离子引出收集的沉积与溅射研究[J],物理学报,2002,51(6):1338-1345.
    58.C.H.Shon. Velocity distributions in Magnetron Sputter[J], IEEE Transactions on Plasma Science,1998,26(6):1635-1644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700