近断层地震动的上/下盘效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近断层地震动由于其自身不同于远场地震动的特征以及对工程结构产生的严重破坏,成为近年来工程地震界的研究热点。近断层地震动的影响因素众多,除受常规的震源、路径以及场地条件影响外,还与上/下盘效应和破裂方向性效应密切相关,两者对近断层地震动的峰值、频谱、持时以及空间分布产生重要的影响。尤其是发生在倾斜断层上的地震,比如北岭地震、集集地震以及汶川地震,上/下盘效应对近断层地震动的影响更加突出,位于断层两侧即上下盘的近断层地震动存在较为明显的差别。因此充分认识近断层地震动上/下盘效应,对于因地制宜的采取工程结构的抗震措施具有重要意义。以往研究虽然对上/下盘效应有所涉及,但还不够系统深入。本文全面细致的比较了近断层上下盘地震动的差别,即近断层地震动上/下盘效应的特征、产生的原因以及影响因素。通过对近断层地震动的数值模拟和实际地震的强震数据分析两个方面,从地震动的峰值、频谱以及持时三个角度系统的分析了加速度、速度以及位移的三分量的上/下盘效应的基本特征,并从本质上揭示了上/下盘效应产生的原因,深入具体地剖析了上/下盘效应的影响因素。本文研究的主要内容和结论如下:
     1.基于北岭地震和集集地震的强震记录,系统地分析了上/下盘效应对近断层地震动峰值、频谱和持时的影响。研究表明:①断层距在30公里以内的上盘地震动峰值(加速度峰值PGA、速度峰值PGV和位移峰值PGD)大于该距离范围内地震动峰值的平均水平,上/下盘效应对PGA、PGV及PGD的影响依次减弱。②断层距在30公里以内的上盘反应谱值(加速度、速度以及位移反应谱值)在较宽的周期范围上(周期小于4s)明显大于该距离范围内的反应谱值的平均水平。③断层距在30公里以内的上盘地震动持时略小于该距离范围内地震动持时的平均水平。④上/下盘效应对平行断层走向分量(Fault Parallel,FP)、垂直断层走向分量(Fault Normal,FN)和竖向分量(UP Down,UD)地震动的影响依次减弱。
     2.比较了常见的观测点到断层面的距离标准,引入了均方根距离的定义,分析了上/下盘效应产生的原因。研究表明:①具有加权平均意义的均方根距离不同于常见的断层距、Campbell距离、震源距和震中距等距离标准,可以准确地描述观测点到断层面的整体靠近程度及倾斜断层的不对称程度。②使用均方根距离对地震动参数进行回归时,近断层地震动的上/下盘效应不明显,可以忽略其影响。③近断层地震动的上/下盘效应是由于具有相同断层距的上下盘观测点,上盘观测点在整体上距离断层破裂面较近即上盘观测点的均方根距离较小引起的,即上/下盘效应是由倾斜断层的不对称分布引起的几何效应。
     3.数值模拟了不同断层模型下逆断层型地震近断层地震动的上/下盘效应,分析了各种震源参数包括断层倾角、断层的上界埋深、断层的破裂速度、断层的破裂初始位置以及震级对上/下盘效应的影响。以下分别进行说明:
     (1)对于倾斜的逆断层型地震,上/下盘效应对地震动峰值、反应谱和持时影响的基本特征:①上盘地震动峰值(PGA、PGV及PGD)大于具有相同断层距的下盘观测点的地震动峰值。上/下盘效应对UD、FP和FN分量的影响依次减弱,上/下盘效应对PGA,PGV和PGD的影响依次增强,影响的强弱表现在两个方面:一是上、下盘地震动峰值差别的大小;二是上下盘峰值比大于1的区域(即上/下盘效应影响区域)的大小。②上盘三分量加速度反应谱值明显大于相同断层距下盘观测点的反应谱值。上/下盘效应对长周期的加速度反应谱值影响大于短周期;上/下盘效应对三分量的影响程度因周期值的不同而不同。③上盘三分量加速度持时明显小于相同断层距的下盘观测点的加速度持时,随着断层距的增大上下盘加速度持时的差别先增大后保持不变。上/下盘效应对三分量加速度持时的影响大致相当。
     (2)断层的上界埋深对上/下盘效应的影响:①上界埋深对地震动峰值的上/下盘效应的影响因地震动分量和PGA,PGV和PGD的不同而不同,但是总体来说,上/下盘效应对地震动峰值的影响随着上界埋深的增大而增强,表现为上下盘地震动峰值比增大且上/下盘效应影响区域向远离断层破裂迹线的方向扩展。②上界埋深对反应谱值的上/下盘效应的影响因地震动分量和周期值的不同而不同,但是总体来说,上/下盘效应对加速度反应谱值的影响随上界埋深的增大而增强,埋深的变化对短周期加速度反应谱值的上/下盘效应影响比长周期强。③断层上界埋深对加速度持时的上/下盘效应的影响因断层距的不同而不同,在靠近断层区域(断层距小于20km)随着上界埋深的增大上下盘持时的差别减小,而在远离断层的区域随着断层上界埋深的增大上下盘地震动持时差别增大。
     (3)断层倾角对上/下盘效应的影响:①断层倾角对地震动峰值的上/下盘效应的影响因地震动分量和PGA,PGV和PGD的不同而不同,但是总体来说上/下盘效应对地震动峰值的影响随着断层倾角的减小逐渐增强,表现为上下盘地震动峰值比增大且影响区域向远离断层破裂迹线的方向扩展。②断层倾角对反应谱值的上/下盘效应的影响因地震动分量和周期值的不同而不同,但是总体来说,上/下盘效应对加速度反应谱值的影响随着断层倾角的减小逐渐增强,断层倾角的变化对短周期加速度反应谱的上/下盘效应影响比长周期强。③随断层倾角的增大上下盘加速度持时的差别减小。
     (4)断层的破裂速度对上/下盘效应的影响:①破裂速度对地震动峰值的上/下盘效应的影响因地震动分量和PGA,PGV和PGD的不同而不同,总体来说随着破裂速度的增大,上/下盘效应对地震动峰值的影响略有增强,表现在上下盘地震动峰值比增大。②破裂速度对加速度反应谱值的上/下盘效应的影响因地震动分量和周期值的不同而不同,总体来说随着破裂速度的增大,上/下盘效应对加速度反应谱值的影响略有增强,表现在上下盘加速度反应谱值比增大。③随着断层破裂速度的增大上下盘加速度持时的差别增大。④在超剪切破裂状态下(破裂速度大于剪切波速)的PGA的上/下盘效应比亚剪切破裂状态下的明显,而PGV和PGD的上/下盘效应不如亚剪切破裂状态(破裂速度小于剪切波速)下的明显;超剪切破裂状态下的短周期加速度反应谱值的上/下盘效应比亚剪切破裂下的明显,而长周期加速度反应谱值的上/下盘效应不如亚剪切破裂状态下的明显。
     (5)断层的初始破裂位置对上/下盘效应的影响:破裂起始点沿平行断层走向方向的位置变化对近断层地震动的上/下盘效应的影响不明显,而其沿断层下倾方向的位置变化对上/下盘效应的影响显著,主要表现在:①上下盘地震动峰值的差别当破裂起始点位于断层上界时最大,位于断层下界时次之,位于断层下倾方向中心时最小。②上下盘短周期加速度反应谱值的差别随破裂起始点的变化规律与地震动峰值相同;上下盘长周期加速度反应谱值的差别随着破裂起始点由断层上界向下界的移动而逐渐减小,而且上/下盘效应的影响区域向远离断层破裂迹线的方向扩展。③随着破裂初始点由断层上界向下界的移动,上下盘加速度持时的差别逐渐增大。
     (6)震级(断层宽度)对上/下盘效应的影响:①震级对地震动峰值的上/下盘效应的影响因地震动分量和PGA,PGV和PGD的不同而不同,总体来说震级的增大使得上下盘地震动峰值差别增大,且上/下盘效应的影响区域向远离断层破裂迹线的方向扩展。②震级对加速度反应谱值的上/下盘效应的影响因地震动分量和周期值的不同而不同,随着震级的增大上下盘加速度反应谱值比增大,上/下盘效应的影响区域向远离断层破裂迹线的方向扩展。③随着震级的增大,上下盘地震动持时差别增大。
     (7)利用均方根距离对比了上/下盘效应的影响因素,发现影响断层不对称分布因素如断层上界埋深、断层倾角以及地震震级也是上/下盘效应的主要影响因素,进一步验证了上下盘效应是由倾斜断层的不对称分布引起的几何效应。
     4.数值模拟了倾斜的走滑型和正断层型地震的上/下盘效应,并研究了断层类型对上/下盘效应的影响。研究表明:①走滑型地震,地震动峰值和加速度反应谱值的上/下盘效应表现在UD,FN和FP三个分量;逆断层型和正断层型地震,上/下盘效应主要表现在FP和UD两个分量。②对于地震动峰值和加速度反应谱值的上/下盘效应,走滑型地震最为明显,其次为逆断层型地震,再次为正断层型地震。表现在上下盘地震动峰值比和加速度反应谱值比以及上/下盘效应影响区域的大小按照走滑、逆冲和正断层型地震的顺序依次减小。③对于地震动持时的上/下盘效应,正断层和逆断层型地震比走滑型地震明显。
     5.利用汶川地震的强震观测记录,分析和总结了汶川地震近断层地震动的上/下盘效应特征,并比较了汶川地震的强地震动参数与国内外现有衰减模型的差别。研究表明:①汶川地震的近断层地震动上/下盘效应对地震动峰值的影响主要体现在加速度峰值PGA,而对速度峰值PGV和位移峰值PGD的影响不明显。②汶川地震的近断层地震动的上/下盘效应对反应谱值的影响表现在短周期,即周期小于0.5秒的加速度反应谱值,而对长周期加速度反应谱值影响不明显。③汶川地震的近断层地震动的上/下盘效应对地震动持时的影响主要表现在加速度持时,而对速度和位移持时的影响不明显。④与国内外地震动参数的衰减模型相比,汶川地震的短周期(周期小于0.5s)地震动明显大于预测值,而长周期(周期大于1s)地震动明显小于预测值。
Study on the near-fault ground motion has been the hot research topic in the engineering seismological community for more than 10 years, which results from the near-fault ground motion having the different characteristics from far-fault ground motion and its serious damage on the structures. Beside the conventional influence factors on the ground motions, such as source, path and the site condition, both the hanging wall/foot wall effects (the HW/FW effects) and rupture directivity have great influences on the near-fault ground motions. For the large earthquakes occurred on non-vertical faults, such as the Northridge earthquake, Chi-Chi earthquake and Wenchuan earthquake, there are obvious differences between the ground motions on the hanging wall side and those on the foot wall side. This study focuses on the ground motion differences between the hanging wall and foot wall, i.e., the HW/FW effects on the near-fault ground motions. Three aspects involved are mainly studied, the characteristics, influence factors and reasons of the HW/FW effects. To deal with the three issues, we conduct analyses of both the real near-fault recordings and simulated ground motions. Through comparing the peak values, response spectra and durations of near-fault ground motions between the hanging wall and foot wall, some conclusions can be drawn:
     1. Analyses of the observed ground motions from the Chi-Chi and Northridge earthquakes indicate that the HW/FW effects have important influences on the peak values, response spectra and durations of ground motions. First, the three-component peak ground accelerations (PGA), peak ground velocities (PGV) and peak ground displacements (PGD) on hanging wall are larger than those on foot wall with the same rupture distances. Second, the tri-component spectral ordinates of accelerations at almost all period ranges are larger on the hanging wall than on the foot wall at the similar rupture distances. Third, the tri-component durations of ground motions on hanging wall are smaller than those on the foot wall. Last, the HW/FW effects have higher influences on horizontal component than the vertical component of near-fault ground motions, and the HW/FW effects on peak values of ground motions becomes lower and lower in terms of PGA, PGV and PGD.
     2. The commonly used site-to-source distance measures, such as rupture distance Drup, epicentral distance Depc, hypocentral distance Dhyp, Joyner-Boore distance DJB and seismological distance Dseis can not describe the general proximity of a site to the rupture plane. The root-mean-square distance Drms with the meaning of weighted-average is introduced to accurately represent the proximity between an observer and the rupture plane, and examine the HW/FW effects on the near-fault ground motions. The result shows that there is no obvious bias towards positive for the hanging wall residuals when the Drms is used as distance measure, which is opposite to the results when other distance measures are used. The HW/FW effects are demonstrated to be a geometric effects caused by the asymmetry of dipping fault.
     3. By numerical simulation of strong ground motions from different thrust-fault events, the influence factors of the HW/FW effects are studied, such as the depth to the top of rupture (Ztop), the fault-dip (Dip), the rupture velocity (Vr), the location of initial point of rupture and magnitude.
     (1)Variation of Ztop has an obvious effect on the ground motions differences between hanging wall and footwall.①With increasing of Ztop, the ratio between hanging wall and footwall (HW/FW ratio) for amplitudes (PGA, PGV and PGD) of ground motions becomes larger and the affected area of the HW/FW effects extends greatly. The variation of Ztop does not change the HW/FW effects on FN component, but UD and FP components of peak values.②The influence of Ztop on the HW/FW effects on response spectra acceleration (RSA) depends on component and period. For short period, the UD- and FP- components HW/FW ratio for RSA become larger and affected area extends if Ztop increases. For long-period, the UD-component HW/FW ratio decreases but the FP-component HW/FW ratio increases with the increasing of Ztop.③With the increase of Ztop, the difference of the duration between hanging wall and footwall reduces in the near-fault region.
     (2)Variation of Dip has a great effect on the ground motion differences between hanging wall and footwall.①For the amplitudes of ground motion, the HW/FW ratios for PGA, PGV and PGD increase with the decreasing of Dip.②For the RSA, the variation of Dip on the HW/FW effects depends on component and period. However, in general, the HW/FW ratios for three-component RSA increase and the affected areas of HW/FW effects extend greatly if Dip decreases.③For the duration of ground motions, the difference of duration between HW and FW enlarges when Dip reduces.
     (3) Variation of Vr has an effect on the ground motion differences between hanging wall and footwall.①For the amplitudes of ground motions, the HW/FW ratios for PGA, PGV and PGD decrease with the increase of Vr②For the RSA, the variation of Vr on the HW/FW effects depends on component and period. However, generally speaking, the HW/FW ratios for RSA decrease when Vr increases, but the affected area of HW/FW effects does not change a lot.③For the duration of ground motions, the difference of duration between hanging wall and footwall enlarges with the increase of Vr.④The HW/FW effects on PGA are more obvious under super-shear rupture(The velocity of rupture is larger than the velocity of S wave) status than under sub-shear rupture(The velocity of rupture is smaller than the velocity of S wave) status, however, the HW/FW effects on PGV and PGD are opposite. The HW/FW effects on RSA at short-period are more obvious under super-shear rupture status than under sub-shear rupture statu, however, the HW/FW effects on RSA at long-period are opposite.
     (4) The location of initial point of rupture has an effect on the ground motions difference between HW and FW. In general, the variation of location for initial point of rupture along fault-parallel direction does not influence the HW/FW effects, but the variation along the down-dip direction changes the HW/FW effects a lot.①For the amplitude of ground motions, with the initial point ascending from the bottom of the rupture, to the center of down-dip direction, and then the top of rupture, the HW/FW ratios of PGA, PGV and PGD increases and the affected area of HW/FW effects extends.②For the short-period RSA, with the initial point changing from the top of rupture, to the bottom of the rupture, and then the center of down-dip direction, the HW/FW ratio for RSA decreases. However, for the long-period RSA, the HW/FW effects become more and more obvious when the initial point changes from the bottom of the rupture, to the center of down-dip direction, and then the top of rupture.③For the duration of ground motion, the difference of duration between HW and FW monotonously enlarges with the initial point changing from the top of the rupture, to the center of down-dip direction, and then the bottom of rupture.
     (5) Variation of Magnitude has an effect on the ground motion differences between hanging wall and footwall.①For the amplitudes of ground motion, the HW/FW ratios for PGA, PGV and PGD increase with the increasing of Magnitude, but the affected areas of HW/FW effects extend.②For the RSA, the variation of Magnitude on the HW/FW effects depends on component and period. However, in general, the HW/FW ratios for three-component RSA increase if Magnitude increases, but the affected areas of HW/FW effects extend.③For the duration of ground motions, the difference of duration between HW and FW reduces when Magnitude reduces.
     (6)Using root-mean-square distance, we compare the influencing factors of the HW/FW effect. The result indicates the factors which greatly change the asysmetry of dipping fault such as depth to the top of fault, fault dip and magnitude are also the major influencing factors of HW/FW effects.
     4. By simulating the ground motions from the non-vertical strike-slip and normal events, the hanging wall/footwall effects on near-fault ground motions are examined. The focal mechanism on the hanging wall/footwall effects is also studied. The result show:①The HW/FW effects on near-fault ground motions also exist in the strike-slip event as long as the earthquake occurs on non-vertical fault.②The HW/FW effects on near-fault ground motions also exist in the normal event as long as the earthquake occurs on non-vertical fault.③For the normal and thrust event, the HW/FW effects mainly embody on UD and FP component of ground motion. However, for the strike-slip event, the HW/FW effects embody on three components of ground motion④For the strike-slip, normal and thrust event with the same earthquake magnitude and the same fault dip, the HW/FW effects on near-fault ground motion are most obvious in strike-slip event, and least obvious in the normal event.
     5. Based on the observed ground motions from Wenchuan earthquake, the hanging wall/footwall effects on near-fault ground motions are studied, and the comparisons between the observed motions from this event and the predicted motions from contemporary attenuation relations are also conducted.①The HW/FW effects on amplitudes of ground motion mainly embodies on PGA.②The HW/FW effects on response spectra accelerations mainly embody on the short-period (T≤0.5s) ground motions.③The HW/FW effects on duration mainly embodies on the duration of acceleration.④The observed short-period (T≤0.5s) ground motions from the Wenchuan earthquake are under-predicted, however, the long-period (T>1s) ground motions are greatly over-estimated by the contemporary attenuation relations world-wide.
引文
[1]安艺敬一,理查德兹.定量地震学[M].地震出版社,北京: 1986.
    [2]陈运泰.地震参数—数字地震学在地震预测中的应用[M].地震出版社,北京:2003
    [3]冯启民,邵广彪.近断层地震动速度、位移峰值衰减规律的研究[J].地震工程与工程振动,2004,24(4):13-19.
    [4]高孟潭,俞言祥等.北京地区地震动的三维有限差分模拟[J].中国地震,2002,18(4):356-364
    [5]胡进军.近断层地震动方向性效应及超剪切破裂研究[D].中国地震局工程力学研究所.博士学位论文.哈尔滨:2009
    [6]胡聿贤.地震工程学[M].地震出版社,北京:1988.
    [7]霍俊荣.近场强地面运动衰减规律的研究[D].中国地震局工程力学研究所博士学位论文.哈尔滨:1989
    [8]李小军,周正华,于海英,温瑞智.汶川8.0级地震强地震动观测及记录初步分析[R].汶川地震建筑震害调查与灾后重建分析报告,中国建筑工业出版社,北京:2008
    [9]李新乐,朱晞.考虑场地和震源机制的近断层地震动衰减特性的研究[J].工程地质学报,2004,12(2):141-147
    [10]刘启方,袁一凡,金星,丁海平.近断层地震动的基本特征[J].地震工程与工程振动, 2006,26(2).183-192
    [11]刘启方.基于运动学和动力学震源模型的近断层地震动研究[D].中国地震局工程力学研究所博士学位论文.哈尔滨:2005
    [12]刘瑞丰,许力生.地震破裂时-空过程的研究[J].国际地震动态,2000,10:4-7
    [13]卢寿德,李小军等.汶川8.0级地震未校正加速度记录[M].地震出版社,北京:2008
    [14]邵广彪,冯启民.近断层地震动加速度峰值衰减规律的研究[J].地震工程与工程振动,2004,24(3):30-37
    [15]石玉成,陈厚群等.随机有限断层法合成地震动的研究与应用[J].地震工程与工程振动,2005,25(4):18-23
    [16]陶夏新,王国新.近场强地震动模拟中对破裂方向效应和上盘效应的表达[J].地震学报, 2003,25(2),191-198
    [17]滕吉文,白登海,杨辉等.2008汶川Ms8.0地震发生的深层过程和动力学响应[J].地球物理学报,2008,51(5):1385-1402
    [18]王栋,谢礼立,胡进军.倾斜断层的不对称分布引起的几何效应—上/下盘效应[J].地震学报.2008,30(3),271-278.
    [19]王栋,谢礼立.断层倾角对上/下盘效应的影响[J].地震工程与工程振动.2007,Vol 27.No5,1-9.
    [20]王栋断层倾角对近断层地震动特征的影响[D].中国地震局工程力学研究所硕士学位论文.哈尔滨:2006
    [21]王国权,周锡元等.921台湾地震近断层强地面运动的周期和幅值特性[J].工程抗震,2001,130-136
    [22]王国权.921台湾集集地震的近断层地面运动特征[D].中国地震局地质研究所博士学位论文.北京:2001
    [23]王国新.强地震动衰减研究[D].中国地震局工程力学研究所博士学位论文,哈尔滨:2001.
    [24]王海云,谢礼立.近断层强地震动场预测[J].地球物理学报,2009,52(3):703-711
    [25]王海云.近场强地震动预测的有限断层震源模型[D].中国地震局工程力学研究所博士学位论文.哈尔滨:2004
    [26]王卫民,赵连锋,李娟,姚振兴.四川汶川8.0级地震震源过程[J].地球物理学报,2008,51(5):1403-1410.
    [27]徐锡伟,闻学泽,叶建青等.汶川Ms8.0级地震地表破裂及发震构造[J].地震地质,2008,30(3):597-629.
    [28]许力生,俞言祥,陈运泰.中国强地面运动研究进展[J],地震学报,2003,25(5),475~478
    [29]姚振兴,郑天愉.计算综合地震图的广义反射、透射系数矩阵和离散波数法(二)——对不同深度点源情况的算法[J].地球物理学报,1984,27:338-347.
    [30]于海英,王栋等.汶川8.0级地震强震动特征初步分析[J].震灾防御技术,2008,3(4):321-336.
    [31]俞言祥,高孟潭. 9.21台湾集集地震近场加速度峰值分布特征[R].中国地震学会第八次学术大会论文摘要集.北京:地震出版社, 2000. 9
    [32]俞言祥,高孟潭.台湾集集地震近场地震动的上盘效应[J].地震学报,2001,3(6):615~621
    [33]袁一凡等.汶川Ms8.0级地震工程震害概览[J]地震工程与工程振动,2008,28,增刊
    [34]张冬丽.基于数值格林函数方法的近场长周期强地震动模拟[D],中国地震局工程力学研究所博士论文,2005
    [35]张培震,徐锡伟,闻学泽,冉勇康.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,51(4):1066-1073.
    [36]张晓志,胡进军,谢礼立,王海云.近断层基岩强地面运动影响场的显式有限元数值模拟[J].地震学报,2006,28(6),638-644
    [37]郑治真.波谱分析基础[M].地震出版社,北京:1979.
    [38]周正华,周雍年等.竖向地震动特征研究[J].地震工程与工程振动,2003,23(3):23-29.
    [39]中华人民共和国国家标准《建筑结构抗震设计规范》(GBJ50011-2001).中国建筑工业出版社,北京,2001.
    [40] Aagaard, B T., John F. Hall and Thomas H. Heaton. Effects of Fault Dip and Slip Rake Angles on Near-Source Ground Motions: Why Rupture Directivity Was Minimal in the 1999 Chi-Chi, Taiwan, Earthquake [J]. Bull. Seism. Soc. Am. 94(1): 155-170, 2004
    [41] Aagaard, B T., John F. Hall and Thomas H. Heaton.(2001).Characterization of near-source ground motion with earthquake simulations[J].Earthquake Spectra,17(2): 177-207.
    [42] Abrahamson NA and WJ Silva(1997). Empirical response spectral attenuation relations for shallow crust earthquakes[J]. Seismological Research Letters. Vol 68 No.1 94-127
    [43] Abrahamson NA, Somerville PG(1996). Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake [J]. Bull Seism Soc Amer, 86(1B):S93-S99
    [44] Abrahamson, N. A., and K. M. Shedlock (1997). Overview[J], Seism. Res.Lett. 68, 9–23.
    [45] Abrahamson, N. A., and P. G. Somerville (1993). Estimation of hanging wall and footwall effects on peak acceleration, in Proc. of International Workshop on Strong Motion Data, Menlo Park, California, 13–17 December 1993
    [46] Abrahamson, N.N. and W.Silva(2008). Summary of the Abrahamson & Silva NGAGround-Motion Relations[J]. Earthquake Spectra., Vol.24, No.1, 67-97.
    [47] Aki, K.(1967).Scaling law of seismic spectrum[J],J.Geophys.Res.72,1217–1231.
    [48] Aki, K.(1968).Seismic displacement near a fault[J],J.Geophys.Res.73,5359–5376.
    [49] Aki,K.(1982).Strong motion prediction using mathematical modeling techniques[J],Bull. Seism.Soc.Am.72:S29–S41.
    [50] Aki,K.,and P.G.Richards(1980). Quantitative Seismology:Theory and Methods[M], W.H. Freeman and Company, San Francisco,CA.
    [51] Allen, C. R., J. N. Brune, L. S. Cluff, and A. G. Barrows (1998). Evidence for unusually strong near-field ground motion on the hanging wall of the San Fernando fault during the 1971 earthquake[J], Seism. Res. Lett.69, 524–531.
    [52] Ambraseys,N.N., and Bommer,J.J.(1991).The attenuation of ground accelerations in Europe[J]. Earthquake Engineering and Structural Dynamics,20(12):1179-1202.
    [53] Anderson, J. A., and J. N. Brune (1999). Methodology for using precarious rocks in Nevada to test seismic hazard models[J], Bull. Seism. Soc. Am. 89, 456–467.
    [54] Anderson,J.G.and Hough,S.E.(1984).A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies[J].Bull.Seism.Soc.Am.,74(5):1969-1993
    [55] Anooshehpoor, A., and J. N. Brune (1994). Frictional heat generation and seismic radiation in a foam rubber model of earthquakes[J], Pageoph142, 735–737.
    [56] Archuleta,R.J.and Hartzell,S.H.(1981).Effects of fault finiteness on near-source ground motion[J].Bull.Seism.Soc.Am.,71:939-957
    [57] Atkinson, G. M. and Silva, W. (2000), Stochastic Modeling of California Ground Motions[J], Bull. Seism. Soc. Am. 90, 255–274.
    [58] Atkinson,G.and D.Boore(1995).Ground-Motion Relations for Eastern North America[J]. Bull.Seism.Soc.Am.,85:17-30.
    [59] Atkinson,G.M.and Beresnev,I.A.(1997).Don’t call it stress drop[J],Seism.Res. Lett.,68:3-4.
    [60] Atkinson,G.M.and Beresnev,I.A.(1997).Modeling finite-fault radiation from theωspectrum[J]. Bull.Seism.Soc.Am.,87: 64-84.
    [61] Atkinson,G.M.and Walt Silva(1997).An emperical study of earthquake source spectra for California earthquakes[J],Bull.Seism.Soc.Am.,86:97-112.
    [62] Atkinson,G.M.(1995).Attenuation and source parameters of earthquakes in the Cascadia region[J],Bull.Seism.Soc.Am.85,1327-1342.
    [63] Atkinson,G.M.and Boore,D.M.(1990).Recent trends in ground motion and spectral response relations for North America[J].Earthquake Spectra,6(1):15-35.
    [64] Atkinson,G.M.(1997).Empirical ground motion relations for earthquakes in the Cascadia region[J].Canadian Journal of Civil Engineering,24:64-77.
    [65] Atkinson,G.M. and Boore,D.M.(1995).Ground-Motion Relations for Eastern North America[J]. Bull.Seism.Soc.Am.,85(1):17-30.
    [66] B.S.J.Chiou and R.R.Youngs(2008) An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra[J]. Earthquake Spectra, Vol.24, No.1, 173-215.
    [67] Beresnev, I.A.and Atkinson,G.M.(1998b).Stochastic finite-fault modeling of ground Motions from the 1994 Northridge,California,earthquake.I.Validation on rock sites[J].Bull. Seism. Soc.Am. 88:1392-1401.
    [68] Beresnev,I.A. and Atkinson,G.M.(1998a).FINSIM-a FORTRAN program for simulating stochastic acceleration time histories from finite-faults[J].Bull.Seism.Res.Lett.69:27-32.
    [69] Beresnev,I.A. and Atkinson,G.M.(1998c).Stochastic finite-fault modeling of ground Motions from the 1994 Northridge,California,earthquake.II.Widespread nonlinear response at soil sites[J]. Bull.Seism.Soc.Am.88:1402-1410.
    [70] Beresnev,I.A.and Atkinson,G.M.(1999).Generic finite-fault model for ground-motionprediction in Eastern North America[J].Bull.Seism.Soc.Am.,89:608-625.
    [71] Boore DM. and GM.Atkinson( 2008) Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between 0.01s and 10.0s[J]. Earthquake Spectra, Vol.24, No.1, 99-138.
    [72] Boore,D.M.(1983).Stochastic simulation of high-frequency ground motions based on Seismological Models of the Radiated Spectra[J].Bull.Seism.Soc.Am.,73(6):1865-1894.
    [73] Boore,D.M.(2001a).Comparisons of Ground Motions from the 1999 Chi-Chi Earthquake with Empirical Predictions Largely Based on Data from California[J]. Bull.Seism. Soc.Am.,91(5):1212-1217.
    [74] Boore,D.M.(2001b).Effect of Baseline Corrections on Displacements and Response Spectra for Several Recordings of the 1999 Chi-Chi,Taiwan, Earthquake[J].Bull.Seism.Soc.Am.,91(5):1199-1211.
    [75] Bouchon, M.(1979).Discrete wave number representation of elastic wave fields in three-space dimension[J].J.Geophys.Res.,68:1555-1576.
    [76] Bouchon,M.(1980a).The motion of the ground during an earthquake:1.The case of a strike-slip fault[J].J.Geophys.Res.,85:356-266.
    [77] Bouchon,M.(1980b).The motion of the ground during an earthquake:1.The case of a dip-slip fault[J].J.Geophys.Res.,85:367-375
    [78] Bouchon.M.,A(1981).Simple method to calculate Green’s functions for elastic layered media[J], Bull.Seism.Soc.Am.,Vol.71.959-971
    [79] Bolt,B.A.and Abrahamson,N.A.(1982).New attenuation relations for peak and expected accelerations of strong ground motion[J].Bull.Seism.Soc.Am.,72(6):2307-2321.
    [80] Brune JN. 1996. Precariously Balanced Rocks and Ground-Motion Maps for Southern California[J]. Bull Seism Soc Am, 86(1A):43-54
    [81] Brune, JN.(1996b). Particle motion in a foam rubber model of thrust faulting[J], Seism. Res. Lett. 67, 2, 34.
    [82] Brune, JN (1996c). Particle motions in a physical model of shallow angle thrust faulting, Proc. Indian Acad. Sci. (Earth Planet. Sci.) 105,no. 2, L197–L206.
    [83] Brune, J. N. (1999). Precarious rocks along the Mojave Section of the San Andreas fault, California: constraints on ground motion from great earthquakes[J], Seism. Res. Lett. 70, no. 1, 29–33.
    [84] Brune, J. N. (2000).Precarious Rock Evidence for Low Ground Shaking on the Footwall of Major Normal Faults[J]. Bull. Seism. Soc. Am. 90(4), 1107–1112.
    [85] Brune, J. N., A. Anooshehpoor (1998). A physical model of the effect of a shallow weak layer on strong ground motion for strike-slip ruptures[J],Bull. Seism. Soc. Am. 88, 1070–1078.
    [86] Brune, J. N., and A. Anooshehpoor (1999). Dynamic geometrical effects on strong ground motion in a normal fault model[J], J. Geophys. Res.104, 809–815.
    [87] Brune, J. N., P. Johnson, and C. Slater (1990). Nucleation, predictability, and rupture mechanism in foam rubber models of earthquakes, J.Himalayan Geol. 1, no. 2, 155–166.
    [88] Brune, J. N., S. Brown, and P. Johnson (1993). Rupture mechanism and interface separation in foam rubber models of earthquakes: a possible solution to the heat flow paradox and the paradox of large overthrusts[J],Tectonophysics 218, 59–67.
    [89] Brune,J.N.(1970).Tectonic Stress and Spectra of Seismic Shear Waves from Earthquakes[J].Journal of Geophysical Research,75(26):4997-5009.
    [90] Campbell KW. (1997). Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra[J]. Seismological Research Letters. Vol 68 No.1 154-179.
    [91] Chang TY, Cotton F, Tsai YB, Angelier J. 2004. Quantification of Hanging-WallEffects on Ground Motion: Some Insights from the 1999 Chi-Chi Earthquake [J]. Bull Seism Soc Am, 94(6):2186-2197
    [92] Chang,T.Y.,Cotton,F.and Angelier,J.(2001).Seismic Attenuation and Peak Ground Acceleration in Taiwan[J].Bull.Seism.Soc.Am.,91(5):1229-1246
    [93] Chen,Y.T.,Zhou,J.Y.and Ni,J.C.(1991).Inversion of near-source broadband accelerograms for the earthquake source time function[J].Tectonophysics, 197(1):89-98.
    [94] Day, S. M., Three-dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity[J], Bull. Seismol.Soc. Am., 72, 705–727, 1982a.
    [95] Day, S. M., Three-dimensional simulation of spontaneous rupture:The effect of nonuniform prestress[J], Bull. Seismol. Soc. Am., 72, 1881–1902, 1982b.
    [96] Dong Wang and Lili Xie. Study on response spectral acceleration from the Great Wenchuan Earthquake[J]. Journal of Earthquake Engineering (in press)
    [97] Dong Wang, Lili Xie, N.Abrahamson and Shanyou Li. Comparison of Ground motion from Wenchuan Earthquake with the Next Generation Attenuation relationship[J]. Bulletin of the Seismological Society of America, volume 100-5B, Nov. 2010 (in press)
    [98] Donovan,N.C.(1973).A statistical evaluation of strong motion data including the February 9,1971 San[J],Proc.5th WCEE 1252-1261
    [99] Hanks,T.C.and McGuire,R.K.(1981).The Character of High-Frequency Strong Ground Motion[J]. Bull.Seism.Soc.Am.,71(6):2071-2095.
    [100] Haskell,N.A.(1963).Radiation pattern of rayleigh waves from a fault of arbitrary dip and direction of motion in a homogeneous medium[J]. Bull. Seism. Soc. Am., 53:619-642.
    [101] Haskell,N.A.(1964a).Radiation pattern of surface waves from point sources in a multilayered medium[J].Bull.Seism.Soc.Am.,54:377-393
    [102] Haskell,N.A.(1964b).Total energy and energy spectral density of elastic wave radiation from propagating faults[J].Bull.Seism.Soc.Am.,54:1811-1841.
    [103] Haskell,N.A.(1969).Elastic displacements in the near-field of a propagating fault[J]. Bull. Seism.Soc.Am.,59:865-908
    [104] I.M.Idriss(2008). An NGA Empirical Model for Estimating the Horizontal Spectral Values Generated By Shallow Crustal Earthquakes[J]. Earthquake Spectra, Vol.24, No.1, 217-242.
    [105] Iwata T, Sckiguchi H, Irikura K(2000). Rupture process of the 1999 Chi-Chi, Taiwan, earthquake and its near-source strong ground motions [A].In: International Workshop on annual commemoration of Chi-Chi earthquake[Z]. Taipei: 36-46.
    [106] Irikura.K.(1983)Semi-empirical estimation of strong ground motions during large earthquake[J],Bull. Disas. Prev.Res.Inst.,Vol.133,No.298,63-104.
    [107] Irikura,K.,and K.Kamae(1994).Estimation of strong ground motion in broad-band based on a seismic source scaling model and an empirical Green’s function technique,Annali di Geofisica xxxvii,6,1721–1743.
    [108] Irikura.K.(2000).Predication of strong motions from future earthquake caused by active fault-case of the Osaka base.Proceedings 12th World Conference on Earthquake Engineering,New Zealand.
    [109] Kawashima,K.,Aizawa,K.,and Takahashi,K.(1986).Attenuation of peak ground acceleration,velocity and displacement based on multiple regression analysis of Japanese strong motion records[J].Earthquake Engineering and Structural Dynamics,14(2):199-215.
    [110] Khosrow TS, Fumio Y. (2003). Near-fault spatial variation in strong ground motion due to rupture directivity and hanging wall effects from the Chi-Chi, Taiwan earthquake[J]. Earthquake Engng Struct Dyn, 32:2197–2219
    [111] KW.Campbell and Y.Bozorgnia.(2008) NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA,PGV,PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10s[J]. Earthquake Spectra, Vol.24, No.1, 139-171.
    [112] Lee CT, Cheng CT, Liao CW, Tsai YB. 2001. Site classification of Taiwan free-field strong-motion stations [J]. Bull Seism Soc Amer, 91: 1283–1297.
    [113] Lee,W.H.K.,T.C.Shin, K.W.Kuo, and K.C.Chen(1999).“CWB Free-Field Strong-Motion Data from the 921 Chi-Chi Eartllquake:Volume1.Digital Acceleration Files on CD-ROM.”SeismologyCenier, Central Weather Bureau,TaiPei, Taiwan, Pre-PublieationVersion, December 6.
    [114] Li Xiaojun,Zhou Zhenghua,Huang Moh,Wen Ruizhi,Yu Haiyin,Lu Dawei,Zhou Yongnian and Cui Jianwen.(2008).Preliminary Analysis of Strong-MotionRecordings from the Magnitude 8.0 Wenchuan,China,Earthquake of 12 May 2008[J].Seismological Research Letters, 79(6):844-854
    [115] Li Xiaojun,Zhou Zhenghua,Yu Haiyin,et al.(2008).Strong Motion Observations and Recordings from the Great Wenchuan Earthquake[J].Earthquake Engineering and Engineering Vibration,7(3):235-246
    [116] M..Power, N.Abrahamson,Y.Bozorgnia,T.Shantz and C.Roblee(2008). An overview of the NGA Project[J]. Earthquake Spectra., Vol.24, No.1, 3-21.
    [117] Madariaga.R.(1976).Dynamics of an expanding circle fault[J].Seis. Res. Lelt, 66, 163- 182.
    [118] Madariaga.R, K.B.Olson,and R.J.Arehuleta (1997).3-D elastic finite-difference simulation of a spontaneous rupture[J],Seis.Res.Lett.,68,312-319.
    [119] Mai,P.M, and Gregory C.Beroza(2000).Source sealing Properties from finite-fault-rupture models[J]. Bull.Seism.Soc.Am.,90, No.3,PP.604一615.
    [120] Mai P M.and GC.Beroza(2002).A spatial random field model to characterize complexity in earthquake slip[J].J Geophys.Res.,107(Bll),2308.
    [121] Ma,K.F.,Mori,J.,Lee,S.J.and Yu,S.B.(2001).Spatial and temporal distribution of slip for the 1999 Chi-Chi,Taiwan,earthquake[J].Bull.Seism.Soc.Am., 91:1069-108
    [122] Nielsen, S. B.,( 1998) Free surface effects on the propagation of dynamic rupture[J], Geophys. Res. Lett., 25, 125–128.
    [123] Oglesby DD, Archuleta RJ, Nielsen SB.(2000). The three dimensional dynamics of dipping faults[J]. Bull Seism Soc Amer, 90: 616–628.
    [124] Oglesby, D. D., Earthquake dynamics on dip-slip faults, Ph.D. thesis, Univ. of Calif., Santa Barbara, 1999.
    [125] Oglesby, D. D., R. J. Archuleta, and S. B. Nielsen (2000a). Dynamics of dip-slip faulting: explorations in two dimensions[J], J. Geophys. Res.105, 13,643–13,653.
    [126] Oglesby, D. D., R. J. Archuleta, and S. B. Nielsen, Earthquakes on dipping faults: The effects of broken symmetry[J],Science, 280, 1055–1059, 1998.
    [127] Olson,A.H.,Orcutt,J.A.,and Frazier,G.A.(1984).The discrete wavenumber/finite element method for synthetic seismograms[J].Geophys.J.R.Astr.Soc.,77:421-460
    [128] Peng,K.Z.,Wu,F.T.,and Song,L.(1985).Attenuation characteristics of peak horizontal acceleration in northeast and southwest China[J].Earthquake Engineering and Structural Dynamics,13(3):337-350.
    [129] Rodriguez-Marek,A.(2000).Near fault seismic site response.Ph.D.Thesis,Civil Engineering,University of California,Berkeley,p451.
    [130] Shabestari KT, Yamazaki F(2002). Hanging wall and footwall effects on ground motions: an empirical approach. Proceedings of the 57th Annual Conference of JSCE, I-885:1769-1770, CD-ROM.
    [131] Shi BP, Brune JN, Zeng YH, Anooshehpoor A. (2003). Dynamics of Earthquake Normal Faulting: Two-Dimensional Lattice Particle Model [J]. Bull Seism Soc Amer, 93(3):1179-1197
    [132] Shi, B., A. Anooshehpoor, J. N. Brune, and Y. Zeng(1998), Dynamics of thrust faulting: 2D lattice model[J], Bull. Seismol. Soc. Am., 88, 1484–1494
    [133] Sekiguchi,H.,and T.Iwata(2002).Rupture process of the 1999 Kocaeli,Turkey, earthquake estimated from strong-motion waveforms[J],Bull. Seism. Soc. Am. 92, 300– 311.
    [134] Shin.T.C.and Ta-liang Teng(2001),An overview of the 1999 Chi-Chi,Taiwan earthquake[J],Bull,Seism. Soc.Am, 91:895-913
    [135] Somerville, P. G., C. Saikia, D. Wald, and R. Graves (1996). Implications of the Northridge earthquake for strong ground motions from thrust faults[J], Bull. Seism. Soc. Am. 86, no. 1B, S115–S125.
    [136] Somerville, P. G., N. F. Smith, R. W. Graves, and N. A. Abrahamson(1997). Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J], Seism. Res. Lett. 68, 199–222.
    [137] Somerville,P.,C.K.Saikia,D.Wald,and R.Graves(1995).Implications of the Northridge earthquake for strong ground motions from thrust faults[J].Bull.Seism.Soc.Am., 86:5115-5125
    [138] Spudich,P.and Xu,L.(2003a).Software for calculating earthquake ground motions from finite faults in vertically varying media,in International Handbook of Earthquake and Engineering Seismology,W.H.K.Lee,H.Kanamori,P.C.Jennings, and C.Kisslinger(editors),Academic Press,New York,Part B,ch.85-14,pp.1633-1634.
    [139] Spudich,P.and Xu,L.(2003b).Documentation of software package ISOSYN v3.11: isochrone integration programs for earthquake ground motion calculation,in CD#3 accompanying International Handbook of Earthquake and Engineering Seismology, Part B,W.H.K.Lee,H.Kanamori,P.C.Jennings,and C.Kisslinger(editors), Academic Press,New York,Part B.
    [140] Trifunac,M.D.and Brady,A.G.(1975).A Study on the Duration of Strong Earthquake ground[J]. Bull.Seism.Soc.Am.,65(3):581-626
    [141] Tsai,Y.B.,Yu,T.M.,Chao,H.L.and Lee,C.P.(2001).Spatial Distribution and Age Dependence of Human Fatality Rates from the Chi-Chi,Taiwan,Earthquake of 21 September 1999[J]. Bull. Seism.Soc. Am.,91(5): 1298-1309
    [142] Wang Dong, Xie Lili, Hu Jinjun. The geometric effects resulting from the asymmetry of dipping fault: hanging wall/footwall effects [J]. ACTA seismological sinica. 2008, Vol 21, No.3, 275-282.
    [143] Wang Dong, Xie Lili.(2008) Root-mean-square distance and effects of hanging wall/ footwall. Proceedings of the 14th World Conference on Earthquake Engineering. Beijing, October 12-17, 2008, Beijing, China. Paper No. 03-02-0016
    [144] Wang Dong, Xie Lili.(2009) Attenuation of peak ground accelerations from the great Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration., Vol.8.N0.2, 179-188.
    [145] Wang Haiyun and Tao Xiaxin (2003), Relationships Between Moment Magnitude and Fault Parameters:Theoretical and semi-empirical Relationships[J]. Journal of Earthquake Engineering and Engineering Vibration. 2(2),201-211.
    [146] Wang, G. Q., X. Y. Zhou, P. Z. Zhang, and H. Igel (2002). Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan earthquake[J], Soil Dyn. Earthquake Eng. 22, 73–96
    [147] Wang,G.Q.,Boore,D.M.,Igel,H.and Zhou,X.Y.(2004).Comparisons of Ground Motions from Five Aftershocks of the 1999 Chi-Chi,Taiwan,Earthquake with EmpiricalPredictions Largely Based on Data from California[J]. Bull.Seism. Soc.Am.,94(6):
    [148] 2198-2212
    [149] Wald,D.J.,T.H.Heaton,and K.W.Hudnut(1996).The slip history of the 1994 Northridge, California,earthquake determined from strong motion,teleseismic,GPS, and leveling data[J].Bull.Seism.Soc.Am.86,S49–S70.
    [150] Wells,D.L.,and K.J.Coppersmith(1994). New empirical relationships among magnitude, rupture length,rupture width,rupture area,and surface displacement[J], Bull.Seism.Soc.Am.84,974–1002.
    [151] XJ Li, ZH Zhou, HY Yu et al(2008). Strong motion observations and recordings from the great Wenchuan earthquake[J], Earthquake Engineering and Engineering Vibration, No.7 (3), 235-246
    [152] Zeng, Y., and C. H. Chen (2001). Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, earthquake [J], Bull. Seism. Soc. Am. 91, 1088–1098.
    [153] Zhang W.B.,Iwata,T.,Irikura,K.,et al.(2003).Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi,Taiwan,earthquake[J].J.Geophys. Res., 108(B5), 2232.
    [154] Zhang W.B.,Iwata,T.,Irikura,K.,et al.(2004).Dynamic rupture process of the 1999 Chi-Chi,Taiwan, Earthquake [J].Geophys.Res.Lett., 31,L10 605

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700