输电线路防冰减灾技术研究及覆冰在线监测系统设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,我国南方大部分地区输配电设备受冰灾影响严重,电网灾后重建及改造投入资金巨大,给国民经济造成重大损失。目前,我国在输变电设施冰灾预防、处理和恢复技术研究还不系统,线路设计防覆冰标准还有待完善提升,应用于输变电设施的融冰、除冰技术还不十分成熟。研究输电线路防御冰灾以及迅速解决冰灾问题成为必要。
     本文对国内外电网冰灾暴露的问题以及国内外的研究现状进行了调研,对造成冰灾的极端恶劣天气条件、线路规划和设计、防冰材料和除冰技术等进行了分析。结合泸州地区古蔺县220kV线路覆冰闪络的情况,对输电线路闪络机理以及其它受影响的各方面因素进行了研究,提出了泸州220kV线路的防冰闪措施。
     本文研究了国内外输电线路除冰方法,根据泸州地区古蔺叙永地域的220kV及110kV电网结构,完成了融冰的热平衡、计算模型、融冰时间和融冰电流的计算等研究任务。进行了交流融冰的可行性分析,并提出了具体的融冰措施。另外还研究了泸州地区直流融冰装置的建设方案,完成了装置参数选择及现场调试研究。
     本文还研究了输电线路覆冰预警系统原理,对输电线路覆冰厚度的计算、覆冰后的冰载和比载、输电线路的基本物理方程运用等方面进行了理论研究,在覆冰预警系统功能模块、预警系统结构、预警系统设计、系统接口及工作流程、通信技术等方面提出了实施方案。
     通过对区域电网的融冰理论和覆冰预警系统的深入研究,对输电线路的设计、采购、检验、安装、调试和运行维护等提供了理论依据。模拟试验结果证明,理论计算和试验数据吻合较好,该系统的实施应用,能提升了输电管理维护人员的技术水平和科学决策能力,预防了电网事故发生,保证电网的安全运行。
In recent years,most parts of Southern China power transmission and distribution facilities suffered severe ice storm, which caused a great loss to the economy. After the disasters, the investment of reconstructing and updating of the grid system is rather big. Up to now, we do not have sound research in precaution, treatment and recovery against ice disaster in power system, while the standards of anti-ice coating design still needs to improve. The ice-melting and de-icing technology on transmission facilities is poor. It is quite necessary to make studies on anti-ice and ice-storm recovery.
     This article made a research about the exposure problems caused by ice disaster. Then it analyzed the ultimate weather condition leading to ice disaster, transmission line planning and designing, anti-ice materials and de-icing technology. Based on the previous analysis and statement of icing flashover in 220kV transmission lines in Gulin County, this article made a further research on the rules of icing flashover in transmission lines, and then came up with an anti-flashover solution for 220 KV transmission lines in Luzhou.
     With the study on both domestic and foreign de-icing methods and analysis of the220kV and 110kV grid structure in Xuyong and Gulin area, this article also complete the model for melting ice, including calculation model for time and current calculation. Besides this, this article explored the feasibility of AC ice-melting and put forward some detailed measures of ice-melting. This article also studied the ice-melting equipments construction plan in Luzhou as well as the parameter s setting and on-the-spot debugging research.
     This article also studied the principle for the on-line monitoring and warning system. Calculation of ice thickness, ice load and the ratio of the ice after the upload and the basic physical equations of transmission lines were covered in the study. This article raised implementation plan for functional modules in the system, system architecture, system design, system interface and workflow and communication technologies.
     Through the in-depth study of regional power grid ice-melting and warning system, this article demonstrated the theoretical supports for transmission line design, procurement, testing, installation, testing and maintenance. A simulation result shows that the theoretical calculations matches test data. The application of the system will greatly improve transmission line management personnel in technology and decision-making capacity. Prevent accident and ensure the safe operation of power.
引文
[1]蒋兴良,马俊,王少华,等.输电线路冰害事故及原因分析
    [2]黄新波,刘家兵,蔡伟,等.电力架空线路覆冰雪的国内外研究现状
    [3]中国南方电网公司.电网防冰融冰技术及应用
    [4]东北电力设计院张殿生.电力工程高压送电线路线路设计手册(第二版)
    [5] McComber P,Drues J.Effect of cable twistingon atmospheric ice-shedding[C].IWAIS,Japan,1990.
    [6]黄绍培,余伯平.220 kV输电线路重冰区观冰综合分析[J].高电压技术,1993,19(1):54-57.
    [7] Jamaledding A . Weigh-dropping simulation ofice-shedding effects on an overhead transmission line model[C].Proceedings of7th IWAIS(International Workshop onAtmospheric Icing of Structures),Canada,1996.
    [8] Jamaledding A . Simulation of ice-shedding on electrical transmission line using ADINA[J].Computers & Structures,1993,47(4-5):523-536.
    [9]王晶.等.电力系统的MATLAB仿真及应用》
    [10] 1000kV真型塔空气间隙放电特性研究,国网电力科学研究院,2007.11.
    [11]蒋兴良,曹娟.覆冰绝缘子闪络过程泄漏电流监测设计与实现[J].高电压技术, 2003, 29(8):17-19.
    [12] Masanori Hara and Luan phan. Leakage Current and Flashover Performance of Iced Insulators [J]. IEEE Transactions on Power Apparatus an Systems, Vol. PAS-98,No.3 May/Jue 1979:849-859.
    [13] M. Farzaneh and J. Zhang. A Multi-Arc Model for Predicting AC Critical Flashover Voltage of Ice-covered Insulators [J]. IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 14, No. 6; December 2007:1401-1409.
    [14]孙才新,司马文霞,舒立春.大气环境与电气外绝缘[M].北京:中国电力出版社, 2002.[8]周克宁,吴飞飞.一种电磁式电流互感器的数据实时修正法[J].仪器仪表学报, 2007,12: 153-156.
    [15] M. Farzaneh, T. Baker, A. Bernstorf, etal, Insulator Icing Test Methods and Procedures-A Position Paper Prepared by the IEEE Task Force on Insulator Icing Test Methods [J]. IEEETransactions on Power Delivery, 2003,18(4): 1503-1515.
    [16]孙才新,顾乐观,张建辉,蒋兴良.覆冰绝缘子的交流放电机理研究[J].中国电机工程学报, 1989,9(5):1-8
    [17]蒋兴良,舒立春,张志劲,谢述教,王岩.覆冰绝缘子长串交流闪络特性和放电过程研究[J].中国电机工程学报, 2005,25(14):158-163.
    [18]贾逸梅,粟福珩.高压输电线路绝缘子的覆冰及对电气强度的影响[J].中国电力, 1994,27(3):9-12.
    [19]谢玉冰,游大海,黄上游.基于LabVIEW的光电式电流互感器测试系统[J].电力系统自动化,2004,28(22):95-99.
    [20] C. Volat, F. Meghnefi and M. Farzaneh."Analysis of Leakage Current of an Ice-Covered Insulator during Ice Accretion", Proc. IEEE PES Transmission and Distribution Conference, Dallas, USA, 6, pp.485-490, 2000.
    [21] Hadi Saadat著,王葵(译),电力系统分析POWER SYSTEM ANALYSIS

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700