Ⅰ异特窗酸类化合物的高效合成方法研究Ⅱ P-Phos在胺偶联反应中的应用及其二氧化硅负载催化剂在前手性酮不对称还原中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学科学与化学工程技术的进步为国民经济增长、人民群众生活水平的提高与社会的发展作出了十分重要的贡献。但另外一方面,传统的化学工业也产生了大量的工业污染,造成了严重的环境问题,危及到可持续发展。由此专家学者们提出了与传统治理污染不同的“绿色化学”概念,它是从源头解决污染问题的一门科学。理想的绿色化学对有机合成反应的要求是:1)高选择性,极少副产品,最好100%选择性;2)原子经济性,实现零排放;3)采用无毒、无害的原料;4)采用无毒、无害的催化剂和溶剂;5)高转化率。
     本论文以绿色化学为主线,介绍了两方面的工作:1.异特窗酸类化合物的高效合成方法研究;2.P-Phos在胺偶联反应中的应用及其二氧化硅负载手性催化剂在前手性酮不对称还原中的应用。
     本论文的第一部分工作:
     第二章我们以α-酮酸酯为基本原料,筛选了碱碱偶(B1/B2)作用体系,利用其催化活性的差异,实现了一瓶多组分多步系列反应,将Aldol缩合或Homo-aldol缩合、内酯化关环、3-OH衍生化等多个步骤连续协调地进行,发展出异特窗酸衍生物的高效合成方法。通过变换不同的烷基化/酰基化试剂或者酮酸酯,我们合成了45个新的异特窗酸衍生物。当采用三甲基氯硅烷作为烷基化试剂时,由于Si-O键在酸的作用下极易水解,这也为我们高产率制备3-羟基异特窗酸提供了便捷的方法。同时,我们还对两种不同的酮酸酯之间的Aldol缩合进行了研究。本工作属于Aldol-酯交换-亲核取代三步串联反应,具有有机小分子催化的特征,符合当今绿色化学发展的趋势。所用的试剂及原料均为常见和容易制备,所得到的产物具有重要的应用潜力。与一些传统的方法比较,该策略的反应条件极其温和、操作简便、合成效率高、底物适用范围广,对于构建结构复杂的丁烯羟酸内酯类化合物具有独到的优点。因此,该方法具有良好的学术意义和合成应用价值。
     第三章我们对羟基异特窗酸化合物进行了进一步的衍生化。通过Suzuki反应,我们在异特窗酸的β位引入了芳基基团,合成了一系列的O-烷基化-β-芳基取代的异特窗酸化合物。在异特窗酸的β位引入了Br原子,因此该化合物同样可以用于Heck、Sonogashira等一些著名的有机反应中。这样,我们就为异特窗酸类化合物的进一步应用提供了新的途径。
     本论文的第二部分工作:
     第四章我们合成了配体P-Phos,对原有的合成方法作了些改进。将配体P-Phos应用于胺偶联反应的研究。通过对碱、溶剂和催化剂用量的筛选,确立了对胺偶联反应最优化的反应条件,该反应对溴代芳烃反应效果很好,对部分氯代芳烃,特别是氯代吡啶同样得到了令人满意的结果。该催化剂对水和空气不敏感,长期储存不失活性。对胺偶联反应的催化效果比较理想,因此是一种有应用前景的催化剂。
     第五章经过拆分,我们得到手性P-Phos配体,将其官能团衍生化后,负载在普通硅胶和中孔分子筛SBA-15上,得到固载手性配体。将固载手性配体分别和两种金属Ru络合,得到不同种的固载催化剂。将固载的催化剂用于前手性酮的不对称还原反应,发现配体的稳定性和催化活性很好,催化剂能够重复使用10次以上。但是,催化剂的对映选择性较差,没有获得高光学纯度的产物。
So far, chemistry and chemical engineering have been regarded as the major contributors to economic progress over the past century, and yet the chemical industry is often taken to task for many serious environmental problems. One of the most attractive concepts for pollution protection is green chemistry. It is better to prevent waste than to treat or clean up waste after it is formed. Green chemistry is the design, development, and implementation of chemical products and processes to reduce or eliminate the use and generation of substances hazardous to human health and the enviroment.
     Green Chemistry is the main line of the whole thesis. In this thesis, we mainly discuss two parts of work. 1. An effective DBU-Et_3N-mediated one-pot synthesis of isotetronic acids fromα-ketoesters; 2. Preparation of P-Phos and its use in palladium-catalyzed amination of aryl halides with amines; Preparation of silica-supported Ru-P-Phos catalysts and use for enantioselective hydrogenation.
     First part
     In chapter two, we have developed a convenient one-pot synthesis of isotetronic acids usingα-ketoesters as the starting marterial. The most satisfactory preparation involved the reaction using DBU along with Et_3N as the base. To our awareness, this represents the first one-pot synthesis of this interesting class of compounds and constitutes a novel homoaldol-based ABB' three component reaction. We have synthesized 45 isotetronic acid compounds through changing the alkylated/acrylated agents orα-ketoesters. The cross-aldol coupling is also described in the thesis. The reaction is in line with the development of green chemistry. The protocol carried several notable advantages such as the wide substrates, simple operation, exceedingly mild condition, there being no use of any expensive reagents. A further advantage is that inert atmospheric condition is not necessary. Therefor the methods we have developed may have potentiality in theory and application.
     In chapter three, we use the simple isotetronic acids obtained in chapter two to synthesize more complex compounds. We have synthesized a series ofβ-aryl-isotetronic acids through Suzuki reaction. Theβ-bromine isotetronic acid has been synthesized, so the Heck and Sonogashira reaction can also be used in the coupling reaction.
     Second part
     In chapter four, the racemic ligand rac-P-Phos was synthesized using a slightly modified six-step literature method starting from 2,6-dichloropyridine. An optical reaction condition was ensured after screening several bases and solvents. We then use the air-stable dipyridylphosphine ligand rac-P-Phos in the palladium catalyzed aromatic amination of haloarenes with variable amines. The yields are generally high, demonstrating that the catalytic activity of the present system matches or exceeds that of the reported phosphine ligands reported by others. The method has common benefits in other air-stable palladium catalyzed animations, such as convenient, very efficient, wide substrate scope, low catalyst dosage. Combined with the inherent stability and easy accessibility, the present method may also facilitate the large-scale usefulness of the C-N bond forming reactions.
     In chapter five, we have developed and optimized a practical, efficient, and highly recyclable heterogeneous catalyst through immobilization of Ru-P-Phos onto a very cheap amorphous silica gel and mesoporous silica of SBA-15 by an easily accessible approach for the first time. The catalyst immobilized on silica gel demonstrated remarkably high catalytic activities for the heterogeneous asymmetric hydrogenation of various ketones. Particularly, the catalyst could be readily recovered and reused in multiple consecutive catalytic runs (up to 10 uses). However, the catalyst system didn't give satisfactory e.e.% values so far.
引文
1.a) Trost,B.M.,The atom economy—a search for synthetic efficiency,Science,1991,254,1471.
    b) Trost,B.M.,A new platform for designing ligands for asymmetric induction in allylic alkylations,Angew.Chem.Int.Ed.Engl.1995,34,259.
    2.Mural,S.,Catalytic C-H/olefin coupling,Acc.Chem.Res.2002,35,826.
    3.Wei,C.;Li,C.J.,A highly efficient three-component coupling of aldehyde,alkyne,and amines via C-H activation catalyzed by gold in water,J.Am.Chem.Soc.2003,125,9584.
    4.Lu,X.Y.;Zhang,C.;Xu,Z.,Reactions of electron-deficient alkynes and allenes under phosphine catalysis,Acc.Chem.Res.2001,34,535.
    5.Jessop,P.G.;Ikadya,T.;Noyori,R.,Homogeneous catalytic hydrogenation of supercritical carbon dioxide,Nature 1994,368,231.
    6.Mural,S.;Kakiuchi,F.;Sekine,S.etal.,Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins,Nature 1993,366,529.
    7.McGhee,W.D.;Riley,D.P.;Christ,M.E.;Christ,K.M.,Palladium-catalyzed generation of O-allylic urethanes and carbonates from amines/alcohols,carbon dioxide,and allylic chlorides,Organometallics 1993,12,1429.
    8.Manzer,L.E.;Anastas,P.T.;Farris,C.A.,Benign by design-alternative synthetic design for polution control,in American Society Washington D.C.,ACS Symposium Series 1994,144.
    9.Waller,F.J.;Barrett,A.G.M.;Braddock,D.C.;Ramprasad,D.,Lanthanide(Ⅲ) triflates as recyclable catalysts for atom economic aromatic nitration,Chem.Commun.1997,613.
    10.a)林国强,陈耀全,陈新滋,李月明,手性合成—不对称反应及其应用,科学出版社,2000,北京。
    b)殷元骐,蒋耀忠,不对称催化反应进展,科学出版社,2000,北京。
    11.a) Faber,K.,Biotransformations in Organic Synthesis,Berlin,Spring-Verlag 1997.
    b)Schmuck,C.;Wennermers,H.,Highlights in Bioorganic Chemistry Weinheim:Wiley-VCH,2004.
    12.Color Me Green,C&E News,2000,10,49.
    13.a) Janvier,P.;Bienayme,H.;Zhu,J.,A five-component synthesis of hexasubstituted benzenes,Angew.Chem.Int.Ed.2002,41,4291.
    b) Janvier,P.;Sun,X.;Bienayme,H.;Zhu,J.,Ammonium chloride-promoted four-component synthesis of pyrrolo[3,4-b]pyridin-5-one,J.Am.Chem.Soc.2002,124,2560.
    14.Kaupp,G.,Fluorescence spectroscopic quantification of the release of cyclic nucleotides from photocleavable[bis(carboxymethoxy)coumarin-4-yl]methyl esters inside cells,Angew.Chem.Int.Ed.Engl.1994,33,1425.
    15.Burk,M.J.etal.,Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide,J.Am.Chem.Soc.1995,117,8277.
    16.Kobayashi,S.,Development of novel Lewis acid catalysts for selective organic reactions in aqueous media,Acc.Chem.Res.2002,35,209.
    17.Li,C.J.,Grignard type reaction via C-H bond activation in water,Green Chem.2002,4,39.
    18.McNulty,J.;Capretta,A.;Wilson,J.,etal.,Suzuki cross-coupling reactions of aryl halides in phosphonium salt ionic liquid under mild conditions,Chem.Commun.2002,1986.
    19.Baleizao,C.;Gigate,B.;Garcia,H.,etal.,Ionic liquids as green solvents for the asymmetric synthesis of cyanohydrins catalysed by VO(salen) complexes,Green Chem.2002,4,272.
    20.a) Raston,C.L.;Scott,J.L.,Chemoselective,solvent-free aldol condensation reaction,Green Chem.2000,2,49.
    b) Scott,J.L.;Raston,C.L.,Solvent-free synthesis of 3-carboxycoumarins,Green Chem.2000,2,245.
    21.Noyori,R.;Aoki,M.;Sato,K.,Green oxidation with aqueous hydrogen peroxide,Chem.Commun.2003,1977.
    22.Sato,K.;Noyori,R.,A "green" route to adipic acid:direct oxidation of cyclohexenes with 30 percent hydrogen peroxide,Science 1998,281,1646.
    23.Gladysz,J.A.,Recoverable Catalysts and Reagents(Special issue),Chem.Rev.2002,102,3215.
    24.杜灿屏,刘鲁生,张恒主编,21世纪有机化学发展战略,北京化学化工出版社,2001,57.
    25.Beller,Highly selective synthesis of enamines from olefins,Angew.Chem.Int.Ed.2003,42,5615.
    26.Barriault,L.;Denissova,I.,Highly Diastereoselective Synthesis of Decalin Skeletons with Quaternary Carbon Centers via the Tandem Oxy-Cope/Ene/Claisen Reaction,Org.Lett.2002,4,1371.
    27.Takasu,K.;Mizutani,S.;Noguchi,M.etal.,Stereocontrolled Total Synthesis of (±)-Culmorin via the Intramolecular Double Michael Addition,Org.Lett.1999,1,391.
    28.Wallace,G.A.;Heathcock,C.H.,Further studies of the daphniphyllum alkaloid polycyclization cascade,J.Org.Chem.,2001,66,450.
    29.Ishibashi,H.;Ishihara,K.;Yamamoto,H.,A new artificial cyclase for polyprenoids:enantioselective total synthesis of(-)-Chromazonarol,(+)-8-epi-Puupehedione,and (-)-1,1'-Deoxytaondiol Methyl Ether,J.Am.Chem.Soc.2004,126,11122.
    30.McCaool,A.J.;Walton,J.C.,Programming molecules:design and management of organic syntheses through free-radical cascade processes,Angew.Chem.Int.Ed.2001,40,2224.
    31.Sha,J.K.;Lee,F.K.;Chang,C.J.,Tandem radical cyclizations initiated with carbonyl radicals:first total synthesis of(+)-Paniculatine,J.Am.Chem.Soc.1999,121,9875.
    32.Howells,D.M.;Barker,S.M.;Watson,F.C.,etal.,Samarium Diiodide Coupling of Enones:A Remarkable Cascade Sequence,Org.Lett.2004,6,1943.
    33.Brummond,K.L.;Kent,M.;Joseph,L.,Recent advances in the Pauson-Khand reaction and related[2+2+1]cycloadditions,Tetrahedron 2000,56,3263.
    34.Kim,D.H.;Son,S.U.;Chung,Y.K.,etal.,Catalytic one-pot synthesis of [5.5.5.6]fenestrane systems via a dicobalt octacarbonyl-catalyzed tandem cycloaddition of dienediynes,Chem.Commun.2002,56.
    35.Schreiber,S.L.,Target-oriented and diversity-oriented organic synthesis in drug discovery,Science 2000,287,1964.
    36.Trost,B.M.,Selectivity:a key to synthetic efficiency,Science 1983,219,245.
    37.Posner,G.H.,Multicomponent one-pot annulations forming 3 to 6 bonds,Chem.Rev.1986,86,831.
    38.Wangelin,A.J.;Neumann,H.;Gordes,D.,etal.,Multicomponent coupling reactions for organic synthesis:chemoselective reactions with amide-aldehyde mixtures,Chem.Eur.J.2003,9,4286.
    39.Narkevitch,V.;Schenk,K.;Vogel,P.,A new asymmetric carbon-carbon bond forming reaction:four-component stereoselective synthesis of(Z)-4,6-dihydroxy-3-methylalk-2-enyl methyl sulfones,Angew.Chem.Int.Ed.2000,39,1806.
    40.a) Domling,A.;Ugi,L.,Multicomponent reactions with isocyanides,Angew.Chem.Int.Ed.2000,39,3168.
    b) Weber,L.;Illgen,K.;Almstetter,M.,Discovery of new multi component reactions with combinatorial methods,Synlett 1999,366.
    41.Bifulco,G.;Caserta,T.;Gomez-Palomab,L.;Picciallia,V.,RuO_4-promoted syn-oxidative polycyclization of isoprenoid polyenes:a new stereoselective cascade process,Tetrahedron Lett.2002,43,9265.
    42.a) Rao,Y.S.,Recent advances in the chemistry of unsaturated lactones,Chem.Rev.1976,76,625.
    b) Pattenden,G.,Natural 4-ylidenebutenolides and 4-ylidenetetronic acids,Prog.Chem.Nat.Prod 1978,35,133.
    c) Knight,D.W.,Synthetic approaches to butenolides,Contemp.Org.Synth.1994,1,287.
    43.Blank,I.;Lin,J.;Fumeaux,R.;Welti,D.H.;Fay,L.B.,Formation of 3-Hydroxy-4,5-dimethyl-2(5H)-furanone(Sotolone) from 4-Hydroxy-L-isoleucine and 3-Amino-4,5-dimethyl-3,4-dihydro-2(5H)-furanone,J.Agric.Food Chem.1996,44,1851.
    44.a) Pallenberg,A.J.;White,J.D.,The synthesis and absolute configuration of (+)-leptosphaerin,Tetrahedron Lett.1986,27,5591.
    b) Ushida,I.;Itoh,Y.;Namiki,T.;Nishikawa,M.;Hashimoto,M.,Structure and synthesis of WF 3681-a novel aldose reductase inhibitor,Tetrahedron Lett.1986,27,2015.
    c) Anderson,J.R.;Edwards,R.L.;Whalley,A.J.S.,Metabolites of the higher fungi.Part 19 Serpenone,3-methoxy-4-methyl-5-prop-1-enylfuran-2(5H)-one,a new butyrolactone from the fungus Hypoxylon serpens(Barrons strain)(Persoon ex Fries) Kickx,J.Chem.Soc.Perkin Trans.I 1982,1,215.
    d) Ingerl,A.;Justus,K.;Hellwig,V.;Steglich,W.,Syntheses of retipolide E and ornatipolide,14-membered biaryl-ether macrolactones from mushrooms,Tetrohedron 2007,63,6548.
    e) For the synthesis of Erythronolide A,see:Stork,G.;Rychnovsky,S.D.,Iterative butenolide construction of polypropionate chains,J.Am.Chem.Soc.1987,109,1564.
    45.Demarcay,compt,rend,1879,88,126.Ann,chim,phys,1880,20,433.
    46.Mansell,L.,Ber.1907,40,1079.
    47.Moreno-manas,M.;Prat,M.,Palladium catalyzed allylic C-alkylation of highly acidic and enolic heterocyclic substrates:tetronic acid and triacetic acid lactone,Tetrahedron Lett.1988,581.
    48.Sakan,T.;Kato,M.;Miwa,T.,The base-catayzed condensation of nitrophenylpyruvates.Ⅱ.The absorption spectra of α-oxo-β-aryl(or alkyl)-γ-aryl-methyl(or alkyl) γ-ethoxycarbonyl -γ-butyrolactones,Bull.Chem.Soc.Jap.1964,37,1166.
    49.Hagio,K.;Yoneda,N.;Takei,H.,Synthesis and reactions of 4-dimethylsulfuranylidene-2,3-dioxotetrahydrofuran derivatives,Bull.Chem.Soc.Jap.1974,47,909.
    50.Tejedor,D.;Santos-Exposito,A.;Garcia-Tellado,F.,Chemo-differentiating MCRs based on α-ketoesters and terminal alkynoates.A homoaldol-based ABB' system,Chem.Commun.2006,2667.
    51.a) Dede,R.;Michaelis,L.;Langer,P.,Synthesis of isotetronic acids by cyclization of 1,3-bis(trimethylsilyloxy)alk-1-enes with oxalyl chloride,Tetrahedron Lett.2005,46,8129.
    b) Enders D.;Dyker H.;Leusink F.R.,Enantioselective synthesis of protected isotetronic acids,Chem.Eur.J.1998,4,311,and references cited therein.
    52.a) Juhl,K.;Gathergood,N.;Jorgensen,K.A.,Catalytic asymmetric homo-aldol reaction of pyruvate-a chiral Lewis acid catalyst that mimics aldolase enzymes,Chem.Commun.2000,2211.
    b) Gathergood,N.;Juhl,K.;Poulsen,T.B.;Thordrup,K.;Jorgensen,K.A.,Direct catalytic asymmetric aldol reactions of pyruvates:scope and mechanism,Org.Biomol.Chem.2004,2,1077.
    c) Dambruoso,P.;Massi,A.;Langer,P.,Synthesis of isotetronic acids by eyclization of 1,3-bis(trimethylsilyloxy)alk-1-enes with oxalyl chloride,Tetrahedron Lett.2005,46,8129.
    53.a) Barrett,A.G.M.;Sheth,H.G.,Studies on the nactins:total synthesis of tert-butyl 8-O-(tert-butyldimethylsilyl)nonactate,J.Org.Chem.1983,48,5017.
    b) Bigorra,J.;Font,J.;Echaguen,C.O.;Ortuno,R.M.,Synthetic approaches to either homochiral or achiral derivatives of 3-hydroxy-2(5H)-furanone(isotetronic acid),Tetrahedron 1993,49,6717.
    54.a)孙雨竹,硕士学位论文,2007;
    b)Ghosh,N.,DBU(1,8-diazabicyclo[5.4.0]undec-7-ene)-a nucleophilic base,Synlett 2004,574.
    c) We have recently reported the use of DBU as a base fortriggering the Ireland-Claisen rearrangement of allylic but-3-enoates.See:Li,Y.;Goeke,A.;Wang,R.;Wang,Q.;Frater,G.,Tetrahedron 2007,63,9605.
    55.a) Mamedov,V.A.;Kalinin,A.A.;Gubaidullin,A.T.;Isaikina,O.G.;Litvinov,I.A.,Synthesis and functionalization of 3-ethylquinoxalin-2(1H)-one,Russian Journal of Organic Chemistry 2005,41,599.b) Bottorff,E.M.;Moore,L.L.,α-Oxoglutaric acid,Org.Syn.1964,44,67.
    c) Floyd,Don E.;Miller,Sidney E.,Cetylmalonic ester,Org.Syn.1954,34,13.
    d) Osamu,I.;Takayoshi,N.;Isamu,N.;Tetsuya,T.;Toshio,S.;Katsuhiko,I.,Syntheses of aryl glyoxylates.Ⅰ.The reaction of alkyl dichloro(alkoxy)acetates with aromatics in the presence of Lewis acid,Bulletin of the Chemical Society of Japan 1984,57,810.
    e) Masaru,T.;Hiroyasu,S.;Masaharu,N.,Smiles-type free radical rearrangement of aromatic sulfonates and sulfonamides:syntheses of arylethanols and arylethylamines,Org.Biomol.Chem.2003,1,2499.
    f) Gilman,H.;Beaber,N.J.,Preparation of hydrocarbons by the reaction between alkyl sulfonates and organomagnesium halides,J..Am.Chem.Soc.1925,47,518.
    g) Rajavel,S.;Mahesh,U.;Yao,S.Q.,Rapid Assembly and in Situ Screening of Bidentate Inhibitors of Protein Tyrosine Phosphatases,Org.Lett.2006,8,713.
    56.Brana,M.F.;Garcia,M.L.;Lopez,B.;de Paseual-Teresa,B.;Ramos,A.;Pozuelo,J.M.;Dominguez,M.T.,Synthesis and biological evaluation of analogues of butyrolactone I and molecular model of its interaction with CDK2,Org.Biomol.Chem.2004,2,1864.
    57.a) Miyauar,N.;Suzuki,A.,Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds,Chem.Rev.1995,95,2457.
    b) Suzuki,A.,Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles,J.Organomet.Chem.1999,576,147.
    c) Kotha,S.;Lahiri,K.;Kashinath,D.,Recent applications of the Suzuki-Miyaura cross-coupling reaction in organic synthesis,Tetrahedron 2002,58,9633.
    d) Hassan,J.;Sevignon,M.;Schulz,E.;Schulz,E.;Lemaire, M., Aryl-aryl bond formation one century after the discovery of the Ullmann reaction,Chem. Rev. 2002, 102, 1359. e) Ito, T.; Iwai, T.; Mizuno, T.; Ishino, Y., Palladium catalyzed cross-coupling reaction of potassium diaryldifluoroborates with aryl halides,Synlett 2003, 1435. f) Navarro, O.; Kelly, R. A.; Nolan, S. P., A general method for the Suzuki-Miyaura cross-coupling of sterically hindered aryl chlorides: Synthesis of di- and tri-ortho-substituted biaryls in 2-propanol at room temperature, J. Am. Chem. Soc. 2003,125,16194.
    58.Miyaura, N.; Yanagi, T.; Suzuki, A., The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases, Syn. Commun. 1981,11, 513.
    59.a) Harre, K.; Enkelmann, V.; Schulze, M; Bunz, U. H. F., Suzuki-coupling of Cp~*Ru(1,4-Br_2C_6H_4) with phenylboronic acid. A model reaction for the synthesis of organometallic polymers, Chem. Ber. 1996, 129, 1323. b) Imrie, C.; Louber, C.;Engeibrecht, P.; Mccleland, C. W., The use of a modified Suzuki reaction for the synthesis of monoarylferrocenes, J. Chem. Soc. Perkin Trans 11999, 2513.
    60.Uemura, M.; Nishimura, H.; Kamikawa, K.; Nakayama, K.; Hayashi, Y., Mono-Cr(CO)_3 complexes of biphenyl compounds: cross-coupling reactions of (6-arene)chromium complexes with arylmetals, Tetrahedron Lett. 1994, 35,1909.
    61.a) Miyaura, N.; Suzuki, A., Palladium-catalyzed cross-coupling reaction of organoboron compounds with organic triflates, J. Org. Chem. 1993, 58,2201. b) Rottlander M.; Knochel,P., Palladium-catalyzed cross-coupling reactions with aryl nonaflates: a practical alternative to aryl triflates, J. Org. Chem. 1998, 63,203.
    62.Perece. V.; Bae, J. Y.; Hill, D. H., Aryl mesylates in metal catalyzed homocoupling and cross-coupling reactions: Suzuki-type nickel-catalyzed cross-coupling of aryl arenesulfonates and aryl mesylates with arylboronic acids, J. Org. Chem. 1995, 60, 1060.
    63.a) Nieisen, D. R.; Mcewen, W. E., Benzenediboronic acids, J. Am. Chem. Soc. 1957, 29,3681. b) Coutts, I. G. C; Goldschmid, H. R.; Musgrave, O. C, Organoboron compounds.Ⅷ. Aliphatic and aromatic diboronic acids, J. Chem. Soc(C). 1970,488.
    64.Wallow, T. I.; Novak, B. M., Highly efficient and accelerated Suzuki aryl couplings mediated by phosphine-free palladium sources, J. Org. Chem. 1994,59, 5034.
    65.a) Moreno-Manax, M; Perez, M.; Pleixats, R., Palladium-catalyzed Suzuki-type self-coupling of arylboronic acids: a mechanistic study, J. Org. Chem. 1996, 61, 2346. b) Aramendia, M. A.; Lafont, F., Electrospray ionization mass spectrometry detection of intermediates in the palladium-catalyzed oxidative self-coupling of areneboronic acids, J.Org. Chem. 1999, 64,3592.
    66.a) Campi,E.M.;Jackson,W.R.;Marcuccio,S.M.;Naeslund,C.G.,High yields of unsymmetrical biaryls via cross coupling of arylboronic acids with haloarenes using a modified Suzuki-Beletskaya procedure,J.Chem.Soc.Chem.Commun.1994,2395.
    b)Bumagin,N.A.;Bykov,V.V.,Ligandless palladium catalyzed reactions of arylboronic acids and sodium tetraphenylborate with ary1 halides in aqueous media,Tetrahedron 1997,53,14437.
    67.Zhang,H.C.;Kwong,F.Y.;Tian,Y.;Chan,K.S.,Base and cation effects on the Suzuki cross-coupling of bulky arylboronic acid with halopyridines:synthesis of pyridylphenols,J.Org.Chem.1998,63,6886.
    68.Suzuki,A.,New synthetic transformations via organoboron compounds,Pure & Appl.Chem.1994,66,213.
    69.Netherton,M.R.;Dai,C.;Neuschutz,K.;Fu,G.C.,Room-temperature alkyl-alkyl Suzuki cross-coupling of alkyl bromides that possess beta hydrogens,J.Am.Chem.Soc.2001,123,10099.
    70.Cammidge,A.N.;Crepy,K.V.L.,The first asymmetric Suzuki cross-coupling reaction,Chem.Commun.2000,1723.
    71.Larsen,R.D.;King,A.O.;Chen,C.Y.;Corley,E.G.;Foster,B.S.;Roberts,F.E.;Yang,C.H.;Lieberman,D.R.;Reamer,R.A.;Tschaen,D.M.;Verhoeven,T.R.;Reider,P.J.Efficient Synthesis of Losartan,A nonpeptide angiotensin Ⅱ receptor antagonist,J.Org.Chem.1994,59,6391.
    72.Ma,D.;Wu,Q.,Synthesis of the biaryl moiety of the proteasome inhibitors TMC-95 via a ligandless Pd(OAc)_2-catalyzed Suzuki-coupling reaction,Tetrahedron Lett.2001,42,5279.
    73.a) Gravett,E.C.;Hilton P.J.;Jones,K.;Peron,J.M.,A new route to 5-aryl and 5-heteroaryl-2-pyrones via Suzuki coupling of a 2-pyrone-5-boronate ester,Synlett 2003,253.
    b) Arterburn,J.B.;Bryant,B.K.;Chen,D.J.,Synthesis of(pyridin-2-yl)hydrazine conjugates as bifunctional chelates using the Suzuki-Miyaura reaction,Chem.Commun.2003,1890.
    c) Cossy,J.;Belotti,D.;Magner,A.,Synthesis of indatraline using a Suzuki cross-coupling reaction and a chemoselective hydrogenation:A versatile approach,Synlett 2003,1515.
    74.Xiong,W.N.;Yang,C.G.;Jiang,B.,Synthesis of novel analogues of marine indole alkaloids:mono(indolyl)-4-trifluoromethylpyridines and bis(indolyl)-4-trifluoromethylpyridines as potential anticancer agents,Bioorg.Med.Chem.2001,9,1773.
    75.Sutherland,A.;Gallagher,T.,Versatile synthesis of 3,5-disubstituted 2-fluoropyridines and 2-pyridones,J.Org.Chem.2003,68,3352.
    76.Yang, D.; Yan, Y.-L.; Lui, B., Mild-halogenation reactions of 1,3-dicarbonyl compounds catalyzed by lewis acids, J. Org. Chem. 2002, 67,7429.
    77.Zhang, L.; Meng, T. H.; Fan, R. H.; Wu, J., Palladium-catalyzed Suzuki-Miyaura cross-couplings of aryl tosylates with Potassium (aryl)trifluoroborates, J. Org. Chem. 2007,72, 7279.
    78.宋一麟,复旦大学博士论文, 1999.
    79.Onak, T., Organoborane Chemistry; Academic: New York, 1975.
    80.Aliprantis, A. O.; Canary, J. W., Observation of catalytic intermediates in the Suzuki reaction by electrospray mass spectrometry, J. Am. Chem. Soc. 1994,116,6985.
    81.a) Reetz, M. T.; Westermann, E., Observation of catalytic intermediates in the Suzuki reaction by Electrospray Mass Spectrometry, Angew. Chem. Int. Ed. 2000, 39, 165. b) Reetz, M. T.; Maase, M., Redox-controlled size-selective fabrication of nanostructured transition metal colloids, Adv. Mater. 1999,11, 773.
    82.Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T., Fabrication of hollow palladium spheres and their successful application as the recyclable heterogeneous catalyst for Suzuki coupling reactions, J. Am. Chem. Soc. 2002,124, 7642.
    83.March. J. Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 4 edition,1992,641.
    84.Terrier, F. Nucleophilic Aromatic Displacement, 1991, VCH Publishers Inc., New York, pp376.
    85.Ullmann, F., A new path for preparing diphenylamine derivatives. Ber. Dtsch. Chem. Ges.1903, 36,2382.
    86.a) Ma, D.; Zhang, Y; Yao, J.; Wu, S.; Tao, F., Accelerating effect induced by the structure of a-amino acid in the copper-catalyzed coupling reaction of aryl halides with a-amino acids. J. Am. Chem. Soc. 1998,120, 12459. (b) Ma, D.; Xia, C. Cut-catalyzed coupling reaction of beta-amino acids or esters with aryl halides at temperature lower than that employed in the normal Ullmann reaction. Facile synthesis of SB-214857, Org. Lett. 2001, 3,2583.
    87. Kosugi , M.; Kameyama, M.; Migita, T., Palladium-catalyzed aromatic amination of aryl bromides with N,N-diethylaminotributyltin, Chem. Lett. 1983, 927.
    88.Paul, F.; Part, J.; Hartwig, J.F., Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides, J. Am. Chem. Soc. 1994,116, 5969.
    89.Guram, A. S.; Buchwald, S. L., Palladium-catalyzed aromatic aminations with in situ generated aminostannanes, J. Am. Chem. Soc. 1994,116, 7901.
    90.Guram,A.S.;Rennels,R.A.;Buchwald,S.L.,A simple catalytic method for the conversion of aryl bromides to arylamines,Angew.Chem.Int.Ed.Engl.1995,34,1348.
    91.Wolfe,J.P.;Rennels,R.A.;Buchwald,S.L.,Intramolecular palladium-catalyzed aryl amination and aryl amidation,Tetrahedron 1996,52,7525.
    92.a) Guram,A.S.;Rennels,R.A.;Buchwald,S.L.,A simple catalytic method for the conversion of aryl bromides to arylamines,Angew.Chem.Int.Ed.Eng.1995,34,1348.
    b)Louie,J.;Hartwig,J.F.,Palladium-catalyzed synthesis of arylamines from aryl halides.Mechanistic studies lead to coupling in the absence of tin reagents,Tetrahedron Lett.1995,36,3609.
    93.a) Watanabe,M.;Nishiyama,M.;Yamamoto,T.;Koie,Y.,Specialty Chemicals 1998,18,445.
    b)Nishiyama,M.;Yamamoto,T.;Koie,Y.,Synthesis of N-arylpiperazines from aryl halides and piperazine under a palladium tri-tert-butylphosphine catalyst,Tetrahedron Lett.1998,39,617.
    c) Yamamoto,T.;Nishiyama,M.;Koie,Y.,Palladium-catalyzed synthesis of triarylamines from aryl halides and diarylamines,Tetrahedron Lett.1998,39,2367.
    94.Wolfe,J.P.;Buchwald,S.L.,Scope and limitations of the Pd/BINAP-catalyzed amination of aryl bromides,J.Org.Chem.2000,65,1144.
    95.Driver,M.S.;Hartwig,J.F.,A second-generation catalyst for aryl halide amination:mixed secondary amines from aryl halides and primary amines catalyzed by(DPPF)PdCl_2,J.Am.Chem.Soc.1996,118,7217.
    96.Tanoury,G.J.;Senanayake,C.H.;Hett,R.;Kuhn,A.M.;Kessler,D.W.;Wald,S.A.,Pd-catalyzed aminations of aryltriazolones:effective synthesis of hydroxyitraconazole enantiomers,Tetrahedron Lett.1998,39,6845.
    97.Song,J.J.;Yee,N.K.,A novel synthesis of 2-aryl-2H-indazoles via palladium-catalyzed intramolecular amination reaction,Org.Lett.2000,2,519.
    98.Guari,Y.;van Strijdonck,G.P.F.;Boele,M.D.K.Reek,J.N.H.;Kramer,P.C.J.;van Leeuwen,P.W.N.M.,Palladium-catalyzed amination of aryl bromides and aryl triflates using diphosphane ligands:a kinetic study,Chem.Eur.J.2001,7,475.
    99.Sadighi,J.P.;Harris,M.C.;Buchwald,S.L.,A highly active palladium catalyst system for the arylation of anilines,Tetrahedron Lett.1998,39,5327.
    100.Guari,Y.;Van Es,D.S.;Reek,J.N.H.;Kamer,P.C.J.;Van Leeuwen,P.W.N.M.,An efficient palladium-catalyzed amination of aryl bromides,Tetrahedron Lett.1999,40,3789.
    101.Harris,M.C.;Geis,O.;Buchwald,S.L.,Sequential N-arylation of primary amines as a route to alkyldiarylamines,J.Org.Chem.1999,64,6019.
    102.a) Wolfe,J.P.;Tomori,H.;Sadighi,J.P.;Yin,J.;Buchwald,S.L.,Simple,efficient catalyst system for the palladium-catalyzed amination of aryl chlorides, bromides, and triflates, J.Org.Chem. 2000, 65,1158.
    103. Wolfe, J. P.; Buchwald, S. L., A highly active catalyst for the room-temperature amination and Suzuki coupling of aryl chlorides, Angew. Chem. Int. Ed. 1999,38, 2413.
    104. a) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L., Expanding Pd-catalyzed C-N bond-forming processes: the first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions, J. Am. Chem. Soc. 2003,125,6653. b) Strieter, E. R.; Blackmond, D. G; Buchwald, S. L., Insights into the origin of high activity and stability of catalysts derived from bulky, electron-rich monophosphinobiaryl ligands in the Pd-catalyzed C-N bond formation, J. Am. Chem. Soc. 2003,125,13978.
    105. a) Kocovsky, P., Reactivity control in palladium-catalyzed reactions: a personal account, J.Organomet. Chem. 2003, 687, 256. b) Kocovsky, P., Synthesis of 2-amino-2'-diphenylphosphino-l,l'-binaphthyl (MAP) and its accelerating effect on the Pd(0)-catalyzed N-arylation, Tetrahedron Lett. 1998, 39, 9289.
    106. a) Stauffer, S. R.; Lee, S.; Stambuli, J. P.; Hauck, S. I.; Hartwig, J. F., High turnover number and rapid, room-temperature amination of chloroarenes using saturated carbene ligands, Org. Lett. 2000, 2, 1423. b) Herrmann, W. A.; Xfele, K.; Preysing, D. v.; Schneider, S. K.,Phospha-palladacycles and iV-heterocyclic carbene palladium complexes: efficient catalysts for C-C-coupling reactions, J. Organomet. Chem. 2003, 687, 229. c) Grasa, G A.; Viciu, M.S.; Huang, J.; Nolan, S. P., Amination reactions of aryl halides with nitrogen-containing reagents mediated by Palladium/imidazolium salt systems, J. Org. Chem. 2001, 66,7729.
    107. Li, G Y., The first phosphine oxide ligand precursors for transition metal catalyzed cross-coupling reactions: C-C, C-N, and C-S bond formation on unactivated aryl chlorides,Angew. Chem. Int. Ed. 2001, 40, 1513.
    108. a) Singer, R. A.; Caron, S.; McDermott, R. E.; Arpin, P.; Do, N. M., Alternative biarylphosphines for use in the palladium-catalyzed amination of aryl halides, Synthesis 2003, 1727. b) Singer, R. A.; Dore, M. A.; Sieser, J. E.; Berliner, M. A., Development of nonproprietary phosphine ligands for the Pd-catalyzed amination reaction, Tetrahedron Lett.2006, 47, 3727.
    109. Rataboul, F.; Zapf, A.; Jackstell, R.; Harkal, S.; Riermeier, T.; Monsees, A.; Dingerdissen,U.; Beller, M., New ligands for a general palladium-catalyzed amination of aryl and heteroaryl chlorides, Chem. Eur. J. 2004,10, 2983.
    110. Dai, Q.; Gao, W.; Liu, D.; Kapes, L. M; Zhang, X., Triazole-based monophosphine ligands for Palladium-catalyzed cross-coupling reactions of aryl chlorides, J. Org. Chem. 2006, 71, 3928.
    111.Pai,C.C.;Lin,C.W.;Lin,C.C.;Chen,C.C.;Chan,A.S.C.,Highly effective chiral dipyridylphosphine ligands:synthesis,structural determination,and applications in the Ru-catalyzed asymmetric hydrogenation reactions,J.Am.Chem.Soc.2000,122,11513.
    112.Wu,J.;Chen,H.;Kwok,W.;Guo,R.W.;Zhou,Z.Y.;Yeung,C.H.;Chan,A.S.C.Air-stable catalysts for highly efficient and enantioselective hydrogenation of aromatic ketones,J.Org.Chem.2002,67,7908.
    113.Wang,L.;Kwok,W.;Wu,J.;Guo,R.W.;Au-Yeung,T.;Zhou,Z.Y.;Chan,A.S.C.;Chan,K.S.,Enantioselective bis-alkoxycarbonylation of styrene catalyzed by novel chiral dipyridylphosphine cationic palladium(Ⅱ) complexes,J.Mol.Cat.A:Chem.2003,196,171.
    114.Shi,Q.;Xu,L.J.;Li,X.S.;Jia,X.;Wang,R.H.,Au-Yeung,T.;Chan,A.S.C.;Hayashi,T.;Cao,R.;Hong,M.C.,Bipyridyl-based diphosphine as an efficient ligand in the rhodium-catalyzed asymmetric conjugate addition of arylboronic acids to α,β-unsaturated ketones,Tetrahedron Lett.2003,44,6505.
    115.Hartwig,J.F.,Carbon-heteroatom bond-forming reductive eliminations of amines,ethers,and sulfides,Acc.Chem.Res.1998,31,852.
    116.林国强,陈耀全,陈新滋,李月明,手性合成-不对称反应及应用,科学出版社,2000,北京。
    117.Blaser,H.U.;Spindler,F.;Studer,M.,Enantioselective catalysis in fine chemicals production,Applied Catalysis A:General 2001,221,119.
    118.Bonds,W.D.;Brubacke,C.H.;Chandrasekaran,E.S.;Gibbons,C.;Grubbs,R.H.;Kroll,L.C.,Polystyrene attached titanocene species.Preparation and reactions,J.Am.Chem.Soc.1975,197,2128.
    119.Sherrington,D.C;Hodge,P.ed."Syntheses and Separations Using Functional Polymers",John Wiley,1988.
    120.Xiang,S.;Zhang,Y.L.;Xin,Q.;Li,C.,Asymmetric epoxidation of allyl alcohol on organic-inorganic hybrid chiral catalysts grafted onto the surface of silica and in the mesopores of MCM-41,Angew.Chem.Int.Ed.Engl.2002,41,821.
    121.Song,C.E.;Yang,J.W.;Ha,H.J.,Silica gel supported bis-cinchona alkaloid:a highly efficient chiral ligand for heterogeneous asymmetric dihydroxylation of olefins,Tetrahedron Asymmetry 1997,8,841.
    122.Hesemann,P.;Moreau,J.J.E.,Novel silica-based hybrid materials incorporating binaphthyl units:a chiral matrix effect in heterogeneous asymmetric catalysis,Tetrahedron Asymmetry 2000,11,2183.
    123. a) Sato, T.; Soai, K.; Suzuki, K.; Mukaiyama, T., Enantioface-differentiating (asymmetric) addition of dialkylmagnesium to aldehydes by using the lithium salt of (2S,2'5)-2-hydroxymethyl-1-[(1-methylpyrrolidin-2-yl)methyl]pyrrolidine as a chiral ligand.,Chem. Lett. 1978, 601. b) Mukaiyama, T.; Soai, K.; Sato, T.; Shimizu, H.; Suzuki, K.,Enantioface-differentiating (asymmetric) addition of alkyllithium and dialkylmagnesium to aldehydes by using (2S,2'S)-2-hydroxymethyl-1-[(1-alkylpyrrolidin-2-yl)methyl] pyrrolidines as chiral ligands, J. Am. Chem. Soc. 1979,101,1455.
    124. Lasperas, M.; Bellocq, N.; Brunei, D.; Moreau, P., Chiral mesoporous templated silicas as heterogeneous inorganic-organic catalysts in the enantioselective alkylation of benzaldehyde, Tetrahedron Asymmetry 1998, 9, 3053.
    125. a) Espinet, P.; Soulantica, K., Phosphine-pyridyl and related ligands in synthesis and catalysis, Coordination Chemistry Reviews 1999, 193-195, 499. b) Di Simone, B.; Savoia,D.; Tagliavini, E., Catalytic asymmetric syntheses of secondary alcohols using cis-1-amino-2-indanols as chiral ligands, Tetrahedron Asymmetry 1995, 6, 301.
    126. Noyori, R.; Tomino, I.; Tanimoto, Y., Virtually complete enantioface differentiation in carbonyl group reduction by a complex aluminum hydride reagent, J. Am. Chem. Soc. 1979,707,3129.
    127. Noyori, R.; Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T., Ruthenium(Ⅱ)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid-triethylamine mixture, J.Am. Chem. Soc. 1996,118,2521.
    128. Liu, P. N.; Gu, P. M.; Wang, F.; Tu, Y. Q., Efficient heterogeneous asymmetric transfer hydrogenation of ketones using highly recyclable and accessible silica-immobilized Ru-TsDPEN catalysts, Org. Lett. 2004, 6, 169.
    129. Sandee, A. J.; Petra, D. G. I.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.,Solid-phase synthesis of homogeneous Ruthenium catalysts on silica for the continuous asymmetric transfer hydrogenation reaction, Chem. Eur. J. 2001, 7, 1202.
    130. Steiner, I.; Aufdenblatten, R.; Togni, A.; Blaserb, H. U.; Pugin, B., Novel silica gel supported chiral biaryl-diphosphine ligands for enantioselective hydrogenation, Tetrahedron Asymmetry 2004, 75, 2307.
    131. Li, Y. Z.; Li, Z. M.; Li, F.; Wang, Q. R.; Tao, F. G., Preparation of polymer-supported Ru-TsDPEN catalysts and use for enantioselective synthesis of (S)-fluoxetine, Org. Bio.Chem. 2005,14,2513.
    132. Chai, L. T.; Chen, H. S.; Li, Z. M.; Wang, Q. R.; Tao, F. G., Enantioselective hydrogenation of β-keto esters using a MeO-PEG-supported Biphep ligand under atmospheric pressure: a practical synthesis of (S)-fluoxetine, Synlett 2006,15,2395.
    133. Greene, T. W.; Wuts, P. G. M., Prorective Groups in Organic Syntheses (The third), John Wiley & Sons, inc, New York, 1998, New York.
    134. a) Zhao, D. Y; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.;Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 1998,279, 548. b) Zhao, D. Y; Huo, Q. S.; Feng, J. L.; Chmelka, B.F.; Stucky, G.D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am.Chem. Soc. 1998,120,6024.
    135. Bellocq, N.; Abramson, S.; Lasperas, M.; Brunei, D.; Moreau, P., Factors affecting the efficiency of hybrid chiral mesoporous silicas used as heterogeneous inorganic-organic catalysts in the enantioselective alkylation of benzaldehyde, Tetrahedron Asymmetry 1999,10, 3229.
    136. Noyori, R.; Ohkurna, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa,S., Asymmetric hydrogenation of carboxylic esters. A practical, purely chemical access to hydroxy esters in high enantiomeric purity, J. Am. Chem. Soc. 1987,109, 5856.
    137. Pugin, B., Immobilized catalysts for enantioselective hydrogenation: the effect of site-isolation, J. Mol. Cat. A: Chem. 1996,107,273.
    138. Hill, L. L.; Moore, L. R.; Huang, R. C.; Craciun, R.; Vincent, A. J.; Dixon, D. A.; Chou, J.; Woltermann, C. J.; Shaughnessy, K. H., Bulky alkylphosphines with neopentyl substituents as ligands in the amination of aryl bromides and chlorides, J. Org. Chem. 2006, 71, 5117.
    139. Old, D. W.; Wolfe, J. P.; Buchwald, S. L.; Ohta, T., Ruthenium-catalyzed N-alkylation and N-benzylation of aminoarenes with alcohols, J. Org. Chem. 1984,49, 3359.
    140. Zhang, H.; Cai, Q.; Ma, D., Amino acid promoted Cul-catalyzed C-N bond formation between aryl halides and amines or N-containing heterocycles, J. Org. Chem. 2005, 70,5164.
    141. Lane, B. S.; Sames, D., Direct C-H bond arylation: selective palladium-catalyzed C_2-arylation of N-substituted indoles, Org. Lett. 2004, 6, 2897.
    142. Spagnolo, P.; Zanirato, P., Aliphatic C-H, N-insertion versus aromatic N-substitution in the reaction of arylnitrenium-boron trifluoride complexes with methylated benzenes,Tetrahedron Lett. 1987,28, 961.
    143. Pachter, I. J.; Kloetzel, M. C, Methylation of some amides in acetone, J. Am. Chem. Soc.1952, 74, 1321.
    144. Kremer, C. B.; Meltsner, M; Greenstein, L., Morpholine condensations, J. Am. Chem. Soc.1939, 61, 2552.
    145. Anderson, K. W.; Mendez-Perez, M.; Priego, J.; Buchwald, S. L., Palladium-catalyzed animation of aryl nonaflates, J. Org. Chem. 2003, 68, 9563.
    146. Urgaonkar, S.; Verkade, J. G., Palladium/proazaphosphatrane-catalyzed amination of aryl halides possessing a phenol, alcohol, acetanilide, amide or an enolizable ketone functional group: Efficacy of lithium bis(trimethylsilyl)amide as the base, Adv. Synth. Catal. 2004, 346,611.
    147. Old, D. W.; Wolfe, J. P.; Buchwald, S. L., A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions: Room-Temperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides, J. Am. Chem. Soc. 1998,120, 9722.
    148. Hartwig, J. F., Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism, Angew. Chem. Int. Ed. 1998,37, 2046.
    149. Wolfe, J. P.; Buchwald, S. L., Nickel-catalyzed amination of aryl chlorides, J. Am. Chem.Soc. 1997,119,6054.
    150. Martineau, D.; Gros, P.; Fort, Y., Selective lithiation of 4-(1H-1-pyrrolyl)pyridine. Access to new electron-releasing ligands, J. Org. Chem. 2004, 69, 7914.
    151. Wagaw, S.; Buchwald, S. L., The synthesis of aminopyridines: A method employing Palladium-catalyzed carbon-nitrogen bond formation, J. Org. Chem. 1996, 61,7240.
    152. Krein, D. ML; Lowary, T. L., A convenient synthesis of 2-(alkylamino)pyridines, J. Org.Chem. 2002, 67,4965.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700