雌孕激素对miRNAs调控的初探以及mmu-miR-200a过表达对胚胎着床的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分雌孕激素对miRNAs调控的初探
     目的:妊娠的成功依赖于一个健康的子宫,能接受胚泡的植入并支持胎儿的发育。子宫是一个内分泌器官,它能对卵巢所分泌的雌孕激素作出响应,雌孕激素通过与其相应的受体ER和PR结合从而激活下游的靶基因。雌孕激素信号已被证实对于胚泡植入至关重要。MicroRNAs(miRNAs)可以调控基因的表达,并有研究证实miRNAs参与了胚泡植入的过程,但是对于谁来调控miRNAs的表达还知之甚少。由于许多参与植入的关键基因受到雌孕激素的调控,那么雌孕激素是否可以通过调控miRNAs表达进而影响胚泡植入的过程,这是本研究的目的。
     方法:收取小鼠妊娠第1天(D1)和第6天(D6)子宫内膜组织以模拟雌孕激素调节模型(妊娠D1是E2的高峰期,P4水平低;妊娠D6是P4的高峰期,E2水平低)。提取总RNA后进行microRNA测序,所得到的结果进行生物信息学分析。
     结果:miRNAs测序发现,妊娠D6与D1相比,有6个miRNA表达上调2倍以上,73个miRNA表达下调2倍以上。通过生物信息学分析,筛选出差异表达miRNAs的靶基因及其所参与的信号通路,这些miRNAs所调控的靶基因多参与代谢、MAPK、紧密连接等信号通路。
     结论:本研究结果初步反映了在小鼠子宫内膜组织中,miRNAs的表达受到雌孕激素的调控。通过生物信息学分析发现,在妊娠D1和D6中存在差异表达的miRNAs,其调控的靶基因所参与的信号通路均在植入过程中发挥重要作用,提示miRNAs在胚胎着床过程中起一定的调控作用。
     第二部分mmu-miR-200a过表达对胚胎着床的影响
     目的:胚泡成功植入需要子宫进入接受态以及激活的囊胚,大量的基因、细胞因子以及其他分子都参与了这一过程。众所周知,MicroRNAs(miRNAs)可以调控基因的表达,而且有研究表明miRNAs参与了调控胚泡植入的过程,但调控此过程的具体miRNA还研究尚少,这值得我们去探索。通过前期研究结果发现,mmu-miR-200a在妊娠D6,即孕激素高峰时表达下调,而且在植入前后具有表达差异,也有研究证实miR-200a在多种子宫内膜疾病(如子宫内膜癌和子宫内膜异位)的表达差异明显。因此,本研究旨在探索mmu-miR-200a在胚泡植入过程中所起的作用及其靶基因,为深入了解胚泡植入的分子机制提供基础,并有可能为治疗女性不孕不育以及开发避孕药提供新的思路。
     方法:Real Time-PCR检测mmu-miR-200a在妊娠D4、D5和D6子宫内膜以及D5着床点和着床点旁的表达水平,原位杂交检测mmu-miR-200a在妊娠D4、D5以及D6子宫中的表达模式。通过生物信息学分析、基质细胞原代培养及转染和荧光强度分析确认其靶基因为PTEN,免疫组化确定PTEN在小鼠植入过程子宫中的表达定位,宫角注射mmu-miR-200a过表达慢病毒观察植入情况。最后,利用流式细胞术检测转染mmu-miR-200a的对照、模拟物、抑制物后,基质细胞的凋亡状况。
     结果:应用Real Time-PCR发现在妊娠D5子宫内膜着床点及其旁组织表达差异明显,且在着床点的表达明显低于着床点旁。mmu-miR-200a的mRNA表达水平在妊娠D4、D5、D6子宫内膜中依次下降,且主要表达在基质细胞中,腔上皮及腺上皮细胞表达较少。mmu-miR-200a的靶基因PTEN的表达定位与其相同,但表达水平模式正好相反。宫角注射mmu-miR-200a过表达慢病毒发现胚胎着床率明显下降。流式细胞术检测到转染mmu-miR-200a抑制物后,基质细胞凋亡明显增加,此时PTEN蛋白表达上调;转染mmu-miR-200a模拟物后,基质细胞凋亡明显减少,PTEN蛋白表达下调。
     结论:研究发现mmu-miR-200a过表达会导致小鼠胚泡植入率的下降。根据mmu-miR-200a与其靶基因PTEN的表达模式以及转染mmu-miR-200a模拟物和抑制物后基质细胞凋亡率以及PTEN的蛋白表达水平,我们相信mmu-miR-200a是通过PTEN调控基质细胞的适度增殖以确保植入正常进行。
PART IPRELIMINARY STUDY OF ESTROGEN ANDPROGESTERONE ON MICRORNAS REGULATION
     Background: Successful pregnancy is dependent on a healthy uterus thatis fit to receive and support a fertilized embryo. The uterus is an endocrineorgan, responsive to the presence of the ovarian steroid hormones, estrogenand progesterone, which activate transcription of target genes through thebinding of their cognate receptors, the estrogen receptor and theprogesterone receptor. Estrogen and progesterone signaling have beendemonstrated to be critical for the initiation and maintainance of pregnancy.MicroRNAs(miRNAs) regulate the expression of many genes, and previousstudies have demonstrated the relationship between miRNAs expressionand embryo implantation. However, there is little report about whoregulates miRNAs expression. Because many crucial genes which areinvolved with implantation are regulated by E2and P4. Then, the purpose of this study is to explore whether E2and P4affect implantation throughregulating miRNAs expression.
     Methods: Collected mouse uterus endometria tissues on pregnancyD1and D6to mimic estradiol and progesterone regulate model (E2levelreaches a peak on D1, and P4is very low; instead, P4level reaches a peakon D6, and E2is very low). Then extracted total RNA to performmicroRNA sequencing. At last, the results were analyzed by Bioinformatics.
     Results: The results of miRNA sequencing showed that6miRNAexpression was up-regulated more than2fold and73miRNA expressionwas down-regulated more than2fold when D6versus D1, and screen forthe target genes of these differential miRNAs are involved in whichsignaling pathways. The target genes of these differential miRNAs areinvolved in metabolism, MAPK, tight junction signaling throughBioinformatics analysis.
     Conclusions: These results preliminarily reflect in mouseendometrium, the expression of miRNAs is regulated by estrogen andprogesterone. Some miRNAs are differentially expression in endometriumon pregnancy D1, and D6and the target genes of these miRNAs areinvolved in several signaling pathways which are very important during theimplantation process through Bioinformatics analysis. This suggested thatmiRNAs have a role in mouse implantation.
     PART IIEFFECT OF MMU-MICRORNA-200A OEREXPRESSION ONMOUSE EMBRYO IMPLANTATION
     Background: Successful mouse embryo implantation requires areceptive uterus and an activated blastocyst. A large number of genes,cytokines and other factors are involved with the process.MicroRNAs(miRNAs) regulate the expression of many genes, and previousstudies have demonstrated that miRNAs regulate embryo implantationthrough their target genes. However, there is much less report about specificmiRNA involved in this process. According to previous results, we foundthat mmu-miR-200a expression was down-regulated by P4and expresseddifferentially before and after implantation. Moreover, studies have alsoshown that miR-200a was differentially expression in many endometrialdeseases (such as endometrial carcinoma and endometriosis). Thus, thisstudy is to explore the role of mmu-miR-200a during embryo implantationand its target gene, and clarifying the physiological functions of uterinemiRNAs will elucidate the embryo implantation process, and may evencontribute to curing infertility and inventing new contraceptives.
     Methods: Real Time-PCR examined mmu-miR-200a expression levelon pregnancy D4, D5and D6, and in the implantation sites andinter-implantation sites in the uterine endometria on pregnancy D5. Then we performed in situ hybridization to detect the expression pattern ofmmu-miR-200a. The target gene of mmu-miR-200a was verified bybioinformatics analysis, primary stromal cell culture, transfection andfluorescence intensiy assay. The implantation rate was examined byinjecting lentivirus which was designed to promote overexpression ofmmu-miR-200a in the area of injection. Finally, we examined the apoptosisrate of primary stromal cells after tranfection with mmu-miR-200a control,mimic or inhibitor through flow cytometry.
     Results: Here it showed that the expression of mmu-miR-200a wasmuch lower at implantation sites than that at inter-implantation sites onpregnancy D5. Mmu-miR-200a had the highest level of expression on D4,and the expression levels decreased gradually on D5and D6, and it wasmainly expressed in stromal cells and weakly expressed in epithelial andglandular cells. PTEN, as the target gene of mmu-miR-200a, had the sameexpression location and the opposite expression level with mmu-miR-200a.Moreover, the implantation rate was decreased by injecting mmu-miR-200aoverexpression lentivirus. Additonally, when transfection withmmu-miR-200a inhibitor, the apoptosis rate of stromal cells was increaseobviously and PTEN protein expression level was up-regulated. Instead,When transfection with mmu-miR-200a mimic, the apoptosis rate ofstromal cells was decrease and PTEN protein expression level wasdown-regulated.
     Conclusions: This study demonstrated that overexpression ofmmu-miR200a leads to decreased implantation rate. According to theexpression pattern of mmu-miR-200a and its target gene PTEN, and therate of apoptosis of primary stromal cells by transfection withmmu-miR-200a mimic and inhibitor, we believed that mmu-miR-200aregulate moderate proliferation of stromal cells to ensure normal embryoimplantation process through PTEN.
引文
1. Zhang, S., et al., Deciphering the molecular basis of uterine receptivity. MolReprod Dev,2013.80(1): p.8-21.
    2. Bazer, F.W., et al., Comparative aspects of implantation. Reproduction,2009.138(2): p.195-209.
    3. Paria, B.C., et al., Deciphering the cross-talk of implantation: advances andchallenges. Science,2002.296(5576): p.2185-8.
    4. Lim, H.J. and H. Wang, Uterine disorders and pregnancy complications: insightsfrom mouse models. J Clin Invest,2010.120(4): p.1004-15.
    5. Kover, K., et al., Differential expression and regulation of cytokine genes in themouse uterus. Endocrinology,1995.136(4): p.1666-73.
    6. Fouladi-Nashta, A.A., et al., Characterization of the uterine phenotype duringthe peri-implantation period for LIF-null, MF1strain mice. Dev Biol,2005.281(1): p.1-21.
    7. Lee, K.Y., et al., Bmp2is critical for the murine uterine decidual response. MolCell Biol,2007.27(15): p.5468-78.
    8. Li, Q., et al., WNT4acts downstream of BMP2and functions via beta-cateninsignaling pathway to regulate human endometrial stromal cell differentiation.Endocrinology,2013.154(1): p.446-57.
    9. Li, Q., et al., Bone morphogenetic protein2functions via a conserved signalingpathway involving Wnt4to regulate uterine decidualization in the mouse and thehuman. J Biol Chem,2007.282(43): p.31725-32.
    10. Xie, H., et al., Maternal heparin-binding-EGF deficiency limits pregnancysuccess in mice. Proc Natl Acad Sci U S A,2007.104(46): p.18315-20.
    11Das, S.K., et al., Heparin-binding EGF-like growth factor gene is induced in themouse uterus temporally by the blastocyst solely at the site of its apposition: apossible ligand for interaction with blastocyst EGF-receptor in implantation.Development,1994.120(5): p.1071-83.
    12. Zhu, L. and J.W. Pollard, Estradiol-17beta regulates mouse uterine epithelial cellproliferation through insulin-like growth factor1signaling. Proc Natl Acad SciU S A,2007.104(40): p.15847-51.
    13. Ma, W., et al., Adult tissue angiogenesis: evidence for negative regulation byestrogen in the uterus. Mol Endocrinol,2001.15(11): p.1983-92.
    14. Matsumoto, H., et al., Cyclooxygenase-2differentially directs uterineangiogenesis during implantation in mice. J Biol Chem,2002.277(32): p.29260-7.
    15. Nilsen, T.W., Mechanisms of microRNA-mediated gene regulation in animalcells. Trends Genet,2007.23(5): p.243-9.
    16. Du, T. and P.D. Zamore, microPrimer: the biogenesis and function of microRNA.Development,2005.132(21): p.4645-52.
    17. Lim, L.P., et al., Microarray analysis shows that some microRNAs downregulatelarge numbers of target mRNAs. Nature,2005.433(7027): p.769-73.
    18. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flankedby adenosines, indicates that thousands of human genes are microRNA targets.Cell,2005.120(1): p.15-20.
    19. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004.116(2): p.281-97.
    20. He, L., et al., A microRNA polycistron as a potential human oncogene. Nature,2005.435(7043): p.828-33.
    21. Bae, Y., et al., miRNA-34c regulates Notch signaling during bone development.Hum Mol Genet,2012.21(13): p.2991-3000.
    22. Chakrabarty, A., et al., MicroRNA regulation of cyclooxygenase-2duringembryo implantation. Proc Natl Acad Sci U S A,2007.104(38): p.15144-9.
    23. Hu, S.J., et al., MicroRNA expression and regulation in mouse uterus duringembryo implantation. J Biol Chem,2008.283(34): p.23473-84.
    24. Kuokkanen, S., et al., Genomic profiling of microRNAs and messenger RNAsreveals hormonal regulation in microRNA expression in human endometrium.Biol Reprod,2010.82(4): p.791-801.
    25. Wang, H. and S.K. Dey, Roadmap to embryo implantation: clues from mousemodels. Nat Rev Genet,2006.7(3): p.185-99.
    26.鲁之中,陈雪梅,曾兰,何俊琳,王应雄,丁裕斌,黄玲,刘学庆.早孕小鼠胚胎着床前后子宫内膜microRNAs差异表达.细胞生物学杂志,2009,31(6):848-852.
    27. Scherle, P.A., et al., Regulation of cyclooxygenase-2induction in the mouseuterus during decidualization. An event of early pregnancy. J Biol Chem,2000.275(47): p.37086-92.
    28. Wang, X., et al., Embryonic signals direct the formation of tight junctionalpermeability barrier in the decidualizing stroma during embryo implantation. JCell Sci,2004.117(Pt1): p.53-62.
    29. Muller, D.W. and A.K. Bosserhoff, Integrin beta3expression is regulated bylet-7a miRNA in malignant melanoma. Oncogene,2008.27(52): p.6698-706.
    30. Yu, F., et al., Mir-30reduction maintains self-renewal and inhibits apoptosis inbreast tumor-initiating cells. Oncogene,2010.29(29): p.4194-204.
    31. Korpal, M., et al., The miR-200family inhibits epithelial-mesenchymaltransition and cancer cell migration by direct targeting of E-cadherintranscriptional repressors ZEB1and ZEB2. J Biol Chem,2008.283(22): p.14910-4.
    32. Park, S.M., et al., The miR-200family determines the epithelial phenotype ofcancer cells by targeting the E-cadherin repressors ZEB1and ZEB2. Genes Dev,2008.22(7): p.894-907.
    33. Cao, X., S.L. Pfaff, and F.H. Gage, A functional study of miR-124in thedeveloping neural tube. Genes Dev,2007.21(5): p.531-6.
    34. Pan, Q. and N. Chegini, MicroRNA signature and regulatory functions in theendometrium during normal and disease states. Semin Reprod Med,2008.26(6):p.479-93.
    35. Hiroki, E., et al., Changes in microRNA expression levels correlate withclinicopathological features and prognoses in endometrial serousadenocarcinomas. Cancer Sci,2010.101(1): p.241-9.
    36. Ohlsson Teague, E.M., et al., MicroRNA-regulated pathways associated withendometriosis. Mol Endocrinol,2009.23(2): p.265-75.
    37. Brown, J.R. and P. Sanseau, A computational view of microRNAs and theirtargets. Drug Discov Today,2005.10(8): p.595-601.
    38. Soifer, H.S., J.J. Rossi, and P. Saetrom, MicroRNAs in disease and potentialtherapeutic applications. Mol Ther,2007.15(12): p.2070-9.
    39. Krutzfeldt, J., M.N. Poy, and M. Stoffel, Strategies to determine the biologicalfunction of microRNAs. Nat Genet,2006.38Suppl: p. S14-9.
    40. Chendrimada, T.P., et al., MicroRNA silencing through RISC recruitment ofeIF6. Nature,2007.447(7146): p.823-8.
    41. Ouellet, D.L., et al., MicroRNAs in gene regulation: when the smallest governsit all. J Biomed Biotechnol,2006.2006(4): p.69616.
    42. Rodriguez, A., et al., Requirement of bic/microRNA-155for normal immunefunction. Science,2007.316(5824): p.608-11.
    43. Zhao, Y., et al., Dysregulation of cardiogenesis, cardiac conduction, and cellcycle in mice lacking miRNA-1-2. Cell,2007.129(2): p.303-17.
    44. Paria, B.C., Y.M. Huet-Hudson, and S.K. Dey, Blastocyst's state of activitydetermines the "window" of implantation in the receptive mouse uterus. ProcNatl Acad Sci U S A,1993.90(21): p.10159-62.
    45. Skjaerven, R., A.J. Wilcox, and R.T. Lie, A population-based study of survivaland childbearing among female subjects with birth defects and the risk ofrecurrence in their children. N Engl J Med,1999.340(14): p.1057-62.
    46. Norwitz, E.R., D.J. Schust, and S.J. Fisher, Implantation and the survival ofearly pregnancy. N Engl J Med,2001.345(19): p.1400-8.
    47. Lee, K., et al., Indian hedgehog is a major mediator of progesterone signaling inthe mouse uterus. Nat Genet,2006.38(10): p.1204-9.
    48. Stewart, C.L., et al., Blastocyst implantation depends on maternal expression ofleukaemia inhibitory factor. Nature,1992.359(6390): p.76-9.
    49. Hu, W., et al., p53regulates maternal reproduction through LIF. Nature,2007.450(7170): p.721-4.
    50. Cheng, J.G., et al., Dual control of LIF expression and LIF receptor functionregulate Stat3activation at the onset of uterine receptivity and embryoimplantation. Proc Natl Acad Sci U S A,2001.98(15): p.8680-5.
    51. Daikoku, T., et al., Conditional deletion of Msx homeobox genes in the uterusinhibits blastocyst implantation by altering uterine receptivity. Dev Cell,2011.21(6): p.1014-25.
    52. Nallasamy, S., et al., Msx homeobox genes critically regulate embryoimplantation by controlling paracrine signaling between uterine stroma andepithelium. PLoS Genet,2012.8(2): p. e1002500.
    53. Surveyor, G.A., et al., Expression and steroid hormonal control of Muc-1in themouse uterus. Endocrinology,1995.136(8): p.3639-47.
    54. Cha, J., X. Sun, and S.K. Dey, Mechanisms of implantation: strategies forsuccessful pregnancy. Nat Med,2012.18(12): p.1754-67.
    55. Song, H., et al., Cytosolic phospholipase A2alpha is crucial [correction ofA2alpha deficiency is crucial] for 'on-time' embryo implantation that directssubsequent development. Development,2002.129(12): p.2879-89.
    56. Ye, X., et al., LPA3-mediated lysophosphatidic acid signalling in embryoimplantation and spacing. Nature,2005.435(7038): p.104-8.
    57. Dey, S.K., Reproductive biology: fatty link to fertility. Nature,2005.435(7038):p.34-5.
    58. Liu, J.L., R.W. Su, and Z.M. Yang, Differential expression profiles of mRNAs,miRNAs and proteins during embryo implantation. Front Biosci (Schol Ed),2011.3: p.1511-9.
    59. Su, R.W., et al., The integrative analysis of microRNA and mRNA expression inmouse uterus under delayed implantation and activation. PLoS One,2010.5(11):p. e15513.
    60. Gibbons, D.L., et al., Contextual extracellular cues promote tumor cell EMT andmetastasis by regulating miR-200family expression. Genes Dev,2009.23(18): p.2140-51.
    61. Xia, H., et al., miR-200a-mediated downregulation of ZEB2and CTNNB1differentially inhibits nasopharyngeal carcinoma cell growth, migration andinvasion. Biochem Biophys Res Commun,2010.391(1): p.535-41.
    62. Dykxhoorn, D.M., et al., miR-200enhances mouse breast cancer cellcolonization to form distant metastases. PLoS One,2009.4(9): p. e7181.
    63. Hu, X., et al., A miR-200microRNA cluster as prognostic marker in advancedovarian cancer. Gynecol Oncol,2009.114(3): p.457-64.
    64. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR.Nucleic Acids Res,2005.33(20): p. e179.
    65. Griffiths-Jones, S., et al., miRBase: microRNA sequences, targets and genenomenclature. Nucleic Acids Res,2006.34(Database issue): p. D140-4.
    66. Krek, A., et al., Combinatorial microRNA target predictions. Nat Genet,2005.37(5): p.495-500.
    67. Kleinman, H.K., et al., Basement membrane complexes with biological activity.Biochemistry,1986.25(2): p.312-8.
    68. Song, L. and R.S. Tuan, MicroRNAs and cell differentiation in mammaliandevelopment. Birth Defects Res C Embryo Today,2006.78(2): p.140-9.
    69. Bentwich, I., et al., Identification of hundreds of conserved and nonconservedhuman microRNAs. Nat Genet,2005.37(7): p.766-70.
    70. Berezikov, E., et al., Phylogenetic shadowing and computational identificationof human microRNA genes. Cell,2005.120(1): p.21-4.
    71. Xie, X., et al., Systematic discovery of regulatory motifs in human promotersand3' UTRs by comparison of several mammals. Nature,2005.434(7031): p.338-45.
    72. Zhang, N., et al., microRNA-7is a novel inhibitor of YY1contributing tocolorectal tumorigenesis. Oncogene,2012.
    73. van Rooij, E., et al., Control of stress-dependent cardiac growth and geneexpression by a microRNA. Science,2007.316(5824): p.575-9.
    74. Liu, H., et al., MiR-145and miR-143regulate odontoblast differentiationthrough targeting Klf4and Osx in a feedback loop. J Biol Chem,2013.
    75. Tan, J., et al., Evidence for coordinated interaction of cyclin D3with p21andcdk6in directing the development of uterine stromal cell decidualization andpolyploidy during implantation. Mech Dev,2002.111(1-2): p.99-113.
    76. Sun, X., et al., Kruppel-like factor5(KLF5) is critical for conferring uterinereceptivity to implantation. Proc Natl Acad Sci U S A,2012.109(4): p.1145-50.
    77. Lim, H., et al., Multiple female reproductive failures in cyclooxygenase2-deficient mice. Cell,1997.91(2): p.197-208.
    78. Lim, H., et al., Cyclo-oxygenase-2-derived prostacyclin mediates embryoimplantation in the mouse via PPARdelta. Genes Dev,1999.13(12): p.1561-74.
    79. Garcia-Cao, I., et al., Systemic elevation of PTEN induces a tumor-suppressivemetabolic state. Cell,2012.149(1): p.49-62.
    80. Tashiro, H., et al., Mutations in PTEN are frequent in endometrial carcinoma butrare in other common gynecological malignancies. Cancer Res,1997.57(18): p.3935-40.
    81. Chen, X.L., et al., Expression of phosphatase and tensin homolog deleted onchromosome ten in mouse endometrium and its effect during blastocystimplantation. Sheng Li Xue Bao,2008.60(1): p.119-24.
    82. Tan, Y., et al., HB-EGF directs stromal cell polyploidy and decidualization viacyclin D3during implantation. Dev Biol,2004.265(1): p.181-95.
    1. Dey, S.K., How we are born. J Clin Invest,2010.120(4): p.952-5.
    2. Lim, H.J. and H. Wang, Uterine disorders and pregnancy complications: insightsfrom mouse models. J Clin Invest,2010.120(4): p.1004-15.
    3. Wilcox, A.J., D.D. Baird, and C.R. Weinberg, Time of implantation of theconceptus and loss of pregnancy. N Engl J Med,1999.340(23): p.1796-9.
    4. Norwitz, E.R., D.J. Schust, and S.J. Fisher, Implantation and the survival ofearly pregnancy. N Engl J Med,2001.345(19): p.1400-8.
    5. Wang, H. and S.K. Dey, Roadmap to embryo implantation: clues from mousemodels. Nat Rev Genet,2006.7(3): p.185-99.
    6. Dey, S.K., et al., Molecular cues to implantation. Endocr Rev,2004.25(3): p.341-73.
    7. Cha, J., X. Sun, and S.K. Dey, Mechanisms of implantation: strategies forsuccessful pregnancy. Nat Med,2012.18(12): p.1754-67.
    8. Paria, B.C., Y.M. Huet-Hudson, and S.K. Dey, Blastocyst's state of activitydetermines the "window" of implantation in the receptive mouse uterus. ProcNatl Acad Sci U S A,1993.90(21): p.10159-62.
    9. Ma, W.G., et al., Estrogen is a critical determinant that specifies the duration ofthe window of uterine receptivity for implantation. Proc Natl Acad Sci U S A,2003.100(5): p.2963-8.
    10. Hoversland, R.C., S.K. Dey, and D.C. Johnson, Catechol estradiol inducedimplantation in the mouse. Life Sci,1982.30(21): p.1801-4.
    11. Kantor, B.S., S.K. Dey, and D.C. Johnson, Catechol oestrogen induced initiationof implantation in the delayed implanting rat. Acta Endocrinol (Copenh),1985.109(3): p.418-22.
    12. Tsuchiya, Y., M. Nakajima, and T. Yokoi, Cytochrome P450-mediatedmetabolism of estrogens and its regulation in human. Cancer Lett,2005.227(2):p.115-24.
    13. Paria, B.C., C. Chakraborty, and S.K. Dey, Catechol estrogen formation in themouse uterus and its role in implantation. Mol Cell Endocrinol,1990.69(1): p.25-32.
    14. Paria, B.C., et al., Coordination of differential effects of primary estrogen andcatecholestrogen on two distinct targets mediates embryo implantation in themouse. Endocrinology,1998.139(12): p.5235-46.
    15. Matsuda, L.A., et al., Structure of a cannabinoid receptor and functionalexpression of the cloned cDNA. Nature,1990.346(6284): p.561-4.
    16. Munro, S., K.L. Thomas, and M. Abu-Shaar, Molecular characterization of aperipheral receptor for cannabinoids. Nature,1993.365(6441): p.61-5.
    17. Schmid, P.C., et al., Changes in anandamide levels in mouse uterus areassociated with uterine receptivity for embryo implantation. Proc Natl Acad SciU S A,1997.94(8): p.4188-92.
    18. Paria, B.C., et al., Dysregulated cannabinoid signaling disrupts uterinereceptivity for embryo implantation. J Biol Chem,2001.276(23): p.20523-8.
    19. Wang, H., et al., Differential G protein-coupled cannabinoid receptor signalingby anandamide directs blastocyst activation for implantation. Proc Natl Acad SciU S A,2003.100(25): p.14914-9.
    20. Piomelli, D., THC: moderation during implantation. Nat Med,2004.10(1): p.19-20.
    21. Clevers, H. and R. Nusse, Wnt/beta-catenin signaling and disease. Cell,2012.149(6): p.1192-205.
    22. Hoffmeyer, K., et al., Wnt/beta-catenin signaling regulates telomerase in stemcells and cancer cells. Science,2012.336(6088): p.1549-54.
    23. Xie, H., et al., Inactivation of nuclear Wnt-beta-catenin signaling limitsblastocyst competency for implantation. Development,2008.135(4): p.717-27.
    24. Ueda, O., et al., Possible expansion of "Window of Implantation" inpseudopregnant mice: time of implantation of embryos at different stages ofdevelopment transferred into the same recipient. Biol Reprod,2003.69(3): p.1085-90.
    25. Hamatani, T., et al., Global gene expression analysis identifies molecularpathways distinguishing blastocyst dormancy and activation. Proc Natl Acad SciU S A,2004.101(28): p.10326-31.
    26. Lubahn, D.B., et al., Alteration of reproductive function but not prenatal sexualdevelopment after insertional disruption of the mouse estrogen receptor gene.Proc Natl Acad Sci U S A,1993.90(23): p.11162-6.
    27. Curtis, S.W., et al., Disruption of estrogen signaling does not preventprogesterone action in the estrogen receptor alpha knockout mouse uterus. ProcNatl Acad Sci U S A,1999.96(7): p.3646-51.
    28. Paria, B.C., et al., Uterine decidual response occurs in estrogenreceptor-alpha-deficient mice. Endocrinology,1999.140(6): p.2704-10.
    29. Lydon, J.P., et al., Mice lacking progesterone receptor exhibit pleiotropicreproductive abnormalities. Genes Dev,1995.9(18): p.2266-78.
    30. Mulac-Jericevic, B., et al., Subgroup of reproductive functions of progesteronemediated by progesterone receptor-B isoform. Science,2000.289(5485): p.1751-4.
    31. Tan, J., et al., Differential uterine expression of estrogen and progesteronereceptors correlates with uterine preparation for implantation and decidualizationin the mouse. Endocrinology,1999.140(11): p.5310-21.
    32. Huet-Hudson, Y.M., G.K. Andrews, and S.K. Dey, Cell type-specific localizationof c-myc protein in the mouse uterus: modulation by steroid hormones andanalysis of the periimplantation period. Endocrinology,1989.125(3): p.1683-90.
    33. Cooke, P.S., et al., Mechanism of estrogen action: lessons from the estrogenreceptor-alpha knockout mouse. Biol Reprod,1998.59(3): p.470-5.
    34. Cooke, P.S., et al., Stromal estrogen receptors mediate mitogenic effects ofestradiol on uterine epithelium. Proc Natl Acad Sci U S A,1997.94(12): p.6535-40.
    35. Buchanan, D.L., et al., Tissue compartment-specific estrogen receptor-alphaparticipation in the mouse uterine epithelial secretory response. Endocrinology,1999.140(1): p.484-91.
    36. Kurita, T., et al., Stromal progesterone receptors mediate the inhibitory effects ofprogesterone on estrogen-induced uterine epithelial cell deoxyribonucleic acidsynthesis. Endocrinology,1998.139(11): p.4708-13.
    37. Franco, H.L., et al., Epithelial progesterone receptor exhibits pleiotropic roles inuterine development and function. FASEB J,2012.26(3): p.1218-27.
    38. Winuthayanon, W., et al., Uterine epithelial estrogen receptor alpha isdispensable for proliferation but essential for complete biological andbiochemical responses. Proc Natl Acad Sci U S A,2010.107(45): p.19272-7.
    39. Simon, C., et al., The role of estrogen in uterine receptivity and blastocystimplantation. Trends Endocrinol Metab,2003.14(5): p.197-9.
    40. Song, H., K. Han, and H. Lim, Progesterone supplementation extends uterinereceptivity for blastocyst implantation in mice. Reproduction,2007.133(2): p.487-93.
    41. Tranguch, S., et al., Cochaperone immunophilin FKBP52is critical to uterinereceptivity for embryo implantation. Proc Natl Acad Sci U S A,2005.102(40): p.14326-31.
    42. Tranguch, S., et al., FKBP52deficiency-conferred uterine progesteroneresistance is genetic background and pregnancy stage specific. J Clin Invest,2007.117(7): p.1824-34.
    43. Petit, F.G., et al., Deletion of the orphan nuclear receptor COUP-TFII in uterusleads to placental deficiency. Proc Natl Acad Sci U S A,2007.104(15): p.6293-8.
    44. Kurihara, I., et al., COUP-TFII mediates progesterone regulation of uterineimplantation by controlling ER activity. PLoS Genet,2007.3(6): p. e102.
    45. Lee, D.K., et al., Suppression of ERalpha activity by COUP-TFII is essential forsuccessful implantation and decidualization. Mol Endocrinol,2010.24(5): p.930-40.
    46. Li, Q., et al., The antiproliferative action of progesterone in uterine epithelium ismediated by Hand2. Science,2011.331(6019): p.912-6.
    47. Takamoto, N., et al., Identification of Indian hedgehog as aprogesterone-responsive gene in the murine uterus. Mol Endocrinol,2002.16(10): p.2338-48.
    48. Matsumoto, H., et al., Indian hedgehog as a progesterone-responsive factormediating epithelial-mesenchymal interactions in the mouse uterus. Dev Biol,2002.245(2): p.280-90.
    49. Simon, L., et al., Stromal progesterone receptors mediate induction of IndianHedgehog (IHH) in uterine epithelium and its downstream targets in uterinestroma. Endocrinology,2009.150(8): p.3871-6.
    50. Lee, K., et al., Indian hedgehog is a major mediator of progesterone signaling inthe mouse uterus. Nat Genet,2006.38(10): p.1204-9.
    51. Benson, G.V., et al., Mechanisms of reduced fertility in Hoxa-10mutant mice:uterine homeosis and loss of maternal Hoxa-10expression. Development,1996.122(9): p.2687-96.
    52. Hsieh-Li, H.M., et al., Hoxa11structure, extensive antisense transcription, andfunction in male and female fertility. Development,1995.121(5): p.1373-85.
    53. Lim, H., et al., Hoxa-10regulates uterine stromal cell responsiveness toprogesterone during implantation and decidualization in the mouse. MolEndocrinol,1999.13(6): p.1005-17.
    54. Satokata, I., G. Benson, and R. Maas, Sexually dimorphic sterility phenotypes inHoxa10-deficient mice. Nature,1995.374(6521): p.460-3.
    55. Daikoku, T., et al., Uterine Msx-1and Wnt4signaling becomes aberrant in micewith the loss of leukemia inhibitory factor or Hoxa-10: evidence for a novelcytokine-homeobox-Wnt signaling in implantation. Mol Endocrinol,2004.18(5):p.1238-50.
    56. Gendron, R.L., et al., Abnormal uterine stromal and glandular functionassociated with maternal reproductive defects in Hoxa-11null mice. Biol Reprod,1997.56(5): p.1097-105.
    57. Taylor, H.S., et al., HOXA10is expressed in response to sex steroids at the timeof implantation in the human endometrium. J Clin Invest,1998.101(7): p.1379-84.
    58. Song, H., et al., Dysregulation of EGF family of growth factors and COX-2inthe uterus during the preattachment and attachment reactions of the blastocystwith the luminal epithelium correlates with implantation failure in LIF-deficientmice. Mol Endocrinol,2000.14(8): p.1147-61.
    59. Stewart, C.L., et al., Blastocyst implantation depends on maternal expression ofleukaemia inhibitory factor. Nature,1992.359(6390): p.76-9.
    60. Ernst, M., et al., Defective gp130-mediated signal transducer and activator oftranscription (STAT) signaling results in degenerative joint disease,gastrointestinal ulceration, and failure of uterine implantation. J Exp Med,2001.194(2): p.189-203.
    61. Hu, W., et al., p53regulates maternal reproduction through LIF. Nature,2007.450(7170): p.721-4.
    62. Hirota, Y., et al., Uterine-specific p53deficiency confers premature uterinesenescence and promotes preterm birth in mice. J Clin Invest,2010.120(3): p.803-15.
    63. Daikoku, T., et al., Conditional deletion of Msx homeobox genes in the uterusinhibits blastocyst implantation by altering uterine receptivity. Dev Cell,2011.21(6): p.1014-25.
    64. Nallasamy, S., et al., Msx homeobox genes critically regulate embryoimplantation by controlling paracrine signaling between uterine stroma andepithelium. PLoS Genet,2012.8(2): p. e1002500.
    65. Mohamed, O.A., et al., Uterine Wnt/beta-catenin signaling is required forimplantation. Proc Natl Acad Sci U S A,2005.102(24): p.8579-84.
    66. Parr, B.A. and A.P. McMahon, Sexually dimorphic development of themammalian reproductive tract requires Wnt-7a. Nature,1998.395(6703): p.707-10.
    67. Miller, C. and D.A. Sassoon, Wnt-7a maintains appropriate uterine patterningduring the development of the mouse female reproductive tract. Development,1998.125(16): p.3201-11.
    68. Dunlap, K.A., et al., Postnatal deletion of Wnt7a inhibits uterine glandmorphogenesis and compromises adult fertility in mice. Biol Reprod,2011.85(2): p.386-96.
    69. Vainio, S., et al., Female development in mammals is regulated by Wnt-4signalling. Nature,1999.397(6718): p.405-9.
    70. Stark, K., et al., Epithelial transformation of metanephric mesenchyme in thedeveloping kidney regulated by Wnt-4. Nature,1994.372(6507): p.679-83.
    71. Franco, H.L., et al., WNT4is a key regulator of normal postnatal uterinedevelopment and progesterone signaling during embryo implantation anddecidualization in the mouse. FASEB J,2011.25(4): p.1176-87.
    72. Lee, K.Y., et al., Bmp2is critical for the murine uterine decidual response. MolCell Biol,2007.27(15): p.5468-78.
    73. Li, Q., et al., Bone morphogenetic protein2functions via a conserved signalingpathway involving Wnt4to regulate uterine decidualization in the mouse and thehuman. J Biol Chem,2007.282(43): p.31725-32.
    74. Jeong, J.W., et al., beta-catenin mediates glandular formation and dysregulationof beta-catenin induces hyperplasia formation in the murine uterus. Oncogene,2009.28(1): p.31-40.
    75. Das, S.K., et al., Heparin-binding EGF-like growth factor gene is induced in themouse uterus temporally by the blastocyst solely at the site of its apposition: apossible ligand for interaction with blastocyst EGF-receptor in implantation.Development,1994.120(5): p.1071-83.
    76. Paria, B.C., et al., Expression of the epidermal growth factor receptor gene isregulated in mouse blastocysts during delayed implantation. Proc Natl Acad SciU S A,1993.90(1): p.55-9.
    77. Raab, G., et al., Mouse preimplantation blastocysts adhere to cells expressing thetransmembrane form of heparin-binding EGF-like growth factor. Development,1996.122(2): p.637-45.
    78. Wang, J., et al., Acceleration of trophoblast differentiation by heparin-bindingEGF-like growth factor is dependent on the stage-specific activation of calciuminflux by ErbB receptors in developing mouse blastocysts. Development,2000.127(1): p.33-44.
    79. Xie, H., et al., Maternal heparin-binding-EGF deficiency limits pregnancysuccess in mice. Proc Natl Acad Sci U S A,2007.104(46): p.18315-20.
    80. Chobotova, K., et al., Heparin-binding epidermal growth factor and its receptorErbB4mediate implantation of the human blastocyst. Mech Dev,2002.119(2): p.137-44.
    81. Genbacev, O.D., et al., Trophoblast L-selectin-mediated adhesion at thematernal-fetal interface. Science,2003.299(5605): p.405-8.
    82. Lim, H., et al., Multiple female reproductive failures in cyclooxygenase2-deficient mice. Cell,1997.91(2): p.197-208.
    83. Langenbach, R., et al., Prostaglandin synthase1gene disruption in mice reducesarachidonic acid-induced inflammation and indomethacin-induced gastriculceration. Cell,1995.83(3): p.483-92.
    84. Reese, J., et al., Coordinated regulation of fetal and maternal prostaglandinsdirects successful birth and postnatal adaptation in the mouse. Proc Natl AcadSci U S A,2000.97(17): p.9759-64.
    85. Lim, H., et al., Cyclo-oxygenase-2-derived prostacyclin mediates embryoimplantation in the mouse via PPARdelta. Genes Dev,1999.13(12): p.1561-74.
    86. Matsumoto, H., et al., Cyclooxygenase-2differentially directs uterineangiogenesis during implantation in mice. J Biol Chem,2002.277(32): p.29260-7.
    87. Scherle, P.A., et al., Regulation of cyclooxygenase-2induction in the mouseuterus during decidualization. An event of early pregnancy. J Biol Chem,2000.275(47): p.37086-92.
    88. Wang, H., et al., Rescue of female infertility from the loss of cyclooxygenase-2by compensatory up-regulation of cyclooxygenase-1is a function of geneticmakeup. J Biol Chem,2004.279(11): p.10649-58.
    89. Kim, J.J., et al., Expression of cyclooxygenase-1and-2in the baboonendometrium during the menstrual cycle and pregnancy. Endocrinology,1999.140(6): p.2672-8.
    90. Song, H., et al., Cytosolic phospholipase A2alpha is crucial [correction ofA2alpha deficiency is crucial] for 'on-time' embryo implantation that directssubsequent development. Development,2002.129(12): p.2879-89.
    91. Ye, X., et al., LPA3-mediated lysophosphatidic acid signalling in embryoimplantation and spacing. Nature,2005.435(7038): p.104-8.
    92. Dey, S.K., Reproductive biology: fatty link to fertility. Nature,2005.435(7038):p.34-5.
    93. Hogan, B.L., Bone morphogenetic proteins: multifunctional regulators ofvertebrate development. Genes Dev,1996.10(13): p.1580-94.
    94. Paria, B.C., et al., Cellular and molecular responses of the uterus to embryoimplantation can be elicited by locally applied growth factors. Proc Natl AcadSci U S A,2001.98(3): p.1047-52.
    95. Pfendler, K.C., et al., Nodal and bone morphogenetic protein5interact inmurine mesoderm formation and implantation. Genesis,2000.28(1): p.1-14.
    96. Arikawa, T., K. Omura, and I. Morita, Regulation of bone morphogeneticprotein-2expression by endogenous prostaglandin E2in human mesenchymalstem cells. J Cell Physiol,2004.200(3): p.400-6.
    97. Paria, B.C. and S.K. Dey, Ligand-receptor signaling with endocannabinoids inpreimplantation embryo development and implantation. Chem Phys Lipids,2000.108(1-2): p.211-20.
    98. Mechoulam, R., E. Fride, and V. Di Marzo, Endocannabinoids. Eur J Pharmacol,
    1998.359(1): p.1-18.
    99. Maccarrone, M. and A. Finazzi-Agro, Endocannabinoids and their actions.Vitam Horm,2002.65: p.225-55.
    100. Guo, Y., et al., N-acylphosphatidylethanolamine-hydrolyzing phospholipase D isan important determinant of uterine anandamide levels during implantation. JBiol Chem,2005.280(25): p.23429-32.
    101. Paria, B.C., et al., Fatty-acid amide hydrolase is expressed in the mouse uterusand embryo during the periimplantation period. Biol Reprod,1999.60(5): p.1151-7.
    102. Wang, H., S.K. Dey, and M. Maccarrone, Jekyll and hyde: two faces ofcannabinoid signaling in male and female fertility. Endocr Rev,2006.27(5): p.427-48.
    103. Sun, X., et al., Endocannabinoid signaling directs differentiation of trophoblastcell lineages and placentation. Proc Natl Acad Sci U S A,2010.107(39): p.16887-92.
    104. Wang, H., et al., Aberrant cannabinoid signaling impairs oviductal transport ofembryos. Nat Med,2004.10(10): p.1074-80.
    105. Horne, A.W., et al., CB1expression is attenuated in Fallopian tube and deciduaof women with ectopic pregnancy. PLoS One,2008.3(12): p. e3969.
    106. Wang, H., et al., Fatty acid amide hydrolase deficiency limits early pregnancyevents. J Clin Invest,2006.116(8): p.2122-31.
    107. Trabucco, E., et al., Endocannabinoid system in first trimester placenta: lowFAAH and high CB1expression characterize spontaneous miscarriage. Placenta,2009.30(6): p.516-22.
    108. Yotsumoto, S., et al., Expression of adrenomedullin, a hypotensive peptide, inthe trophoblast giant cells at the embryo implantation site in mouse. Dev Biol,1998.203(2): p.264-75.
    109. Li, M., et al., Reduced maternal expression of adrenomedullin disrupts fertility,placentation, and fetal growth in mice. J Clin Invest,2006.116(10): p.2653-62.
    110. Li, M., Y. Wu, and K.M. Caron, Haploinsufficiency for adrenomedullin reducespinopodes and diminishes uterine receptivity in mice. Biol Reprod,2008.79(6):p.1169-75.
    111. Di Iorio, R., et al., Adrenomedullin in pregnancy. Lancet,1997.349(9048): p.328.
    112. Sun, X., et al., Kruppel-like factor5(KLF5) is critical for conferring uterinereceptivity to implantation. Proc Natl Acad Sci U S A,2012.109(4): p.1145-50.
    113. Liu, R., et al., The induction of KLF5transcription factor by progesteronecontributes to progesterone-induced breast cancer cell proliferation anddedifferentiation. Mol Endocrinol,2011.25(7): p.1137-44.
    114. Ema, M., et al., Kruppel-like factor5is essential for blastocyst development andthe normal self-renewal of mouse ESCs. Cell Stem Cell,2008.3(5): p.555-67.
    115. Salker, M.S., et al., Deregulation of the serum-and glucocorticoid-induciblekinase SGK1in the endometrium causes reproductive failure. Nat Med,2011.17(11): p.1509-13.
    116. Surveyor, G.A., et al., Expression and steroid hormonal control of Muc-1in themouse uterus. Endocrinology,1995.136(8): p.3639-47.
    117. Mori, M., et al., Death effector domain-containing protein (DEDD) is requiredfor uterine decidualization during early pregnancy in mice. J Clin Invest,2011.121(1): p.318-27.
    118. Bilinski, P., D. Roopenian, and A. Gossler, Maternal IL-11Ralpha function isrequired for normal decidua and fetoplacental development in mice. Genes Dev,1998.12(14): p.2234-43.
    119. Robb, L., et al., Infertility in female mice lacking the receptor for interleukin11is due to a defective uterine response to implantation. Nat Med,1998.4(3): p.303-8.
    120. Mizugishi, K., et al., Maternal disturbance in activated sphingolipid metabolismcauses pregnancy loss in mice. J Clin Invest,2007.117(10): p.2993-3006.
    121. Jeong, J.W., et al., Foxa2is essential for mouse endometrial gland developmentand fertility. Biol Reprod,2010.83(3): p.396-403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700