斑马鱼Tol2转座子介导的基因捕获及foxj1基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑马鱼胚胎的早期发育过程是一个复杂的生物学过程,有多条信号通路及通路中的众多关键基因参与并调控着胚胎发育的全过程。通过大规模化学诱变(ENU诱变)和反转录病毒插入诱变,已经筛选到很多斑马鱼胚胎发育的突变体,揭示了一批相关基因的功能。
     本论文的研究是利用Tol2转座子介导的基因捕获的方法产生GFP表达特异的转基因鱼家系,并筛选斑马鱼胚胎早期发育的突变体,继而分析相关突变基因在胚胎发育过程中可能的功能。
     本研究中共筛选到45个转基因鱼家系,其中一些转基因鱼家系胚胎的GFP的表达在发育过程中呈现出一定的时空特异性。但其胚胎并没有明显的突变表型。
     TZBGS010转基因鱼家系的荧光分布具有一定的特异性,胚胎受精后24小时时GFP荧光主要集中在嗅窝,耳泡,神经底板和肾管中。TAIL-PCR分析表明,在该转基因鱼家系中转座子所捕获的基因为foxj1b基因。
     Foxj1是一个转录因子,已有研究报道表明,其在脊椎动物中Foxj1与系统性自身免疫和纤毛的生成有关。斑马鱼的基因组表达两个foxj1同源基因,foxj1a和foxj1b。在我们的研究工作中,通过在单细胞时期注射morpholino抑制foxj1a或foxj1b表达会导致早期的左右不对称的标志性基因lefty2, southpaw, pitx2c和后期的内部器官的标志性基因tpm4-tv1, cmlc2, cp等表达出现随机分布。通过注射体外合成的mRNA过量表达foxj1a或foxj1b同样会扰乱胚胎正常的左右不对称发育。
     这些结果表明,在斑马鱼的胚胎发育中两个foxj1基因对于正常的左右不对称发育是必须的。不同于foxj1b,在背部前驱细胞中特异将foxj1a敲除,也会使得左右不对称的标志性基因表达出现随机分布的情况。因此,foxj1a通过背部前驱细胞以细胞自主性调控的方式调节左右不对称发育而foxj1b基因的作用则是非自主性的。
The early embryonic development of zebrafish is a complicated biological process, which involves many key genes and regulating signal pathways.And the mutant screening in large scale in zebrafish by traditional chemical mutagenesis (ENU) and retrovirus insertional mutagenesis have already generated many mutants in zebrafish and implied many functions of the related genes.
     In our study, we utilized Tol2 transposon mediated-gene trap method to generate some transgenic fish families in which the GFP expression was specific in some organs or tissues.We also screened for mutant phenotypes in those offspring embryos, and analyzed possible functions of the mutated genes.
     45 transgenic fish lines have been generated, and the embryos in some families expressed GFP specifically.However, we did not find any mutants in those offspring embryos.
     The GFP expression in TZBGS010 transgenic fish family is specific in olfactory pits, otic vesicle, floor plate and the pronephic ducts at 24 hpf. TAIL-PCR analysis showed that the gene trapped by Tol2 transposon in this transgenic family was foxj1b gene.
     The HNF-3/HFH-4/Foxj1, a transcription factor, has been reported to be involved in systemic autoimmunity and cilia genesis in vertebrates. The zebrafish genome expressed two paralogous foxj1 genes, foxj1a and foxj1b. In this study, we demonstrate that down-regulation of either foxj1a or foxj1b by injecting antisense morpholino at the one-cell stage results in randomized expression of the early left-right (LR) asymmetric markers lefty2, southpaw,pitx2c and the later internal organ markers tpm4-tv1, cmlc2, cp in zebrafish embryos. Overexpression of foxj1a and foxj1b by injecting synthetic mRNAs in vitro also disrupts normal LR asymmetries in zebrafish embryos.
     These data indicate that the two foxj1 genes are required for normal laterality development in zebrafish embryos. In contrast to foxj1b knockdown exclusively in dorsal forerunner cells (DFCs) that has little effect on laterality, foxj1a knockdown in DFCs randomizes the LR patterns of the markers. Thus, foxj1a regulates asymmetric development through DFCs in a cell-autonomous fashion but foxj1b functions in a non cell-autonomous way.
引文
Aamar, E. and Dawid, I.B., 2008. Isolation and expression analysis of foxj1 and foxj1.2 in zebrafish embryos. Int. J. Dev. Biol. 52, 985-991.
    Adachi, H., Saijoh, Y., Mochida, K., Ohishi, S., Hashiguchi, H., Hirao, A., and Hamada, H., 1999. Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes Dev. 13, 1589-1600.
    Albertson, R.C. and Yelick, P.C., 2005. Roles for fgf8 signaling in left-right patterning of the visceral organs and craniofacial skeleton. Dev. Biol. 283, 310-321.
    Amack, J.D., Wang, X., and Yost, H.J., 2007. Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish. Dev. Biol. 310, 196-210.
    
    Amack, J.D. and Yost, H.J., 2004. The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr. Biol. 14, 685-690.
    Amsterdam, A. and Hopkins, N., 2004. Retroviral-mediated insertional mutagenesis in zebrafish. Methods Cell Biol. 77, 3-20.
    Amsterdam, A. and Hopkins, N., 2006. Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 22, 473-478.
    Avraham, K.B., Fletcher, C., Overdier, D.G., Clevidence, D.E., Lai, E., Costa, R.H., Jenkins, N.A., and Copeland, N.G., 1995. Murine chromosomal location of eight members of the hepatocyte nuclear factor 3/fork head winged helix family of transcription factors. Genomics 25, 388-393.
    Beckers, A., Alten, L., Viebahn, C., Andre, P., and Gossler, A., 2007. The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left right patterning. Proc. Natl. Acad. Sci. U. S. A 104, 15765-15770.
    Bisgrove, B.W., Snarr, B.S., Emrazian, A., and Yost, H.J., 2005. Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left-right axis. Dev. Biol. 287, 274-288.
    Blatt, E.N., Yan, X.H., Wuerffel, M.K., Hamilos, D.L., and Brody, S.L., 1999. Forkhead transcription factor HFH-4 expression is temporally related to ciliogenesis. Am. J. Respir. Cell Mol. Biol. 21, 168-176.
    Brody, S.L., Yan, X.H., Wuerffel, M.K., Song, S.K., and Shapiro, S.D., 2000. Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am. J. Respir. Cell Mol. Biol. 23,45-51.
    Choi, V.M., Harland, R.M., and Khokha, M.K., 2006. Developmental expression of FoxJ1.2, FoxJ2, and FoxQ1 in Xenopus tropicalis. Gene Expr. Patterns. 6, 443-447.
    Cooper, M.S. and D'Amico, L.A., 1996. A cluster of noninvoluting endocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation. Dev. Biol. 180, 184-198.
    D'Amico, L.A. and Cooper, M.S., 1997. Spatially distinct domains of cell behavior in the zebrafish organizer region. Biochem. Cell Biol. 75, 563-577.
    Davidson, A.E., Balciunas, D., Mohn, D., Shaffer, J., Hermanson, S., Sivasubbu, S., Cliff, M.P., Hackett, P.B., and Ekker, S.C., 2003. Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev. Biol. 263, 191-202.
    Dickmeis, T., Aanstad, P., Clark, M., Fischer, N., Herwig, R., Mourrain, P., Blader, P., Rosa, F., Lehrach, H., and Strahle, U., 2001. Identification of nodal signaling targets by array analysis of induced complex probes. Dev. Dyn. 222, 571-580.
    Dosch, R., Wagner, D.S., Mintzer, K.A., Runke, G., Wiemelt, A.P., and Mullins, M.C., 2004. Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev. Cell 6, 771-780.
    Emelyanov, A., Gao, Y., Naqvi, N.I., and Parinov, S., 2006. Trans-kingdom transposition of the maize dissociation element. Genetics 174, 1095-1104.
    Essner, J.J., Amack, J.D., Nyholm, M.K., Harris, E.B., and Yost, H.J., 2005. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132, 1247-1260.
    Essner, J.J., Branford, W.W., Zhang, J., and Yost, H.J., 2000. Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 127, 1081-1093.
    Fadool, J.M., Hartl, D.L., and Dowling, J.E., 1998. Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proc. Natl. Acad. Sci. U. S. A 95, 5182-5186.
    Feldmar, S. and Kunze, R., 1991. The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. EMBO J. 10, 4003-4010.
    Golling, G., Amsterdam, A., Sun, Z., Antonelli, M., Maldonado, E., Chen, W., Burgess, S., Haldi, M., Artzt, K., Farrington, S., Lin, S.Y., Nissen, R.M., and Hopkins, N., 2002. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet. 31, 135-140.
    Gomperts, B.N., Gong-Cooper, X., and Hackett, B.P., 2004. Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J. Cell Sci. 117, 1329-1337.
    Gomperts, B.N., Kim, L.J., Flaherty, S.A., and Hackett, B.P., 2007. IL-13 regulates cilia loss and foxj1 expression in human airway epithelium. Am. J. Respir. Cell Mol. Biol. 37, 339-346.
    Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., and Nusslein-Volhard, C., 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1-36.
    Huang, T., You, Y., Spoor, M.S., Richer, E.J., Kudva, V.V., Paige, R.C., Seiler, M.P., Liebler, J.M., Zabner, J., Plopper, C.G., and Brody, S.L., 2003. Foxj1 is required for apical localization of ezrin in airway epithelial cells. J. Cell Sci. 116, 4935-4945.
    Kawakami, K., 2004. Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol. 77, 201-222.
    Kawakami, K., 2007. Tol2: a versatile gene transfer vector in vertebrates. Genome Biol. 8 Suppl 1, S7.
    Kawakami, K., Shima, A., and Kawakami, N., 2000. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc. Natl. Acad. Sci. U. S. A 97, 11403-11408.
    Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., and Mishina, M., 2004. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133-144.
    Kishimoto, Y., Koshida, S., Furutani-Seiki, M., and Kondoh, H., 2004. Zebrafish maternal-effect mutations causing cytokinesis defect without affecting mitosis or equatorial vasa deposition. Mech. Dev. 121, 79-89.
    Koga, A. and Hori, H., 2001. The Tol2 transposable element of the medaka fish: an active DNA-based element naturally occurring in a vertebrate genome. Genes Genet. Syst. 76, 1-8.
    Koga, A., Suzuki, M., Inagaki, H., Bessho, Y., and Hori, H., 1996. Transposable element in fish. Nature 383, 30.
    Koga, A., Wakamatsu, Y., Kurosawa, J., and Hori, H., 1999. Oculocutaneous albinism in the i6 mutant of the medaka fish is associated with a deletion in the tyrosinase gene. Pigment Cell Res. 12, 252-258.
    Kotani, T. and Kawakami, K., 2008. Misty somites, a maternal effect gene identified by transposon-mediated insertional mutagenesis in zebrafish that is essential for the somite boundary maintenance. Dev. Biol. 316, 383-396.
    Kotani, T., Nagayoshi, S., Urasaki, A., and Kawakami, K., 2006. Transposon-mediated genetrapping in zebrafish. Methods 39, 199-206.
    Kramer-Zucker, A.G., Olale, F., Haycraft, C.J., Yoder, B.K., Schier, A.F., and Drummond, I.A., 2005. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132, 1907-1921.
    Lai, E., Clark, K.L., Burley, S.K., and Darnell, J.E., Jr., 1993. Hepatocyte nuclear factor 3/fork head or "winged helix" proteins: a family of transcription factors of diverse biologic function. Proc. Natl. Acad. Sci. U. S. A 90, 10421-10423.
    Lin, L., Spoor, M.S., Gerth, A.J., Brody, S.L., and Peng, S.L., 2004. Modulation of Th1 activation and inflammation by the NF-kappaB repressor Foxj1. Science 303, 1017-1020.
    Mercola, M., 2003. Left-right asymmetry: nodal points. J. Cell Sci. 116, 3251-3257.
    Miskey, C., Izsvak, Z., Plasterk, R.H., and Ivics, Z., 2003. The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res. 31, 6873-6881.
    Nagayoshi, S., Hayashi, E., Abe, G., Osato, N., Asakawa, K., Urasaki, A., Horikawa, K., Ikeo, K., Takeda, H., and Kawakami, K., 2008. Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135, 159-169.
    Nonaka, S., Shiratori, H., Saijoh, Y., and Hamada, H., 2002. Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418, 96-99.
    Nonaka, S., Tanaka, Y., Okada, Y., Takeda, S., Harada, A., Kanai, Y., Kido, M., and Hirokawa, N., 1998. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829-837.
    Norris, D.P. and Robertson, E.J., 1999. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev. 13, 1575-1588.
    Okada, A., Ohta, Y., Brody, S.L., Watanabe, H., Krust, A., Chambon, P., and Iguchi, T., 2004. Role of foxj1 and estrogen receptor alpha in ciliated epithelial cell differentiation of the neonatal oviduct. J. Mol. Endocrinol. 32, 615-625.
    Pan, J., You, Y., Huang, T., and Brody, S.L., 2007. RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1. J. Cell Sci. 120, 1868-1876.
    Parinov, S., Kondrichin, I., Korzh, V., and Emelyanov, A., 2004b. Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev. Dyn. 231, 449-459.
    Parinov, S., Kondrichin, I., Korzh, V., and Emelyanov, A., 2004a. Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev. Dyn. 231,449-459.
    Patton, E.E. and Zon, L.I., 2001. The art and design of genetic screens: zebrafish. Nat. Rev. Genet. 2, 956-966.
    Pelegri, F., 2003. Maternal factors in zebrafish development. Dev. Dyn. 228, 535-554.
    Pelegri, F., Dekens, M.P., Schulte-Merker, S., Maischein, H.M., Weiler, C., and Nusslein-Volhard, C., 2004. Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Dev. Dyn. 231, 324-335.
    Pohl, B.S. and Knochel, W., 2004. Isolation and developmental expression of Xenopus FoxJ1 and FoxK1. Dev. Genes Evol. 214, 200-205.
    Postlethwait, J.H., Johnson, S.L., Midson, C.N., Talbot, W.S., Gates, M., Ballinger, E.W., Africa, D., Andrews, R., Carl, T., Eisen, J.S., and ., 1994. A genetic linkage map for the zebrafish. Science 264, 699-703.
    Raya, A. and Belmonte, J.C., 2006. Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nat. Rev. Genet. 7, 283-293.
    Raya, A. and Belmonte, J.C., 2004. Sequential transfer of left-right information during vertebrate embryo development. Curr. Opin. Genet. Dev. 14, 575-581.
    Raz, E., van Luenen, H.G., Schaerringer, B., Plasterk, R.H., and Driever, W., 1998. Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr. Biol. 8, 82-88.
    Rebagliati, M.R., Toyama, R., Fricke, C., Haffter, P., and Dawid, I.B., 1998. Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev. Biol. 199, 261-272.
    Ryan, A.K., Blumberg, B., Rodriguez-Esteban, C., Yonei-Tamura, S., Tamura, K., Tsukui, T., de la, P.J., Sabbagh, W., Greenwald, J., Choe, S., Norris, D.P., Robertson, E.J., Evans, R.M., Rosenfeld, M.G., and Izpisua Belmonte, J.C., 1998. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394, 545-551.
    Shu, X., Huang, J., Dong, Y., Choi, J., Langenbacher, A., and Chen, J.N., 2007. Na,K-ATPase alpha2 and Ncx4a regulate zebrafish left-right patterning. Development 134, 1921-1930.
    Stubbs, J.L., Oishi, I., Izpisua Belmonte, J.C., and Kintner, C., 2008. The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat. Genet. 40, 1454-1460.
    Tamakoshi, T., Itakura, T., Chandra, A., Uezato, T., Yang, Z., Xue, X.D., Wang, B., Hackett, B.P., Yokoyama, T., and Miura, N., 2006. Roles of the Foxj1 and Inv genes in the left-right determination of internal organs in mice. Biochem. Biophys. Res. Commun. 339, 932-938.
    Urasaki, A., Asakawa, K., and Kawakami, K., 2008. Efficient transposition of the Tol2 transposableelement from a single-copy donor in zebrafish. Proc. Natl. Acad. Sci. U. S. A 105, 19827-19832.
    Wagner, D.S., Dosch, R., Mintzer, K.A., Wiemelt, A.P., and Mullins, M.C., 2004. Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev. Cell 6, 781-790.
    Yu, X., Ng, C.P., Habacher, H., and Roy, S., 2008. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat. Genet. 40, 1445-1453.
    Zhang, M., Bolfing, M.F., Knowles, H.J., Karnes, H., and Hackett, B.P., 2004. Foxj1 regulates asymmetric gene expression during left-right axis patterning in mice. Biochem. Biophys. Res. Commun. 324, 1413-1420.
    Zhao, L., Zhao, X., Tian, T., Lu, Q., Skrbo-Larssen, N., Wu, D., Kuang, Z., Zheng, X., Han, Y., Yang, S., Zhang, C., and Meng, A., 2008. Heart-specific isoform of tropomyosin4 is essential for heartbeat in zebrafish embryos. Cardiovasc. Res. 80, 200-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700