硫脲手性有机催化剂的设计合成及反应研究探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对硫脲有机小分子催化剂的研究越来越多,由于其结构中含有N-H基团易于与多种底物(如羰基,硝基等)形成分子间氢键从而实现良好的催化活性及手性控制。随着对硫脲催化剂研究的进一步深入,发现双功能化手性硫脲催化剂在催化不对称Michael加成等反应时,得到较为满意的产率和对映体过量值。本论文设计合成了以便宜、易得的天然L-(+)-酒石酸为原料,经酯化,成环,格氏反应,氯代,叠氮化,还原,等7步反应获得了(Ⅰ、Ⅱ、Ⅲ)三个新的以TADDAMIN为骨架的手性伯胺-硫脲催化剂。及以(4R,5S)-5-(胺基-二苯基-甲基)-2,2-二甲基-α,α-二苯基-1,3-二氧戊环-4-甲醇)为骨架的硫脲催化剂(Ⅳ),及以1,2-环己二胺(DACH)为骨架一端和脯氨酸以酰胺键连接,另一端形成硫脲的催化剂的设计与合成Ⅵ。同时还合成了一种已报道的硫脲-叔胺催化剂Ⅴ。尝试了它们在催化β-硝基苯乙烯与丙二酸二乙酯,β-硝基苯乙烯与酮的Michael加成反应,肉桂酸酯与硝基甲烷Michael加成反应,査尔酮与硝基甲烷的Michael加成反应,催化剂Ⅴ催化査尔酮与对甲氧基苯胺的aza-Michael加成反应,体系中加入适量的DIPEA有催化活性,而且有旋光。缺点是产率低只有百分之十左右,还需要继续选择合适的体系,如换用其它溶剂,改用其它碱催化希望结果会更好。催化剂Ⅵ催化对硝基苯甲醛与丙酮的aldol反应,有催化活性,还需进一步研究。同时,需要再尝试新的反应体系。并研究催化剂的结构、溶剂效应、温度、催化剂用量及反应底物类型对立体选择性的影响,以筛选适合的催化剂和优化反应条件。
In recent years, more and more scholars come to study on asymmetric organic reaction catalyzed by small organic molecule catalysts containing thiourea group(s). Rely on the structures containing N-H groups is apt to form dual Intermolecular hydrogen bonds with multiple substrates to achieve good catalytic activity and control of chiral.studies on and applications of asymmetric organic reaction catalyzed by thiourea catalysts have been regarded as one of the most remarkable fields in catalytic asymmetric reactions .Since 1998 the Jacobsen research team's pioneering work, had many applies with the amino acid skeleton connected urea/thiourea chiral catalyst in many kinds of asymmetrical reaction and has realized the very good Stereoselectivity. With the development of small organic molecule catalysts, Chemists began to simulate the structure and characteristics of enzymes which have multi- activation center and these activation centers compose suitable spatial structure and urge catalytic reaction to become more efficient. Receives the enzyme the structure inspiration, in 2003, Takemoto research team's proposed for the first time the single molecular double activation concept, and designed and synthesized bifunctional thiourea-tertiary amine catalyst, introduced other activating group during introduction thiourea groups and introduction another activation in another end (chiral amine) to form double functionalization double activation catalyst, enhances reaction activity and stereo selective greatly. Hereafter a series of includes each kind of chiral skeleton's bifunctional thiourea catalyst to report one after another by each research team that and obtained the widespread application in a series of asymmetrical catalytic reaction.
     The paper divided into three parts, the paper first part summarized the research development which was asymmetrical catalyzes, particularly thiourea catalyst and bifunctional thiourea catalyst, in was asymmetrical catalyzes the research development. The second part is the catalyst design and the synthesis. Third part of catalytic reaction discussion use synthesis catalyst (Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ) attempts some common substrates the asymmetrical Michael addition reaction.
     The paper first part summarized the research development of asymmetrical catalyzes. Include: study the importance of asymmetric synthesis、Asymmetric synthesis asymmetric catalysis is the ultimate goal、Separate Of Asymmetric catalysis and advantage of small organic molecules catalysis、Develop of asymmetric organic catalytic、the Mechanism of small Organic molecule catalytic、classification of Organic small molecule catalyst and typical catalyst small organic molecules、Typical small organic molecules catalyst a number of reactions. Second part was chiral thiourea organic small molecule catalyst research and application.
     Third, dual-function thiourea catalyst of organic catalytic asymmetric organic reactions is reviewed. Include: thiourea - tertiary type of organic bifunctional thiourea catalyst thiourea - Base Bifunctional Cinchona Thiourea-based organic catalyst, thiourea - primary amine bifunctional catalysts of the organic thiourea, thiourea - Chung bifunctional organic amine thiourea catalyst for disulfide of thiourea-based bifunctional thiourea organic catalyst, organic bifunctional thiourea catalyst for catalytic asymmetric Friedel-Crafts alkylation reaction of organic bifunctional thiourea catalyst for asymmetric Henry Reaction (Nitro aldol reaction), dual function of the organic thiourea other asymmetric catalytic reactions
     The second part is the catalyst design and the synthesis. The design synthesized L-(+)- tartaric acid which by the small advantage, easy to result in is a raw material, after the esterification, ring closing reaction , grignard reaction , Chloro-Substituted, azide substitution,reduction and so on 7 step reactions has obtained (Ⅰ,Ⅱ,Ⅲ) three new by TADDAMIN ((4S,5S) - 2,2- dimethyl–α,α,α',α'- four benzyl - 1,3- dioxolane - 4,5- dimethylamine) are skeleton's chiral primary amine - thiourea catalysts. Take ((4R,5S) - 5- (amidogen - diphenyl - methyl) - 2,2- dimethyl -α,α, - diphenyl - 1,3- dioxolane - 4- methyl alcohol) as skeleton's thiourea catalyst (Ⅳ). And take (R,R)-1,2- diaminocyclohexane (DACH) as Chiral skeleton one end bonding with the proline by amide linkage, other end forms the thiourea the catalyst (Ⅵ) .Simultaneously also synthesized one kind already the thiourea - tertiary amine catalyst which reported (Ⅴ).
     The third part of catalytic reaction discussion, has attempted them in the catalyzedβ-Nitrostyrene and diethyl malonate,β-Nitrostyrene and Ketone Michael addition reaction, Cinnamate and nitromethane Michael addition reaction, Chalcone and nitromethane Michael addition reaction, Chalcone and p-Methoxyaniline aza-Michael addition reaction. But the catalyst does not have catalytic effect through the catalyst structure's analysis, we speculated that catalysts has not catalytic effect possibly is because take TADDAMIN as skeleton's catalysts and the diaminocyclohexane (DACH) skeleton's catalysts, compares among the TADDAMIN skeleton chiral carbon and the amine group also some carbon atom, the cause chiral center and the primary amine group and the thiourea groups space length is too big, when activates the substrate the two lack some kind of synergism. Need to try a new reaction system. And studies the catalyst the structure, the solvent effect, the temperature, the catalyst amount used and the reaction substrate type to the stereoselective influence, selects the suitable catalyst and the optimized reaction condition.
     Catalyst (Ⅵ) catalyzes 4-Nnitrobenzaldhyde and acetone aldol reaction. CatalystⅥcatalyzed 4-Nnitrobenzaldhyde and acetone aldol reaction has the catalytic activity possibly is because the catalyst includes the proline groups and bases. Compare CatalystⅥcatalyzed 4-Nnitrobenzaldhyde and acetone aldol reaction with L-Proline catalyzes 4-Nnitrobenzaldhyde and acetone aldol reaction the merit is the catalystⅥSoluble relative L-Proline has the improvement, the shortcoming is yield only then 22%, but literature [15] report L-Proline (30 mol%) catalyzes yield reach 68%, but also needs to continue to choose the appropriate system.
引文
[1] Langenbeck W. Fermentproblem and organische katalyse[J].Angew. Chem. 1932, 45:97-99.
    [2] Berkessel A,Groger H.赵刚译.不对称有机催化[M].上海:华东师范大学出版社,2006, PP 2.
    [3] Knowles W S,Sabacky M J. Catalytic asymmetric hydrogenation employing a soluble,optically active, rhodium complex[J].Chem. Commun,1968, 22: 1445-1446.
    [4] Horner L, Siegewel H, Buthe H. Asymmetric catalytic hydrogenation with an optically active phosphinerhodium complex in homogeneous solution[J]. Angew. Chem. Int. Ed. Engl,1968,7:942.
    [5] a)Noyori R, Ohta M, Hsiao Y, Kitamura M, Ohta T, Takaya H. Asymmetric synthesis of isoquinoline alkaloids by homogeneous catalysis[J]. J. Am. Chem. Soc,1986,108:7117-7119.b)Noyori R. Asymmetric catalysis in organic synthesis[M]. John Wiley&Sons Inc,1994, Chapter 3, pp 96.
    [6]李新勇.有机催化的aldol反应及其它相关反应研究[D]武汉:华中师范大学,2007
    [7] Eder U.;Sauer G, Wiechert R. New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures[J]. Ang. Chem. Int. Ed. Eng.1971, 10:496-497.
    [8] Hajos Z G,Parrish D R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry[J]. J. Org. Chem, 1974, 39:1615-1621.
    [9] Katsuki T, Sharpless K B. The first practical method for asymmetric epoxidation[J]. J. Am. Chem. Soc, 1980,102:5974-5976.
    [10] a)林国强,李月明,陈耀全,陈新滋.手性合成-不对称反应及其应用[M].北京:科学出版社,第二版,2005, pp 33-46.b)Trost B M. Asymmetric catalysis: an enabling science[J]. Proc. Natl.Acad. Sci. U.S.A. 2004,101: 5348-5355.
    [11] Trindade A F, Gois P M. P, Afonso C A M. Recyclable StereoselectiveCatalysts [J].Chem. Rev,2009, 109 (2):418–514.
    [12] Trost B M, The atom economy-a search for synthetic efficiency[J]. Science,1991,254:1471-1477.
    [13] Trots B M.Atom economy-a challenge for organic synthesis: Homogeneous catalysis leads the way[J]. Angew Chem. Int. Ed. Engl. 1995, 34:259-281.
    [14]江焕峰,王玉刚,刘海灵,刘鹏.非金属有机催化剂及其在有机化学反应中的应用[J].有机化学,2004, 24(12):1513-1531.傅滨,肖玉梅,覃兆海,董燕红,李楠.有机催化剂在不对称合成中的应用[J].有机化学2006, 26 (7):899~905. Doyle A G.,Jacobsen E N.Small-Molecule H-Bond Donors in Asymmetric Catalysis[J]. Chem. Rev. 2007, 107:5713-5743.
    [15] List B, Lerner R A, Barbas C F.Proline-Catalyzed Direct Asymmetric Aldol Reactions[J]. J . Am. Chem. Soc,2000 , 122:2395.
    [16] Eder U, Sauer G, Wiechert R. New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures [J].Angew. Chem. Int . Ed.Engl . 1971 , 10 :496.
    [17] Hajos Z G, Parrish D R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry [J].J . Org. Chem, 1974 , 39:1615.
    [18] Austin J F, MacMillan D W C. Enantioselective Organocatalytic Indole Alkylations. Design of a New and Highly Effective Chiral Amine for Iminium Catalysis [J]. J . Am. Chem. Soc,2002 , 124:1172.
    [19] a)吴秋华,高勇军,李芝,王俊敏,王春.手性(硫)脲衍生物在不对称有机催化反应中的应用[J].有机化学,2007(27) 12:1491~1501. b)代佳.双功能有机硫脲催化剂在不对称合成中的应用[J].精细化工中间体2007 (37) 5.c) Doyle A G.,Jacobsen E N.Small-Molecule H-Bond Donors in Asymmetric Catalysis[J]. Chem. Rev,2007, 107:5713-5743.
    [20] a)Connon S J. Concept Organocatalysis Mediated by (Thio)urea Derivatives[J]. Chem. Eur. J. 2006, 12:5418.b) Kanai M ,Kato N,Ichikawa E, Shibasaki M. Power of Cooperativity: Lewis Acid-Lewis Base Bifunctional Asymmetric Catalysis[J]. Synlett 2005, 1491
    [21] Sigman M S, Jacobsen E N. Schiff Base Catalysts for the Asymmetric StreckerReaction Identified and Optimized from Parallel Synthetic Libraries [J].J.Am.Chem.Soc, 1998,120:4901.
    [22] Vachal P, Jacobsen E N. Structure-Based Analysis and Optimization of a Highly Enantioselective Catalyst for the Strecker Reaction[J]. J. Am. Chem. Soc,2002, 124:10012.
    [23] Pan S C, Zhou J, List B. Catalytic Asymmetric Acylcyanation of Imines[J]. Angew. Chem., Int. Ed, 2007, 46:612.
    [24] Joly G D, Jacobsen E N. Thiourea-Catalyzed Enantioselective Hydrophosphonylation of Imines: Practical Access to Enantiomerically Enrichedα- Amino Phosphonic Acids [J].J. Am. Chem. Soc. 2004, 126:4102.
    [25] Yoon T P, Jacobsen E N.Highly Enantioselective Thiourea-Catalyzed Nitro-Mannich Reactions[J]. Ahgew. Chem., Int. Ed, 2005, 44:466
    [26] Taylor M S, Jacobsen E N. Highly Enantioselective Catalytic Acyl- Pictet- Spengler Reactions[J]. J. Am. Chem. Soc. 2004,126:10558.
    [27] Connon S J. Organocatalysis Mediated by ( Thio) Urea Derivatives[J] . Chem. Eur.J. 2006, 12: 5418- 5427.
    [28] Ma J A, Cahard D. Towards Perfect Catalytic Asymmetric Synthesis: Dual Activation of the Electrophile and the Nucleophile[J]. Angew. Chem. Int. Ed,2004, 43:4566.
    [29] Okiho T, Hoashi Y, Takemoto Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts [J]. J. Am. Chem. Soc,2003, 125:12672.
    [30] Okiho T, Hoashi Y, Furukawa T, Xu X N,Takemoto Y. Enantio- and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea[J].J. Am. Chem. Soc, 2005, 127:119.
    [31] Hoashi Y, Okiho T, Takemoto Y. Enantioselective Michael Addition to ,-Unsaturated Imides Catalyzed by a Bifunctional Organocatalyst [J]. Angew. Chem., Int. Ed, 2005, 44:4032.
    [32] Inokuma T, Hoashi Y, Takemoto Y. Thiourea-Catalyzed Asymmetric MichaelAddition of Activated Methylene Compounds toα,β-Unsaturated Imides: Dual Activation of Imide by Intra- and Intermolecular Hydrogen Bonding [J].J. Am. Chem. Soc, 2006, 128:9413.
    [33] Li B J, Jiang L, Liu M, Chen Y C, Ding L S, Wu Y. Asymmetric Michael Addition of Arylthiols to ,-Unsaturated Carbonyl Compounds Catalyzed by Bifunctional Organocatalysts [J]. Synlett 2005, 603.
    [34] Liu Y T,Li R, Chai Q,Long J, Li B J, Wu Y,Ding L S, Chen Y C. Enantioselective Michael Addition ofα-Substituted Cyanoacetates to VinylKetones Catalyzed by Bifunctional Organocatalysts [J].Chem. Eur. J, 2007, 13:319.
    [35] Liu Y T, Long J,Li B J,Jiang L,Li R, Wu Y,Ding L S, Chen Y C. Enantioselective construction of quaternary carbon centre catalysed by bifunctional organocatalyst [J]. Org. Biomol. Chem,2006, 4: 2097.
    [36] Wang J, Li H, Duan W H. Organocatalytic Asymmetric Michael Addition of 2, 4 - Pentandione to Nitroolefins [J] . Org. Lett., 2005, 7 ( 21) : 4 713- 4 716.
    [37] Peng F Z, Shao Z H , Fan B M , Song H, Li G P, Zhang H B. Organocatalytic Enantioselective Michael Addition of 2,4-Pentandione to Nitroalkenes Promoted by Bifunctional Thioureas with Central and Axial Chiral Elements[J].J. Org. Chem, 2008, 73 (13):5202-5205.
    [38] Rabalakos C , Wulff W D. Enantioselective Organocatalytic Direct Michael Addition of Nitroalkanes to Nitroalkenes Promoted by a Unique Bifunctional DMAP-Thiourea [J]. J. Am. Chem. Soc., 2008, 130 (41):13524-13525.
    [39] Dong X Q, Teng H L, Wang C J. Highly Enantioselective Direct Michael Addition of Nitroalkanes to Nitroalkenes Catalyzed by Amine-Thiourea Bearing Multiple Hydrogen-Bonding Donors[J].Org. Lett, 2009, 11 (6): 1265-1268.
    [40] Hiemstra H, Wynberg H. Addition of Aromatic Thiols to Conjugated Cycloalkenones, Catalyzed by Chiral & Hydroxy Amines. A Mechani stic Study on Homogeneous Catalytic Asymmetric Synthesis[J] . J. Am. Chem. Soc., 1981, 103: 417-430.
    [41] Vakulya B, Varga S, Csampai A, et al. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional CinchonaOrganocatalysts [J].Org.Lett,2005,7( 10): 1967- 1969.
    [42] Vakulya , Varga S, Csámpai A,Soós T. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts [J]. Org. Lett, 2005, 7(10): 1967.
    [43]McCooey S H, Connon S J. Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. [J]. Angew.Chem.Int.Ed,2005, 44:6367.
    [44] Ye J X, Dixon D J, Hynes P S. Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives[J]. Chem. Commun. 2005, 4481.
    [45] Tsogoeva S B, Wei S W. Highly enantioselective addition of ketones to nitroolefins catalyzed by new thiourea–amine bifunctional organocatalysts [J]. Chem. Commun, 2006, 1451.
    [46] Tsogoeva S B, Yalalov D A, Hateley M J, Weckbecker C, Huthmacher K. Asymmetric Organocatalysis with Novel Chiral Thiourea Derivatives: Bifunctional Catalysts for the Strecker and Nitro-Michael Reactions[J]. Eur. J. Org. Chem, 2005, 23:4995.
    [47] Huang H B, Jacobsen E N. Highly Enantioselective Direct Conjugate Addition of Ketones to Nitroalkenes Promoted by A Chiral Primary Amine- Thiourea Catalyst [J]. J. Am. Chem. Soc., 2006, 128 (22):7170-7171.
    [48] Liu K, Cui H F, Nie J,Dong K Y, Li X J, Ma J A. Highly Enantioselective Michael Addition of Aromatic Ketones to Nitroolefins Promoted by Chiral Bifunctional PrimaryAmine-thiourea Catalysts Based onSaccharides [J]. Org. Lett, 2007, 9 (5):923-925.
    [49] Li P F,Wen S G,Yu F, Liu Q X, Li W J, Wang Y C, Liang X M, Ye J X. Enantioselective Organocatalytic Michael Addition of Malonates toα,β-Unsaturated Ketones [J]. Org. Lett,2009,11 (3):753-756.
    [50] Jiang X X,Zhang Y F, Chan A S C, Wang R. Highly Enantioselective Synthesisofγ-Nitro Heteroaromatic Ketones in a Doubly Stereocontrolled Manner Catalyzed by Bifunctional Thiourea Catalysts Based on Dehydroabietic Amine: A Doubly Stereocontrolled Approach to Pyrrolidine Carboxylic Acids [J]. Org. Lett, 2009, 11 (1):153-156.
    [51] Cao C L, Ye M C, Sun X L, Tang Y. Pyrrolidine?Thiourea as a Bifunctional Organocatalyst: Highly Enantioselective Michael Addition of Cyclohexanone to Nitroolefins[J] .Org. Lett. 2006, 8(14): 2901.
    [52] Tsogoeva S B,Yalalov D A, Hateley M J, Weckbecker C, Huthmacher K. Asymmetric Organocatalysis with Novel Chiral Thiourea Derivatives: Bifunctional Catalysts for the Strecker and Nitro-Michael Reactions [J]. Eur. J. Org. Chem, 2005,4995-5000.
    [53] Sohtome Y, Tanatani A, Hashimoto Y , Nagasawa K. Development of bis-thiourea-type organocatalyst for asymmetric Baylis–Hillman reactionq[J].Tetrahedron Letters,2004, 45:5589–5592.
    [54] Herrera R P, Sagarzani V,Bernardi L, Ricci A. Catalytic Enantioselective Friedel -Crafts Alkylation of Indoles with Nitroalkenes by Using a Simple Thiourea Organocatalyst[J] Angew.Chem.Int. Ed,2005, 44:6576.
    [55] Okino T, Nakamura S, Furukawa T, Takemoto Y. Enantioselective Aza-Henry Reaction Catalyzed by a Bifunctional Organocatalyst[J]. Org. Lett, 2004, 6: 625.
    [56] Sohtome Y, Hashimoto Y, Nagasawaa K. Guanidine–thiourea Bifunctional Organocatalyst for the Asymmetric Henry (Nitroaldol) Reaction[J] . Adv. Synth. Catal, 2005, 347: 1643-1648.
    [57] Marcelli T,van der Haas R N S, van Maarseveen J H, Hiemstra H. Asymmetric Organocatalytic Henry Reaction. [J] .Angew. Chem. Int. Ed, 2006, 45:929.
    [58]Zu L S, Wang J, Li H,Xie H X,Jiang W, Wang W. Cascade Michael-Aldol Reactions Promoted by Hydrogen Bonding Mediated Catalysis [J]. J. Am. Chem. Soc, 2007,129:1036.
    [59] Sohtome Y,Tanatani A,Hashimoto Y,Nagasawa K. Development of Novel Chiral Urea Catalysts for the Hetero-Michael Reaction [J].Chem. Pharm.Bull,2004,52(4):477-480
    [60] Seebach D,Hayakawa M, Sakaki J, Schweizer W. B. [J].Tetrahedron 1993, 49, 1711–1724.
    [61] Seebach D,Beck A K, Hayakawa M,Jaeschke G,Kühnle F N M,N?geli I, Pinkerton A B, Rheiner P B, Duthaler R O, Rothe P M, Weigand W, Wünsch R, Dick S, Nesper R, W?rle M, Gramlich V.Bull. Soc. Chim. Fr, 1997, 134:315.
    [62]李帮经.三种特有属植物化学成分研究和手性双活化催化剂的合成及反应研究[D]成都:中国科学院成都生物研究所,2004
    [63]李东平.有机催化的吲哚和α,β-不饱和酮的C3-选择性的Friedel-Crafts烷基化反应[D].武汉:华中师范大学,2006.
    [64]胡志国,刘军,李工安,董志兵,李薇SOCl2/ EtOH催化查尔酮的合成化学研究与应用第16卷第4期2004年8月
    [65] Gairaud C B, Lappin G R.The Synthesis ofβ-Nitrostyrenes[J]. J.Org.Chem, 1953,18(1): 1-3
    [66]张进琪译.精细有机合成-有机化学实践中的反应与合成[M].南京:南京大学出版社, 1992, 97
    [67] a)张生勇,张三奇,刘树兴,刘瑞蓝,屈宏翔[J].化学试剂,1992,14(2):80-82 b)聂爱华,陈新潮,陈业忠,叶秀林[J].北京大学学报(自然科学版)第38卷,第6期,2002年c)WENGER R W,Helv.Chim. Acta,1983,66(7):2308
    [68] Beck A K,Gysi P, Vecchia L L,Seebach D[J].Organic Syntheses, 2004,10:349
    [69] a) Hodgkins J E,Reeves W P. The Modified Kaluza Synthesis. III. The Synthesis of Some Aromatic Isothiocyanates[J].J. Org. Chem.,1964, 29:3098. b)王涛,叶文峰,贺红武.实验室制备异氰酸酯、异硫氰酸酯和异硒氰酸酯的方法[J].化学试剂,2002,24(4):204-207.c)王晓乐,孙烈,江才鑫.苯基异硫氰酸酯的合成方法[J].浙江化工,2006年,第37卷,第10期.d)黄润秋,王惠林,等.有机中间体制备[M].北京:化学工业出版社,1997,54,58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700