回料流和二次风射流对循环流化床流动与燃烧特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床(CFB)燃烧技术是一种适合我国以煤为主的能源结构的低成本清洁燃烧技术,在近年得到较快的发展。由于循环流化床内气固流动的复杂性,目前对于在回料流和二次风射流等因素作用下提升管内的气固流动特性还缺乏系统研究,而且现有的研究大多局限于圆形截面的流化床,对于矩形或方形截面流化床的流动特性还需要进行更深入的研究。作者设计和建立了一套方形循环流化床冷态试验系统,研究了回料气固两相流和二次风射流的流动特性及其对提升管整体和局部流动特性的影响。通过数值模拟的方法,更好地认识了不同形式二次风射流作用下提升管内气固流动特性。在此基础上,通过对一台440t/h燃用低挥发份贫煤的循环流化床锅炉进行的系统分析和相关燃烧优化实验,考察了回料流与二次风射流对循环流化床锅炉炉内气固混合及燃烧情况的影响。
     采用压力梯度测量,光纤探针技术对颗粒浓度及速度的测量,以及射流气体示踪实验等手段研究了方形循环流化床提升管气固流动特性的影响因素。结合回料流和主流流动形式来分析床层底部流动的不对称分布以及因此造成的对床层中上部区域气固流动的影响。研究了在实验物料中加入部分粗大颗粒改善底部一次风偏流的现象。研究了不同颗粒循环流率下,回料口高度的不同对系统压力梯度分布和局部颗粒浓度分布的影响,同时还分析了空气分级条件下回料口高置所产生的影响。
     系统地研究了不同形式二次风射流,包括墙式、角式、中心水平杆式和中心竖直柱式布置二次风对床内气固流动的影响,以及射流在床内的扩散与分布。在进行空气分级之后,床层底部由于一次风速的降低以及二次风射流形成的布幕作用而形成较高浓度的密相区。不同形式的二次风射流附近存在不同的颗粒浓度分布,当射流距离布风板较近时还将影响到底部颗粒浓度的分布。实验发现,气体饱和夹带流率随二次风率的增加而降低,随二次风高度的增加而减少。当系统颗粒循环流率超过空气分级下系统饱和夹带流率时,系统压力梯度趋于呈S形分布,底部压力梯度将不再变化,密相区高度随颗粒循环流率的增加而提高,其底部压力梯度大小主要同底部流化风速有关。在添加粗砂颗粒的空气分级工况下,粗大颗粒在床层底部颗粒群中占有更高的比例,而在上部区域及出口颗粒群中则降低了。本文还利用分形分析的手段研究了二次风射流对提升管局部和整体流动的波动特性的影响。
     利用气体示踪技术,对回料风和二次风射流在床内的扩散与分布进行了测量,提出改进的提升管内水平墙式二次风射流穿透深度的计算模型,模型预测值同实验结果吻合较好。
     采用双流体模型对所研究的冷态方形循环流化床实验台部分工况的气固流动进行了模拟。计算结果同实验数据在趋势上吻合较好。这些工作有助于我们更深入地了解射流对床内整体和局部气固流动的影响。
     在一台440t/h超高压循环流化床锅炉上进行了回料流及二次风射流对床内气固混合和燃烧情况的影响的研究,研究了一二次风比例、二次风上中下三层之间分配、二次风前后墙之间分配,减小二次风管径提高二次风速度以及调整床温、床压和氧气浓度等方法对飞灰含碳量的影响规律,为提高低挥发分煤循环流化床锅炉燃烧效率提供了借鉴。
As a low-cost and effective clean combustion technology, circulating fluidized bed (CFB) combustion technology has been developed greatly. Due to the complexity of gas-solid flow field in the bed, both the effects of return gas-solid flow and secondary air (SA) injection on the hydrodynamics of riser are not fully understood, especially when the riser cross-section is square or rectangular. By the experiments on a square cold circulating fluidized bed model and the numerical simulation, detailed study has been performed on the return gas-solid flow and the SA injection as well as the hydrodynamics in the riser. Furthermore, some optimization combustion tests were done on a 440t/h CFB boiler to evaluate the effects of return gas-solid flow and SA distribution on the coal combustion in the bed.
     By pressure drop analysis, local solids concentration and particle velocity distribution measurement and jet's dispersion tracing, the hydrodynamics of the square riser has been researched on a cold CFB model. When the CFB system was operated without air-staging, the thesis focused on the heterogeneous gas-solid distribution in the bed. The back feeding particles penetrate the gas-solid stream in the bed and get to front wall, which leads to a relatively denser region near the front wall in the bottom bed. More work has been done on the effects of gas velocity (U0) and solids circulation rate (Gs) on the asymmetry of solids concentration and particle velocity distribution in the riser. Adding some coarse particles into the bed material makes the lateral distribution of solids more symmetrical. With constant gas velocity, the solids circulation rate was taken as a variable to research the flow properties in the bed with different solids inlet height. Similar work was performed when the air-staging was adopted.
     Four SA injection modes have been investigated in the paper, i.e. traditional wall SA, corner SA, internal SA with a horizontal SA duct and internal SA with a vertical SA duct. A denser bottom zone is formed when the primary air was reduced and some up-rising solids deflected to the lower bed by the cut-off effects of SA jets. SA jets has limited influenced region especially when the SA nozzles are far away from the distributor. When the Gs is beyond the saturation carrying capacity of gas with air-staging, the pressure drop at the bottom bed doesn't change any more and S shaped pressure drop profile along the riser is formed, no matter what SA mode is used. When the coarse particle is added into the CFB system, higher coarse particle fraction is found in the bottom bed for the case of air-staging, while the coarse particle fraction in the external circulating particles decreases.
     Using CO2 as tracer, the dispersion of loop-seal fluidizing air and SA jets have investigated combined with the local solids concentration distribution. A modified model for calculating the SA jet's penetration is developed when the core-annulus gas-solid flow field is considered. The predicted value by the model has good agreement with the experimental results.
     The dynamic behavior of gas-solid flow in the experimental CFB setup is predicted based on the theory of Euler-Euler gas-solid two-phase flow and the kinetic theory of granular flows. The simulation includes the operation case with air-staging and without air-staging. The SA modes include Wall SA, Corner SA and Internal SA. The simulation results are in agreement with the experimental results qualitatively.
     Some optimizing tests were performed on a 440t/h CFB boiler to get more information about the effects of return gas-solid flow and SA injection on the flow properties and coal combustion in a CFB boiler. Some operating parameters have been chosen for combustion optimization, e.g. the loading rate, coal characteristics, oxygen component in the flue gas, SA rate, SA distribution along the riser and distribution between the front wall and the rear wall. Smaller SA nozzles were adopted to enhance the SA jet's penetration for increasing the oxygen concentration in the central region of furnace, which is beneficial for the char burn-out.
引文
1金涌,祝京旭,汪展文等.流态化工程原理.清华大学出版社.2001:56~214
    2 J. X. Zhu, H. T. Bi. Distinction Between Low Density and High Density Circulating Fluidized Beds. Can. J. Chem. 1995, 73(5): 644~649
    3 J. Werther. Fluid Mechanics of Large-sacle CFB Units. Circulating Fluidized Bed Technology IV. AIChe. 1994, New York: 34~54
    4齐海江,王宇奇.我国发电能源结构分析.科技与管理. 2004, (2):27~30
    5岑可法,倪明江等.循环流化床锅炉理论设计与运行.中国电力出版社, 1998:14~23
    6李军,卢啸风.大型循环流化床燃烧技术的最新进展.电站系统工程, 2004, 20:1~4
    7骆仲泱,何宏舟,王勤辉,岑可法.循环流化床锅炉技术的现状及发展前景.动力工程. 2004, 24(6): 761~767
    8 G. X. Yue, H. R. Yang, J. F. Lu, H. Zhang. Latest Development of CFB Boilers in China. The 20th International Conference on Fluidized Bed Combustion,Tsinghua University Press and Springer. 2009: 1~12
    9 Y. Jin, Z. Yu, J.X. Zhu. Novel Configurations and Variants of Circulating Fluidized Bed. Blackie Academic and Professional, 1997, London: 203-212
    10 S.J. Goidich. Foster Wheeler Compact CFB Boilers for Unility Scale. Proceedings of 16th International Conference on Fluidized Bed Combustion, New York: ASME, 2001: 4~5
    11 Ari Kokko. CYMIC-Boiler Scale-Up and Full Scale Demonstration Experiences. Fluidized Bed Combustion, ASME. 1995, (1): 212~213
    12 Murat, Koksal. Gas Mixing and Fow Dynamics in Circulating Fludized Bed with Secondary Air Injection. Canada. Dissertation of Dalhousie University.2001: 23-24
    13 A. Fahad, Al-Sherehy, Distributed Addition of Gaseous Reactants in Fluidized eds. UK. Dissertation of University of Salford, 2002:14~16
    14高继慧,高继录,陈晓利,龚泽儒,高建民,刘加勋.复合喷动烟气净化工艺气固主反应区段脱硫特性.化工学报. 2008,59(2):461-466.
    15 B. Leckner. Fluidized Bed Combustion: Mixing and Pollutant Limitation. Progress in Energy and Combustion Science. 1998, 24(1):31~61
    16何宏舟,骆仲泱,岑可法.影响福建无烟煤在CFB锅炉中燃尽的若干因素.动力工程. 2006,26(3):359~364
    17 G. Afsin, E. Nurdil, Hydrodynamic Modeling of Circulating Fluidized Bed. Powder Technology, 2007,172(1): 1~13
    18赫俏,陆继东,张新文.循环流化床流动特性分析.燃烧科学与技术. 1999 5(3):325-330
    19 A.K. Sharma, K. Tuzla, J. Matsen, J.C. Chen, Parametric Effects of Particle Size and Gas Velocity on Cluster Characteristics in Fast Fluidized Beds. Powder Technol. 2000,111:114~122
    20 M.J. Rhodes, M. Sollaart, X.S.Wang. Flow Structure in A Fast Fluid Bed. Powder Technol. 1998,99:194~200
    21 L.W. Bolton, J.F. Davidson. Recirculating of Particles in Fast Fluidized Risers. Circulating Fluidized Bed Technology. II. Pergamon, Oxford,1998: 139~146
    22 D. R. Bai, E. Shibuya, Masuda Y, N. Nakagawa, K. Kato. Flow Structure in a Fast Fluidized Bed. Chem. Eng.Sci. 1996,51:957~966
    23 F. Johnsson, A. Svensson, B. Leckner. Fluidization Regimes in Circulating Fluidized Bed Boilers. Fluidization VII, Engineering Foundation, New York,1992:471-478
    24 J. Werther. Fluid Mechanics of Large-scale CFB Units. Circulating Fluidized Bed Technology IV. AIChe, New York, 1994:1-4
    25 P. Schlichthaerle, J. Werther. Axial Pressure Profiles and Solids Concentration Distribution in the CFB Bottom Zone. Chem. Eng. Science. 1999, 54(22):5485~5493
    26 S. Malcus, G. Chaplin, T. Pugsley. The Hydrodynamics of The High Density Bottom Zone in A CFB Riser Analyzed by Means of Electrical Capacitance Tomography (ECT). Chem. Eng.Sci. 2000,55:4129~4138
    27 J. Yerushalmi, D. H. Tuner, A. M. Squires. Process Design Development, Ind. Eng. Chem.1976,15:47~5
    28 J. H. Li, M. Kwauk. Axial Voidage Profile of Fluidized Bed in Different Operating Regions. Circulating Fluidized Bed Technology. II. Pergamon, Oxford,1998: 193~203
    29 J. R. Grace, Trout. A Theory of Cluster Formation in Vertically Conveyed Suspension of Intermediate Density. Trans. Int. Chem. E. 1979,57:49~54
    30 S. L. Soo. Gas-solid System, Handbook of Multiphase Systems, Hemisphere, Washington, D.C.,1982
    31 J. M. Masten. Mechanisms of Choking and Entrainsment. Powder Technol.32(2):21~33
    32 H. T. Bi, J. X. Zhu, Y. Jin, Z.Q. Yu. Forms of Particle Aggregations in CFB. Proceeding of 6th Chinese National Conf. on Fluidization, Wuhan, China, 1993:162~167
    33 J. H. Li, L. X. Wen, G. H. Qian, H. P. Cui, M. Kwauk. Structure Heterogeneity, Regime Multiplicity and Nonlinear Behavior in Particle-fluid Systems. Chem.Eng.Sci.1996,51:2693~2698
    34 M.G. Schnitzlein, H. Weinstein. Flow Characterization in High Velocity Fluidization Using Pressure Fluctuation. Chem. Eng. Sci. 1988,43:2605~2614
    35 D. R. Bai, Y. Jin, Z.Q. Yu, J. X. Zhu. The Axial Distribution of the Cross -sectionally Average Voidage in Fast Fluidized Beds. Powder Technol. 1992,71:51~58
    36 F. Berruti, J. CHaouki, L. Godfroy, T. S. Pugslet, G.S. Patience. Hydrodynamics of CFB, Canadian J. of Chem. Eng.1995,73:579~602
    37黄卫星,易彬,杨颖,循环床气固提升管中颗粒浓度的轴向分布.四川大学学报. 2000,32(6):38~41
    38 D. Bai, K. Kato. Saturation Carrying Capacity of Gas and Flow Regimes in CFB. Journal of Chemical engineering of Japan. 1995, 28:179~185
    39黄卫星,肖泽仪,石炎福,祝京旭.气固两相上行流颗粒加速行为的研究.化学反应与工艺. 2001,17(2):38-41
    40 W. Zhang, Y. Tung, J.E. Johnsson. Radial Voidage Profiles in Fast Fludized Beds of Different Diameters. Chem. Eng. Sci. 1991,46:3045~3052
    41 F. Wei, H. F. Lin, Y. Cheng. Profiles of Particle Velocity and Solids Fraction in a High Density Riser. Powder Technol. 1998,100:183~189
    42 A. S. Issagya, J. R. Grace, D. R .Bai, J. X. Zhu. Radial Voidage Variation in CFB Risers. Can. J. of Chem. Eng. 2001,79:279~286
    43 E. U. Hartge, D. Rensner, and J. Werther. Solids Concentration and Velocity Patterns in Circulating Fluidized Beds. Circulating Fluidized Bed Technology II. Pergamon Press, Oxford,1988,165~180
    44白丁荣,蒋大洲,金涌,俞芷青.循环流化床颗粒内循环流动结构的实验研究.第六届全国流态化文集. 1993,1~7
    45钱诗智,陆继东,黄素华等.循环流化床壁面的几何结构对床层气固流动特性的影响.化工学报. 1996,47(6):706~711
    46黄素华,陆继东,钱诗智.矩形平壁循环流化床冷态流动特性研究,热能动力工程. 1995,10(3):144~148
    47 J. Zhou, J. R. Grace, S. Qin, C.M.H. Brereton, C. J. Lim, J. X. Zhu. Voidage Profiles in a Circulating Fluidized Bed of Square Cross-section. Chem. Eng. Sci,1994, 49(9): 3217~3223
    48 J .Zhou, J. R. Grace, C. J. Lim, C.M.H. Brereton. Particle velocity Profiles in a Circulating Fluidized Bed riser of Square Cross-section. Chem. Eng. Sci, 1995,50(2): 237~244
    49 E.H. Van der Meer, R.B. Thorpe, J. F. Davidson. Flow patterns in the Square Cross-section Riser of a Circulating Fluidized Bed and the Effect of Riser Exit Design. Chem. Eng. Sci, 2000,55(19): 4079~4099.
    50马志刚,方梦祥,骆仲泱等.矩形截面流化床内颗粒运动可视化试验研究.中国电机工程学报. 2007, 27(14):24-30
    51马志刚.方梦祥.王勤辉等.矩形截面流化床内磨损特性的分析.中国电机工程学报. 2007,27(23):38~45
    52 A.T. Harris, J.F. Davidson , R.B. Thorpe. Particle Residence Time Distributions in Circulating Fluidized Beds. Chemical Engineering Science. 2003,58(11):2181~2202
    53 S.B. Schut, E.H. Vander Meer, J.F. Davidson, R.B. Thrope. Gas–solids Flow in the Diffuser of a Circulating Fluidized Bed Riser. Powder Technology. 2000,111:94~103
    54 Q. Lin, F. Wei, Y. Jin. Transient Density Signal Analysis and Two-phase Micro-structure Flow in Gas–solids Fluidization. Chemical Engineering Science. 56 (4):2179~2189
    55 D.T. Bai, N.Y. Nakagawa, E. Shibuya, H. Kinoshita, K. Kato,. Axial Distribution of Solids Holdups in Binary Solids Circulating Fluidized Beds. J. Chem. Eng. Japan. 1994, 27:271~275
    56 H. Bi, P. Jiang, R.H. Jean, L.S. Fan.. Coarse Particle Effects in a Multi-solid Circulating Fluidized Bed for Catalytic Reactions. Chem. Eng. Sci. 1992,47(12):3113~3124
    57 K. Ganesh Palappan, P.S.T. Sai. Studies on Segregation of Binary Mixture of Solids in a Continuous Fast Fluidized Bed Part I. Effect of Particle Density. Chemical Engineering Journal. 2008,138(1):358~366
    58 K. Ganesh Palappan, P.S.T. Sai. Studies on Segregation of Binary Mixture of Solids in Continuous Fast Fluidized Bed Part II. Effect of Particle Size. Chemical Engineering Journal. 2008,139(2):330~338
    59 K. Ganesh Palappan, P.S.T. Sai , Studies on Segregation of Binary Mixture of Solids in Continuous Fast Fluidized Bed Part III. Quantification ofPerformance of the Segregator. Chemical Engineering Journal. 2008, 145(1): 100~111.
    60卢侃,孙建华,欧阳容百,黄来友,混沌动力学.上海翻译出版公司. 1990
    61陈宇思,唐云.非线性动力学中的现代分析方法.科学出版社. 1992
    62王东升,曹磊.混沌、分形及其应用.中国科学技术大学出版社. 1993
    63刘式达等.分形和分维引论.气象出版社. 1993
    64董连科.分形动力学.辽宁科学技术出版社. 1994
    65刘宗华编,混沌动力学基础及其应用,高等教育出版社,2006:67-68
    66赵贵兵,阳永荣.流化床压力波动多尺度多分形特征.高校化学工程学报. 2003,17(6): 648~654
    67程易.气固两相流动数值模拟及其非线性动力学分析.清华大学博士学位论文. 2003: 130-139
    68 D.T. Bai, E. Shibuya, N.Y. Nakagawa and K. Kato. Fractal Characteristics of Gas-solids Flow in a Circulating Fluidized Bed. Powder Technology. 1997,90:205~212
    69 Y. Cheng, F. Wei, G.Q. Yang, Y. Jin. Inlet and Outlet Effects on Flow Patterns in Gas-solid Risers. Powder Technol. 1998,98(8) :151~158
    70 A.J. Yan, J.H. Parssinen, J.X. Zhu. Flow Properties in the Entrance and Exit Regions of a High-flux Circulating Fluidized Bed Riser. Powder Technology. 2003,11:256~263
    71 J.D. Wilde, G.V. Engelandt, G.J. Heynderickx, and G.B. Arin. Gas-solids Mixing in the Inlet Zone of a Dilute Circulating Fluidized Bed [J]. Powder Technology. 2005,151:96~116
    72张立强,马春元,宋占龙,马鸿良,潘光,张淼.循环流化床回流物料循环的特性.化学工程. 2008,36(6):22~25
    73 P. Schlichthaerle, J. Werther. Axial Pressure Profiles and Solids Concentration Distribution in the CFB Bottom Zone. Chem. Eng. Science. 1999, 54:5485~5493
    74李艳平.循环流化床脱硫反应器流动特性的实验研究与数值模拟.天津大学博士学位论文. 2005:30~37
    75 L. Chen and H. Weinstein. Shape and Extend of the Void Formed by a Horizontal Jet in a fluidized bed. AICHE. 1993, 39(12):1901~1909
    76 J.G. Copan, M. Sc. Macroscopic Modeling of a Fluidized Bed Coker and Experimental Studies of One and Two-Phase Jets. Dissertation of University of Saskathewan (Canada). 2001:1~30
    77 C. Xuereb, C. Laguerie. Behavior of Continuous Horizontal or Inclined Jets in a Bed Fluidized by Gas. Part 2: Gas Velocity Profiles in a Horizontal Jet. Powder Technology.1991,64(3):271~283
    78 J.M.D. Merry. Penetration of a Horizontal Gas Jet into a Fluidized bed. Trans. Inst. Chem. Eng. 1971, 49(2):189~195
    79 V.A. Basov, V.I. Markevka, V.I. Melik-Akhnazarov, Investigation of the structure of a nonuniform fluidized bed. Int. Che. Eng., 1969, 9:263~269
    80 N.A. Shakhova, G.A. Minayev. Aerodynamics of Jets Discharge into Fluidized Beds. Heat Transfer-Sov. 1972, 4(1):133~142
    81 F.A. Zenz. Bubble Formation and Grid Design. Inst. Chem. Eng. Symp. 1968, 30 (2):136~139
    82李海滨,王洋,张海生.流化床中侧向射流穿透深度的研究.化学反应工程与工艺. 1995,11(2):198~202
    83 V. Tossavainen, R. Karvinen; M. Ylitalo, Modeling air jet penetration into gas-particle suspension cross flow, Proceedings of the International Conference on Fluidized Bed Combustion, 2003:215-220
    84 L.E. Ersoy, M.R. Golriz, M. Koksal, F. Hamdullahpur, S.N.C. Lavalin. Circulating Fluidized Bed Hydrodynamics with Air-Staging: an Experimental Study. Powder Technology. 2004,145(5):25~145
    85 Murat Koksal. CFD Simulation of the Gas-solid Flow in the Riser of a Circulating Fluidized Bed with Secondary Air Injection. Chem. Eng. Comm. 2005,192(2): 1151~1179
    86 J.H. Kim, K. Shakourzadeh. Analysis and Modeling of Solid Flow in a Closed Loop Circulating Fluidized Bed with Secondary Air Injection. Powder Technology. 2000,111(3):179~185
    87 A. Marzocchella and U. Arena. Hydrodynamics of a Circulating Fluidized Bed Operated with Different Secondary Air Injection Devices. Powder Technology. 1996,87:185~191
    88 J. Zhou, J.R. Grace, C.J. Lim and C.M.H. Brereton. Particle Velocity Profiles in a Circulating Fluidized Bed Riser of Square Cross-section. Chemical Engineering Science. 1995,50:237~244
    89马志刚,方梦祥,王勤辉,骆仲侠,岑可法.二次风对矩形流化床内磨损特性的影响分析.燃烧科学与技术. 2008,14(3):227~232
    90刘佳,陈继辉,卢啸风,刘汉周.循环流化床锅炉二次风射流特性的冷模实验研究.电站系统工程. 2007,23(3):11~14
    91 K. Savolainen, R. Karvinen. Experimental and Numerical Studies of Particle Turbulence Interaction and Jet Penetration in Gas-particle Flow. Advances inFluid Mechanics, Computational Methods in Multiphase Flow. 2001,29: 87~96
    92 B. Ljungdahl, B. Zethrnus. Air Jet Penetration into Circulating Fluidized Bed Risers-A Simplified Model Approach, Proceeding of 5th Int. Conf. On Circulating Fluidized Beds. Beijing. 1996:DGS31 ~ DGS36
    93杨建华,杨海瑞,岳光溪.循环流化床二次风射流穿透规律的试验研究.动力工程. 2008,28(4):510~513
    94 L.E. Ersoy. Effects of Secondary Air Injection on the Hydrodynamics of Circulating Fluidized Beds. Canada. Dissertation of Dalhousie University. 1998:141~154
    95 Namkung W, Kim S.D. Radial Gas Mixing in a Circulating Fluidized Bed. Powder Technol. 2000, 113(1):23-29
    96姜义道,于龙,左国华,于建文. 135 MW等级循环流化床锅炉运行状况研究.热力发电. 2004,32(12):29-32
    97李少华,王启民,肖显斌,杨海瑞.循环流化床锅炉飞灰残碳的生成及其处理.热能动力工程. 2007,22(1):52~56
    98张守玉,王文选,杨玉来,荆鹏飞,吕俊复,岳光溪.锅炉飞灰燃烧特性实验研究. 2003,26(4):65~68
    99邱燕,田茂诚,牛蔚然,程林.降低循环流化床锅炉飞灰含碳量的理论及其应用.热能动力工程. 2005,20(4):369~372
    100杨海瑞,肖显斌,王进伟,王宇,赵新木.循环流化床锅炉床压降对飞灰含碳量的影响.电站系统工程. 2005,21(3):13~14
    101王智微,孙献斌,吕怀安,张敏,肖平,高洪培.循环流化床锅炉飞灰再循环与燃烧效率关系的分析.电站系统工程. 2001, 17: 337-339
    102何宏舟.飞灰回燃对燃烧福建无烟煤CFB锅炉运行影响的研究.热能动力工程. 2006, 21(1): 53-57
    103黎永.循环流化床燃烧条件下焦碳反应性实验研究.清华大学博士论文. 2002:48~60
    104于广辉,路霁令,郭庆杰,岳光溪.循环流化床锅炉飞灰残碳生成机理研究.煤炭转化. 2000,23(3):19~25
    105 Sun Xian bin, Li Guang hua, Jiang Min hua. Study on Several Forward Tasks in the Technical Sector of CFB Boilers. Thermal Power Generation. 2005,34:1~6
    106李前宇,赵凯,米子德.双支腿循环流化床锅炉“翻床”问题研究[J].华北电力技术. 2007, (7): 43-47卿山,王华,青莹.降低循环流化床锅炉飞灰含碳量的工业实验研究.发电设备. 2005, (5):277-280
    108易彬.气固循环床提升管中的压力梯度与流动行为研究.四川大学硕士论文. 2001
    109 P.chlichthaerle, J. Werther. Axial Pressure Profiles and Solids Concentration Distribution in the CFB Bottom Zone. Chem. Eng. Science, 1999, 54(22):5485-5493
    110 Joachim Werther. Fluid Dynamics, Temperature and Concentration Fields in Large-scale CFB Combustors. Proceedings of the 8th International Conference on Circulating Fluidized Beds, 2005:4-16
    111漆小波.循环流化床提升管气固两相流动力学研究.四川大学博士学文论文. 2003
    112 Xiao Xianbin, Yang Hairui, Zhang Hai, Lu Junfu. Yue and Guangxi: Research on Carbon Content in Fly Ash from Circulating Fluidized Bed Boilers, Energy and Fuels. 2005, 19:1520-1525
    113刘佳.循环流化床锅炉二次风射流特性的冷态实验研究与数值模拟.重庆大学硕士论文. 2007
    114 M.P. Martin, P. Turlier, J.R. Bernard, G. Wild. Gas and solid behavior in Cracking Circulating Fluidized Beds, Powder Technol. 1992, 70: 249-258
    115 B. Harge, J. Werther, K. Narakuwa, S. Moris. Capacitance Probe Measurement technique for Local Particle Volume Concentration in circulating fluidized bed combustors. Journal of Chemical Engineering of Japan. 1996, 29: 560-594
    116刘石,潘忠刚,燕桂章,王海刚.应用电容层析成象和压差对比法对流化床内固体颗粒浓度分布的测量研究.工程热物理学报. 2000, 21(6):759-763
    117 C.P. Wang, Z.A. Lu, D.K. Li. Experimental Study of the Effect of Internals on Optimizing Gas–solid Flow in a Circulating Fluidized bed. Powder Technology. 2008, 184: 267-274
    118 H. Zhang, P.J. Johoston, J.X. Zhu, de Lasa, H.I. and M.A. Bergougnou, A Novel Calibration Procedure for a Fiber Optic Solids Concentration Probe. Powder Tech. 1998, 100(2): 260-272
    119石惠娴.循环流化床流动特性PIV测试和数值模.浙江大学博士学文论文. 2003:11-19
    120马志刚.无烟煤循环流化床内流动、燃烧与磨损的研究.浙江大学博士学文论文. 2007:28-43
    121 Y.L. Yang, Y. Jin, Z.Q. Yu, J.X. Zhu, X.T. Bi. Local Slip Behavior in the Circulating Fluidized Bed. AIChe Symp. Ser, 1993. 89 (296): 81-90
    122 E. Chenglin, C.X. Lu, C.M. Xu, J.S. Gao, & M.X. Shi. A New Method for Measurement of Local Solid Flux in Gas-Solid Two-phase Flow. Chinese J. Chem. Eng. 2003. 11(6): 617-621
    123 D. Bai, K. Kato. Saturation carrying capacity of gas and flow regimes in CFB. Journal of Chemical engineering of Japan. 1995, 28: 179-185
    124张立强,马春元,宋占龙,马鸿良,潘光,张淼.循环流化床回流物料循环的特性.化学工程. 2008, 36(6): 22-25
    125 J. Schoaf, F Hohnsson, J.C Schouten, Vander Bleek. Chem. Eng. Sci.. 1999, 54: 5541-5546
    126 J. terneus, F Johnsson, B Leckner, G Palchonols. Chem. Eng. Sci.. 1999, 54: 5377-5382
    127 R.C. Zijerveld, F Johnsson, A. Marzocchella, J.C Schouten. Bleek C.M.V.D Powder Technology. 1998, 95: 185-204
    128 D. Bai, H.T. Bi and J.R. Grace. Aiche J..1997, 43(5): 1357-1361
    129 C.P. Wang, Z.A. Lu, D.K. Li. Experimental Study of the Effect of Internals on Optimizing Gas–solid Flow in a Circulating Fluidized Bed. Powder Technology. 2008, 184: 267–274
    130马丽萍.循环流化床波动信号的非线性分析.四川大学博士论文. 2002: 112-130
    131陶文铨.计算传热学的近代发展.北京:科学出版社. 2002: 1-5
    132张政,谢灼利.流体-固体两相流的数值模拟.化工学报. 2001,(52):1~12
    133周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社. 1994: 1-20
    134李戈,池作和,潘维,岑可法.切向燃烧煤粉锅炉燃烧和污染物排放的数值模拟.动力工程. 2003, 23(6): 2774-2776
    135潘维,池作和,李戈,岑可法.四角切圆燃烧锅炉燃烧和污染物排放数值模拟.浙江大学学报(工学版). 2004, 38(6): 761-764
    136 Y. Tsuji, T. Tanka, S. Yonemura. Cluster Paterns in Circulating Fluidized Beds Predicted by Numerical Simulation (Discrete Particle Model Versus Two-fluid Model). Powder Technology. 1998, 95: 254
    137马银亮.高浓度气固两相流的数值模拟研究.浙江大学博士学位论文. 2001: 25-26
    138 D. Gidaspow. Hydrodynamics of Fluidization and Heat Supercomputer Modeling. Appl. Mech. Rev. 1986, 39(1):1-23
    139 Y.P. Tsuo, D. Gidaspow. Computer of Flow Patterns in Circulating Fluidized Beds. AICHE. J. 1990, 36(6): 885-896
    140 G. Ahmadi, D. Ma. A Thermodynamic Formulation for Dispersed Multiphase Turbulent Flows I: Basics Theory. Int. J. Multiphase Flows. 1990, (16): 323-340
    141 S. B. Savage, D. J. Jeffrey. The Stress Tensor in Granular Flow at High Shear Rates. J. Fluid Mech. 1981, 110: 255-272
    142 J. T. Jenkins, S. B. Savage. A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic Spherical Particles. J. Fluid Mech.. 1983, 130: 187-202
    143 J. Hampton, S. Savage. Computer Modeling of Filter Pressing and Clogging in Random Tube Network. Chem. Eng. Sci. 1993, 48(9), 1601~1611
    144 C. K. K. Lun, S. B. Savage, D. J. Jeffrey. Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in A General Flow Field. J. Fluid Mech.1984, 140: 223-256
    145 P C. Johnson, R. Jackson. Frictional-collisionai Constitutive Relations for Granular Materials with Application to Plane Shearing. J. Fluid Mech.. 1987, 176: 67-93
    146 S. C. Campbell, D. G Wang. Particle Pressure in Gas-fluidized Beds. J. Fluid Mech. 1991, 227:495-508
    147 J. Ding, D. Gidaspow. A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow. AIChE Journal. 1990, 36: 523-538
    148 D. Gidaspow. Multiphase Flow and Fluldization-Continuum and Kinetic Theory Descriptions. Academic Press, San Diego, 1994
    149吴春亮.稠密颗粒两相流的理论与数值模拟.中山大学博士学位论文. 2004: 13-15
    150 Fariborz Taghipour, Naoko Ellis, Clayton Wong. Experimental and Computational Study of Gas–solid Fluidized Bed Hydrodynamics. Chemical Engineering Science. 2005, 60(24): 6857-6867
    151 P. Ranjeet, Utikar, Vivek V. Ranade. Single Jet Fluidized Beds: Experiments and CFD Simulations with Glass and Polypropylene Particles. Chemical Engineering Science. 2007, 62(1): 167-183
    152 Veeraya Jiradilok, Dimitri Gidaspow, Somsak Damronglerd. Kinetic Theory Based CFD Simulation of Turbulent Fluidization of FCC Particles in A Riser. Chemical Engineering Science. 2006, 61(17): 5544-5559
    153 Pedro Arce, Martín Aznar. Modeling the Thermodynamic Behavior of Poly(lactide-co-glycolide) Supercritical Fluid Mixtures with Equations ofstate. Fluid Phase Equilibria. 2006, 244(1-5): 16-25
    154 Guodong Jin, Yongsheng Nie and Dayou Liu. Numerical Simulation of Pulsed Liquid Fluidized Bed and It’s Experimental Validation. Powder Technology. 2001, 119(2-3): 153-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700