手性β-氨基醇衍生物的合成及查尔酮不对称环氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学纯的α-羰基环氧化物是合成一些天然产物和药物的重要合成砌块,因此开发有效的α,β-不饱和醛酮不对称环氧化方法在有机化学中具有重要意义。到目前为止,已经有很多有价值的反应体系被开发出来用于此反应。有机小分子催化的不对称反应是一个新兴的研究领域,许多有机催化剂在不对称环氧化反应中显示出巨大应用潜力,如聚氨基酸、金鸡钠碱类衍生物和手性β-氨基醇等手性有机催化剂。
     本文从L-苯丙氨酸甲酯盐酸盐出发,合成出了一系列新型的β-氨基醇类手性催化剂,其结构均经IR、1H NMR、13C NMR和MS表征确认。然后以β-氨基醇为手性催化剂,叔丁基过氧化氢为氧化剂,对查尔酮进行不对称环氧化。其中催化剂20的催化效果最好,产率和光学纯度分别为91.0%, 77.6%。以20为手性催化剂,分别研究了溶剂种类和有机碱(DBU)用量等因素对不对称环氧化反应的影响,我们得出的最佳反应条件为:以正己烷为反应溶剂,TBHP的用量为5 eq,DBU的用量为3 eq。最后研究了该反应底物查尔酮的适用范围。
     基于手性β-氨基醇,我们又设计合成出了非对称单手性硫脲类催化剂和C2对称双手性(硫)脲类催化剂。手性(硫)脲衍生物具有催化活性高、对映选择性和功能基相容性好、易于制备和修饰、适用范围广等优点,成为近年来研究较多的不对称反应有机催化剂。手性(硫)脲衍生物是各种亲核试剂对亚胺、醛、缺电子烯烃加成反应的非常有效的有机催化剂之一,已成功应用于对映选择性催化Strecker反应、Michael加成反应、Mannich反应、Henry反应等一系列重要的有机合成反应。对合成出的手性(硫)脲类催化剂反应应用和催化活性的研究正在进行当中。
The development of efficient methods for the asymmetric epoxidation ofα,β-unsaturated carbonyl compounds is significant in organic synthesis since optically active epoxy ketones are among the most versatile building blocks for access to several natural products and pharmaceuticals. Until now, a variety of valuable systems have been proposed for this reaction. Asymmetric reactions promoted by small organic molecules are an emerging investigated area. A great application potential of organocatalysts has been displayed in asymmetric epoxidation, such as polyamino acid, cinchona alkaloid combinations and chiralβ-amino alcohols.
     A series of novel chiralβ-amino alcohols were prepared from the hydrogen chloride salt of L-phenylalanine methylester. The structures of these compounds were confirmed by IR, 1H NMR, 13C NMR and MS. All of theβ-amino alcohols were examined as chiral catalysts in the asymmetric epoxidation of chalcones with tertbutyl hydroperoxide as the oxidant. The results obtained showed that the catalyst 20 possessed the best catalytic activity, the yield and optical purity were 91.0%, 77.6%. The effect of different solvents and organic base (DBU) loading were studied with the chiralβ-amino alcohol 20 as the catalyst. The best reaction conditions were: n-hexane as solvent, 5 eq TBHP loading, 3 eq DBU loading. The substrate scope of this reaction was studied in the end.
     We have also designed and synthesized non-symmetric/single chiral thiourea catalysts and C2 symmetry/double chiral (thio)urea catalysts based on chiralβ-amino alcohols. Chiral (thio)urea derivatives are rapidly emerging as versatile, high catalytic active, low catalyst loading, excellent enantioselective, high functional group tolerant, ease of prepared/modified organocatalyst for the promotion of a wide range of synthetically useful asymmetric processes. Chiral (thio)urea derivatives are very effective organocatalysts for the nuclephilic addition reactions of imines, aldehydes and electron-deficient olefins. They have been successfully applied in varieties of enantioselective organic reactions, such as asymmetric Strecker, Michael addition, Mannich, Henry reactions , etc. The application and catalytic activity of these chiral (thio)urea derivatives are in studing.
引文
1 Porter, M J Slidmore. Review on asymmetric epoxidation of electron-deficient olefins[J]. J. Chem. Commun. 2000, 1215-1225.
    2 Lauret C. Epoxy ketones as versatile building blocks in organic synthesis[J]. Tetrahedron: Asymmetry, 2001, 12(17): 2359-2383.
    3 Julia S, Masana J, Vega J C. Synthetic enzyme: highly stereoselective epoxidation of chalcone in the three-phase system toluene-water-poly-(S)-alanine[J]. Angew. Chem., Int. Ed.Engl, 1980, 92: 968-971.
    4 Shinichi Itsuno, Minako Sakakura, Koichi Ito. Polymer-Supported Poly(amino acids) as New Asymmetric Epoxidation Catalyst ofα-βUnsaturated Ketones[J]. J. Org. Chem. 1990, 55(24): 6047-6049.
    5 Allen J V, Roberts S M, et al. Julia-Colonna asymmetric epoxidation reactions under nonaqueous conditions: rapid, highly regio- and stereo-selective transformations using a cheap, recyclable catalyst[J]. J. Chem. Soc., Perkin. Trans. 1, 1998, (19): 3171-3180.
    6 Baars S, Drauz K H, Roberts S M, et al. Development of the Julia-Colonna Asymmetric Epoxidation Reaction: Part 1. Preparation and Activation of the Polyleucine Catalyst[J]. Org. Process Res. Dev, 2003, 7(4): 509-513.
    7 Flood R W, Geller T P, Roberts S M, et al. Efficient Asymmetric Epoxidation ofα,β-Unsaturated Ketones Using a Soluble Tri-block Polyethylene Glycol-Polyamino Acid Catalyst[J]. Org. Lett, 2001, 3(5): 683-686.
    8 Geller T, Gerlach A, Militzer H C, et al. Novel conditions for the Julia-Colonna epoxidation reaction providing efficient access to chiral, nonracemic epoxides[J]. Tetrahedron Lett, 2004, 45(26): 5065-5067.
    9 Geller T, Militzer H C, et al. Scoping the triphasic/PTC conditions for the Julia-Colonna epoxidation reaction[J]. Tetrahedron Letters, 2004, 45(26): 5069-5071.
    10 Gerlach A, Geller T. Scale-up studies for the asymmetric Julia-Colonna epoxidation reaction[J]. Adv. Synth. Catal, 2004, 346 (9 + 10): 1247-1249.
    11 Bentley P A, Bickley J F, Roberts S M. Asymmetric epoxidation of a geminally-disubstituted and some trisubstituted enones catalyzed by poly-L-leucine[J]. Tetrahedron. Lett, 2001, 42(22): 3741-3743.
    12 Pedrosa L J M, Pitts M R, Roberts S M, et al. Asymmetric epoxidation of some arylalkenyl sulfones using a modified Julia-Colonna procedure[J].Tetrahedron Lett, 2004(26), 45: 5073-5075.
    13 Wynberg H, Greijdanus B. Solvent effects in homogeneous asymmetric catalysis[J]. J. Chem.Soc. Chem. Commun, 1978, (10):427-428.
    14 Pluim H, Wynberg H. Catalytic asymmetric induction in oxidation reactions. Synthesis of optically active epoxynaphthoquinones[J].J. Org.Chem, 1980, 45(12): 2498-2502.
    15 Ooi T, Maruoka K, et al. Design of New Chiral Phase-Transfer Catalysts with Dual Functions for Highly Enantioselective Epoxidation ofα,β-Unsaturated Ketones[J]. J. Am. Chem. Soc. 2004, 126(22): 6844-6845.
    16 Lygo B, Daniel C M. Asymmetric epoxidation via phase-transfer catalysis: direct conversion of allylic alcohols intoα,β-epoxyketones[J]. Chem. Commun. 2002, (20): 2360-2361.
    17 Corey E J, Zhang F Y. Mechanism and conditions for highly enantioselective epoxidation ofα,β-enones using charge-accelerated catalysis by a rigid quaternary ammonium salt[J]. Org. Lett. 1999, 1(8): 1287-1290.
    18 Arai S, Tsuge H, Oku M, Miura M, Shioiri T. Catalytic asymmetric epoxidation of enones under phase-transfer catalyzed conditions[J]. Tetrahedron, 2002, 58(8): 1623-1630.
    19 Adam W, Rao P B, Degen H G, et al. Asymmetric Weitz-Scheffer epoxidation of isoflavones with hydroperoxides mediated by optically active phase-transfer catalysts[J]. J. Org. Chem. 2002, 67(1): 259-264.
    20 Jew S S, Lee J H, Jeong B S, et al. Highly Enantioselective Epoxidation of 2,4-Diarylenones by Using Dimeric Cinchona Phase Transfer Catalysts: Enhancement of Enantioselectivity by Surfactants[J]. Angew. Chem., Int. Ed, 2005, 44: 1383-1385.
    21 Hori K, Tamura M, Tani K, et al. Asymmetric epoxidation catalyzed by novel azacrown ether-type chiral quaternary ammonium salts under phase-transfer catalytic conditions[J]. Tetrahedron Lett. 2006, 47(18): 3115-3118.
    22 Bako T, Bako P, Keglevich G, et al. Phase-transfer catalyzed asymmetricepoxidation of chalcones using chiral crown ethers derived from D-glucose, D-galactose, and D-mannitol[J]. Tetrahedron: Asymmetry 2004, 15(10): 1589-1595.
    23 List B. Proline-catalyzed asymmetric reactions[J]. Tetrahedron 2002, 58(20): 5573-5590.
    24 Lattanzi A. Enantioselective epoxidation ofα,β-enones promoted byα,α-diphenyl-L-prolinol as bifunctional organocatalyst[J]. Org. Lett., 2005, 7(13): 2579-2582.
    25 Zhuang W, Marigo M, Jorgensen K A. Organocatalytic asymmetric epoxidation reactions in water-alcohol solutions[J]. Org. Biomol. Chem, 2005, 3(21): 3883-3885.
    26 Lattanzi A. Bis(3,5-dimethylphenyl)-(S)-pyrrolidin-2-ylmethanol: an Improved Organocatalyst for the Asymmetric Epoxidation of a,b-Enones[J]. Adv. Synth. Cata, 2006, 348: 339-346.
    27 Russo A, Lattanzi A. Asymmetric Epoxidation of trans-Chalcones Organocat alyzed byβ-Amino Alcohols[J]. Eur. J. Org. Chem, 2008, (16): 2767-2773.
    28 Lu J, Xu Y H, Loh T P, et al. Enantioselective epoxidation of a,b-enones promoted by (1R,3S,4S) -2-azanorbornyl-3-methanol as an organocatalyst[J]. Tetrahedron Letters, 2008, 49: 6007-6008.
    29 Colonna S, Gaggero N, Manfredi A, et al. Asymmetric Weitz-Scheffer epoxidation promoted by bovine serum albumin. Part III. Highly stereoselective synthesis of optically active epoxynaphthoquinones[J]. Tetrahedron, 1988, 44(16): 5169-5178.
    30 Wang Z X, Shi Y. A New Type of Ketone Catalyst for Asymmetric Epoxidation[J]. J. Org. Chem. 1997, 62(25): 8622-8623.
    31 Sigman M S, Jacobsen E N. Schiff Base Catalysts for the Asymmetric Strecker Reaction Identified and Optimized from Parallel Synthetic Libraries[J]. J. Am. Chem. Soc. 1998, 120(19): 4901-4902.
    32 Sigman M S, Vachal P, Jacobsen E N. A general catalyst for the asymmetric Strecker reaction[J]. Angew. Chem., Int. Ed. 2000, 39(7): 1279-1281.
    33 Vachal P, Jacobsen E N. Structure-based analysis and optimization of a highly enantioselective catalyst for the Strecker reaction[J]. J. Am. Chem. Soc. 2002,124(34): 1001210014.
    34 Okiho T, Hoashi Y, Takemoto Y. Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts[J]. J. Am. Chem. Soc. 2003, 125(42): 12672-12673.
    35 Hoashi Y, Yabuta T, Takemoto Y. Bifunctional thiourea-catalyzed enantioselective double Michael reaction ofγ,δ-unsaturatedβ-ketoester to nitroalkene: asymmetric synthesis of (-)-epibatidine[J]. Tetrahedron Lett. 2004, 45(50): 9185-9188.
    36 Vakulya B, Varga S, Csámpai A, Soós, T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts[J]. Org. Lett. 2005, 7(10): 1967-1969.
    37 McCooey S H, Connon S J. Angew. Chem., Int. Ed. 2005, 44, 6367.
    38 Wang J, Li H, Zu L, Wang W. Chiral binaphthyl-derived amine-thiourea organocatalyst-promoted asymmetric Morita-Baylis-Hillman reaction[J]. Org. Lett. 2005, 7(19): 42934296.
    39 Tsogoeva S B, Wei S W. Highly enantioselective addition of ketones to nitroolefins catalyzed by new thiourea-amine bifunctional organocatalysts[J]. Chem. Commun. 2006, (13): 1451-1453.
    40 Wenzel A G, Jacobsen E N. Asymmetric catalytic Mannich reactions catalyzed by urea derivatives: Enantioselective synthesis of beta-aryl-beta-amino acids[J]. J. Am. Chem. Soc. 2002, 124(44): 12964-12965.
    41 Wenzel A G, Lalonde M P, Jacobsen E N. Divergent stereoinduction mechanisms in urea-catalyzed additions to imines[J]. Synlett 2003(12): 1919-1922.
    42 Taylor M S, Tokunaga N, Jacobsen E N. Enantioselective thiourea-catalyzed acyl-mannich reactions of isoquinolines[J]. Angew. Chem., Int. Ed. 2005, 44(41): 6700-6704.
    43 Song J, Shih H W, Deng L. Asymmetric Mannich reactions with in situ generation of carbamate-protected imines by an organic catalyst[J]. Org. Lett. 2007, 9(4): 603-606.
    44 Sohtome Y, Hashimoto Y, Nagasawaa K. Guanidine-thiourea bifunctional organocatalyst for the asymmetric Henry (nitroaldol) reaction[J]. Adv. Synth. Catal. 2005, 347(11-13): 1643-1648.
    45 Sohtome Y, Takemura N, Iguchi T, Hashimoto Y, Nagasawa K.Diastereoselective Henry reaction catalyzed by guanidine-thiourea bifunctional organocatalyst[J]. Synlett, 2006, (1): 144-146.
    46 Sohtome Y, Hashimoto Y, Nagasawa K. Diastereoselective and enantioselective Henry (nitroaldol) reaction utilizing a guanidine-thiourea bifunctional organocatalyst[J]. Eur. J. Org. Chem. 2006, (13): 2894-2897.
    47 Yoon T P, Jacobsen E N. Highly enantioselective thiourea-catalyzed nitro-Mannich reactions[J]. Angew. Chem., Int. Ed. 2005, 44(3): 466-468.
    48 Okino T, Nakamura S, Furukawa T, Takemoto Y. Enantioselective aza-Henry reaction catalyzed by a bifunctional organocatalyst[J]. Org. Lett. 2004, 6(4): 625-627.
    49 Xu X N, Furukawa T, Okiho T, et al. Bifunctional-thiourea-catalyzed diastereo- and enantioselective Aza-Henry reaction[J]. Chem. Eur. J. 2006, 12(2): 466-476.
    50 Fuerst D E, Jacobsen E N. Thiourea-catalyzed enantioselective cyanosilylation of ketones[J]. J. Am. Chem. Soc. 2005, 127(25): 8964-8965.
    51 Xu X N, Yabuta T, Yuan P, Takemoto Y. Organocatalytic enantioselective hydrazination of 1,3-dicarbonyl compounds: Asymmetric synthesis of alpha,alpha-disubstituted alpha-amino acids[J]. Synlett, 2006, (1): 137-140.
    52 Herrera R P, Sagarzani V, Bernardi L, Ricci A. Catalytic enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes by using a simple thiourea organocatalyst[J]. Angew. Chem., Int. Ed. 2005, 44(40): 6576-6579.
    53 Sohtome Y, Tanatani A, Hashimoto Y, Nagasawa K. Development of bis-thiourea-type organocatalyst for asymmetric Baylis-Hillman reaction[J]. Tetrahedron Lett. 2004, 45(29): 5589-5592.
    54 Taylor M S, Jacobsen E N. Highly enantioselective catalytic acyl-Pictet-Spengler reactions[J]. J. Am. Chem. Soc. 2004, 126(34): 10558-10559.
    55 Joly G D, Jacobsen E N. Thiourea-catalyzed enantioselective hydrophosphonylation of imines: Practical access to enantiomerically enriched alpha-amino phosphonic acids[J]. J. Am. Chem. Soc. 2004, 126(13): 4102-4103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700