多立体中心(硫)脲催化剂催化不对称杂原子迈克尔加成反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性是自然界的本质属性之一,生物体内许多分子都具有手性。手性化合物在有机化学、生物化学、材料化学等方面有着广泛的应用。不对称有机催化(Enantioselective Organocatalysis)作为二十一世纪新出现的概念,因其高效性和高选择性,成为构建分子骨架的重要工具,在开发手性药物、材料等工业中发挥着巨大的作用,为医药、化学、材料和生物学的发展提供了广阔的应用前景。所以不对称有机催化的实验研究及理论研究具有重要的理论和实际意义。开展不对称有机催化反应的理论研究,从分子水平上研究不对称催化反应的反应机理,可以弄清催化反应的反应历程,解释和说明实验现象,了解有机催化剂在催化反应的过程中所起的作用以及不对称催化反应的立体选择性。
     本文运用量子化学中的密度泛函理论研究了多立体中心(硫)脲催化剂以及在此基础上发展起来的新型的方酰胺催化剂催化的不对称杂原子迈克尔加成反应,从微观的角度研究不对称催化反应的机理,解释有机催化在催化反应中的作用的本质,从而为研发新型、高效的有机催化剂以及新的不对称有机合成反应提供理论指导。
     本论文研究的主要内容为:
     用密度泛函理论(DFT)详细研究了多立体中心氮亚磺酰(硫)脲催化剂催化硝基烯烃与硫代酸的Michael加成反应。计算结果表明,反应有两条路径,路径A生成R构型的产物,路径B生成S构型的产物。决定对映选择性的的步骤是C-S键的生成。两个路径中的决速步骤不同,路径A中r2构型扭转为r2-1为决速步,而在路径B中,质子由叔氨基转移到硝基烯烃的α碳上为决速步骤。计算所得的ee值与实验报道的相符。通过对硝基烯烃与硫代苯甲酸反应的理论计算,我们预测了当用氮亚磺酰(硫)脲为催化剂时此反应具有对映选择性。通过DFT的计算提供了详细的催化反应机制,充分解释了实验现象。这些结果不仅有利于为硫杂Michael加成设计新型的催化剂,还可以为氮亚磺酰(硫)脲催化剂在其他反应中的应用作理论指导。
     用量子化学中的密度泛函理论研究了新型的方酰胺催化剂催化亚磷酸酯与硝基烯烃的磷杂迈克尔加成反应。从微观角度研究了催化反应的机理和催化剂结构与性能之间的关系。计算结果表明,方酰胺在催化亚磷酸酯和硝基烯烃的反应中并没有起到双活化的功能,只有催化剂中的叔氨基起到质子传递的功能,从而活化了亲核试剂,而催化剂并没有对硝基烯烃进行活化。
     反应有两条路径,路径A生成R构型的产物,而路径B生成S构型的产物。两个路径中的决速步骤不同,在反应路径A中,第二步质子由叔氨基转移到硝基烯烃的α碳原子上为决速步,而在反应路径B中,C-P键的生成是决速步。虽然路径A和路径B中决速步所需要越过的势垒基本相同,可是由于反应的第一步C-P键的生成,路径A占优势,并且第二步质子的转移过渡态R-TS1的能量比S-TS2的能量要低。所以能判断此催化反应得到的产物中R构型的是优势产物。我们还通过计算催化反应的对映选择性证实了以上观点。计算所得的ee值与实验报道的数值相近。通过DFT的计算提供了详细的催化反应机制,充分解释了实验现象。这些实验结果可以帮我们更好的理解方酰胺催化剂在反应中的作用,并且为方酰胺催化剂的改进和推广提供理论基础。
One of the entitative attributes of nature is chirality. Most of molecules in organism are chiral. Chiral compounds are used in organic chemistry, biochemistry and material chemistry widely. Enantioselective organocatalysis as a new concept emerged at the 21st century have been developing into an important tool for constructing of complex molecular skeletons because of its high-efficiency and high selective sensitivity. Enantioselective organocatalysis can offer extensively applied future for medicine, chemistry, material and biology. So, the experimental and theoretical investigations of organocatalytic asymmetric reactions will be of important theoretical and practical values. Theoretical studies of organocatalytic asymmetric reactions not only can understand the reaction mechanism fully from the molecular level but also can explain the experimental phenomenons. It also can make the function of organocatalyst and the origin of enantioselectivity for the catalyzed reaction clear.
     In this dissertation, we studied the Hetero-Michael reactions catalyzed by multi-stereocentral (thio)urea catalyst and squaramide-catalyst. Theoretical studies by computational methods can explain the reaction mechanism and the essential effect of the catalyst from micromechanism. The results can provide a theoretical direction for developing new type, high effective organocatalysts and novel organocatalytic asymmetric reactions.
     The valuable results in this dissertation can be summarized as follows:
     Our DFT calculations provide a first theoretical investigation on enantioselective sulfa-Michael addition reaction of theoacid and trans-β-nitrostyrene catalyzed by N-Sulfinyl urea in CPME solvent. The results show that there are two pathways for the reaction yielding the products. Pathway A which gives (R)-configuration product is favored over the pathway B which yields (S)-configuration product. The enantioselectivity of the sulfa-Michael addition reaction is controlled by the C-S bond-formation step. The rate determining steps are different in two pathways. In pathway A the step of conformational change from r2 to r2-1 is the rate-determining step, which is the proton transfer from the amino group of the catalysts to theα-carbon of the nitrothiolate in pathway B. The ee value we obtain is in agreement with the experimental data. From the calculation of the sulfa-Michael reaction of thiobenzoic acid and trans-β-nitrostyrene which need more sterical demand, we predict that the reaction has enantioselectivity used N-Sulfinyl urea as the catalyst. The present results will stimulate not only the development of novel organocatalyst for sulfa-Michael addition but also the expansion of the scope of N-Sulfinyl urea catalysis.
     The hetero-Michael reaction of dimethyl phosphate with nitroalkene catalyzed by a squaramide-organocatalyst is investigated using density functional theory (DFT) calculations. The catalysis proceed is by single functional activation. The tertiary amide of the catalyst activates nucleophilic substrate by transformation of proton. However, the electrophilic substrate is not activated.
     The results show that there are two channels for the reaction between dimethyl phosphate and nitroalkene. Channel A which gives (R)-configuration product is favored over the channel B which yields (S)-configuration product. The rate determining steps are different in two channels. In channel A the step of C-P bond formation is the rate-determining step, which is the proton transfer from the amino group of the catalysts to theα-carbon in channel B. The barriers of the two rate-determining steps are close. But channel A is the favored channel in the first step and in the second step of proton transfer the energy of R-TS1 is lower than that of S-TS1. So (R)-configuration product is preponderant. The enantioselectivity for the reaction is also calculated. The ee value we obtained is in agreement with the experimental fact. The present results will stimulate the expansion of the scope of squaramide catalysis.
引文
[1]杜灿屏,刘鲁生,张恒主编,《21世纪有机化学发展战略》,化学工业出版社,北京,2002,p135-148,p156-170.
    [2] Tye,H. Catalytic asymmetric processes [J]. J.Chem.Soc., Perkin Trans.I. 2000, 275-298; 2000, 3335-3349.
    [3] Ohkuma,K.; Kitamura,M.; Noyori,R. In catalytic asymmetric synthesis[M]. 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000, Chapter 1.
    [4] Agranat,I.; Caner,H.; Caldwell,J. Putting chirality to work: the strategy of chiral switches [J]. Nature Reviews: Drug Discovery, 2002, 1(10): 753-768.
    [5] Knowles,W.S. Asymmetric Hydrogenations [J]. Angew. Chem. Int. Ed. 2002, 41(12), 1998-2007.
    [6] Noyori,R. Asymmetric Catalysis: Science and Opportunities [J]. Angew.Chem.Int.Ed.2002, 41(12), 2008-2022.
    [7] Sharpless,K.B. Searching for New Reactivity [J]. Angew. Chem. Int. Ed. 2002, 41(12), 2023.
    [8] Taylor,M.S.; Jacobsen,E.N. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors [J]. Angew.Chem.Int.Ed.2006, 45, 1520-1543.
    [9] Linton,B.R.; Goodman,M.S.; Hamilton,A.D. Nitronate Anion Recognition and Modulation of Ambident Reactivity by Hydrogen-Bonding Receptors [J].Chem.Eur.J.2000,6,2449–2455.
    [10] Okino,T.; Hoashi,Y.; Furukawa,T.; Xu,X.; Takemoto,Y. Enantio-and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea [J]. J.Am.Chem.Soc.2005, 127, 119–125.
    [11] Okino,T.; Hoashi,Y.; Takemoto,Y. Enantioselective Michael Addition toα,β-Unsaturated Imides Catalyzed by a Bifunctional Organocatalyst [J].Angew.Chem.Int.Ed.2005,44,4032-4035.
    [12] Rabalakos,C.; Wuff,W.D. Enantioselective Organocatalytic Direct Michael Addition of Nitroalkanes to Nitroalkenes Promoted by a Unique Bifunctional DMAP-Thiourea [J]. J.Am.Chem.Soc.2008, 130, 13524-13525.
    [13] Nodes,W.J.; Nutt,D.R.; Cobb,A.J.A. Enantioselective Intramolecular MichaelAddition of Nitronates onto Conjugated Ester:Access to Cyclicγ-Aminno Acids with up to Three Stereocenters [J]. J.Am.Chem.Soc.2009, 131(44), 16016-16017.
    [14] Robak,M.T.;Trincado,M.;Ellman,J.A.Enantioselective Aza-Henry Reaction with an N-Sulfinyl Urea Organocatalyst [J].J.Am.Chem.Soc.2007,129,15110-15111.
    [15] Vachal,P.;Jacobsen,E.N.Structure-Based Analysis and Optimization of Highly Enantioselective Catalyst for the Stecker Reaction[J]. J.Am.Chem.Soc.2002, 124, 10012-10014.
    [16] Sigman,M.S.; Vachal,P.; Jacobsen,E.N. A Genreal Catalyst for the Asymmetric Strecker Reaction[J]. Angew. Chem. 2000, 112 (7), 1336-1338; Angew. Chem. Int. Ed. 2000, 39(7), 1279-1281.
    [17] Su,J.T.; Vachal,P.; Jacobsen,E.N. Practical Synthesis of a Soluble Schiff Base Catalyst for the Asymmtric Strecker Reaction[J]. Adv.Synth.Catal. 2001, 343, 197-200.
    [18] Mather,D.J.; Connon,S.J. Acceleration of the DABCO-promoted Baylis–Hillman reaction using a recoverable H-bonding organocatalyst[J]. Tetrahedron Lett. 2004, 45, 1301-1305.
    [19] Sigman,M.S.; Jacobsen,E.N. Schiff Base Catalyst for the Asymmetric Strecker Reaction Identified and Optimized from Parallel Synthetic Libraries[J]. J.Am.Chem.Soc.1998, 120(19), 4901-4902.
    [20] Okino,T.; Hoashi,Y.; Takemoto,Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts [J]. J.Am.Chem.Soc.2003, 125, 12672-12673.
    [21] Hoashi,Y.; Yabuta,T.; Takemoto,Y. Bifunctional Thiourea Catalyzed Enantioselective Double Michael Reaction ofγ,δ-Unsaturated-Ketoester to Nitroalkene:Asymmetric Synthesis of (-)-Epibatidine [J]. Tetrahedron Lett.2004, 45, 9185-9188.
    [22] Hamza,A.; Schubert,G.; Soós,T.; Pápai,I. Theoretical Studies on the Bifunctionality of Chiral Thiourea-Based Organocatalysts:Competing Routes to C-C Bond Formation [J]. J.Am.Chem.Soc.2006, 128, 13151-13160.
    [23] Zhu,R.X.; Zhang,D.J.; Wu,J.; Liu,C.B. Theoretical study of the bifunctional urea catalyzed Michael reaction of 1,3-dicarbonyl compounds and nitroolefins [J].Tetrahedron-Asymmetry.2006, 17, 1161-1166.
    [24] Zhu,R.X.; Zhang,D.J.; Wu,J.; Liu,C.B. Theroetical study of the eantioselectiveα-amination reaction of 1,3-dicarbonyl compounds catalyzed by a bifunctional-urea[J]. Thtrahedron: Asymmetry. 2007, 18, 1655-1662.
    [25] Li,B.J.; Jiang,L.; Liu,M.; Chen,Y.C.; Ding,L.S.; Wu,Y. Asymmetric Michael Addition of Arylthiols toα,β-Unsaturated Carbonyl Compounds Catalyzed by Bifunctional Organocatalysts [J]. Synlett. 2005, 603-606.
    [26] Liu,Y.T.; Li,R.; Chai,Q.; Long,J.; Li,B.J.; Wu,Y.; Ding,L.S. Enantioselective Michael Addition of a-Substituted Cyanoacetates to Vinyl Ketones Catalyzed by Bifunctional Organocatalysts [J]. Chem.Eur.J.2007, 13, 319-327.
    [27] Cao,C.L.; Ye,M.C.; Sun,X.L.; Tang,Y. Pyrrolidine?Thiourea as a Bifunctional Organocatalyst: Highly Enantioselective Michael Addition of Cyclohexanone to Nitroolefins [J]. Org.Lett.2006, 8(14), 2901-2904.
    [28] Wang,J.; Li,H.; Zu,L.; Wang,W. Chiral binaphthyl-derived amine-thiourea organocatalyst-promoted asymmetric Morita-Baylis-Hillman reaction [J]. Org.Lett. 2005, 7, 4293-4296.
    [29] Liao,Y.H.; Liu,X.L.; Wu,Z.J.; Cun,L.F.; Zhang,X.M.; Yuan,W.C. Highly Diastereo- and Enantioselective Michael Additions of 3-Substituted Oxindoles to Maleimides Catalyzed by Chiral Bifunctional Thiourea-Tertiary Amine[J]. Org.Lett. 2010, 12, 2896-2899.
    [30] Baslé,O.; Raimondi,W.; Duque,M.M.S.; Bonne,D.; Constantieux,T.; Rodriguez,J. Highly Diastero- and Enantioselective Organocatalytic Michael Addition ofα-Ketoamides to Nitroalkenes[J]. Org.Lett. 2010, 12, 5246-5249.
    [31] Uehara,H.; Barbas,C.F. anti-Selective Asymmetric Michael Reactions of Aldehydes and Nitroolefins Catalyzed by a Primary Amine/Thiourea[J]. Angew.Chem. 2009, 121, 10032-10036.
    [32] Juaristi,E. Enantioselective synthesis ofβ-amino acids[J]. Wiley-VCH.New York.1997, chapter 1.
    [33] Soheome,Y.; Tanatani,A.; Hashimoto,Y.; Nagasawa,K. Development of novel chiral urea catalysts for the hetero-Michael reaction[J]. Chem Pharm Bull, 2004, 52(4):477-480.
    [34] Wang,J.; Li,H.; Zu,L.; Wang,W. Enantioselective organocatalytic Michael addition reaction between N-heterocycles and nitroolefins[J]. Org Lett, 2006, 8(7):1391-1394.
    [35] Sibi,MP.; Itoh,K. Organocatalysis in conjugate amine additions. Synthesis ofβ-amino acid derivatives[J]. J Am Chem Soc, 2007, 129, 8064-8065.
    [36] Sim?n, L.; Goodman, J. M. What is the mechanism of amine conjugate addition to pyrazole crotonate catalyzed by thiourea catalysts? [J]. Org Biomol Chem, 2009, 7, 483-487.
    [37] Horiguchi, M.; Kandatsu, M. Isolation of 2-Aminoethane Phosphonic Acid from Rumen Protozoa [J] Nature 1959, 184, 901-902.
    [38] Palacios, F.; Alonso, C.; de Los Santos, J. M. Synthesis ofβ-Aminophosphonates and–Phosphinates[J] Chem. Rev. 2005, 105, 899– 931.
    [38] Metcalf, W.W.; van der Donk, W. A. Biosynthesis of Phosphonic and Phosphinic Acid Natural Products [J] Annu. Rev. Biochem. 2009, 78, 65– 94.
    [40] Chen, Z.; Yakura, K.; Matsunaga, S.; Shibasaki, M. Direct Catalytic Asymmetric Mannich-Type Reaction ofβ-Keto Phosphonate Using a Dinuclear Ni2?Schiff Base Complex[J]. Org. Lett.2008, 10, 3239–3242.
    [41] Enders, D.; Foerster, D. Asymmetric Michael Additions of a Chiral Phosphite to Nitroalkenes and Knoevenagel Acceptors [J]. Synthesis 2006, (9): 1447– 1460.
    [42] Rai, V.; Namboothiri, I. N. N. Enantioselective conjugate addition of dialkyl phosphites to nitroalkenes[J]. Tetrahedron: Asymmetry 2008, 19, 2335– 2338.
    [43] Wang,J.; Heikkinen,L.D.; Li,H.; Zu,L.; Jiang,W.; Xie,H.; Wang,W. Quinine-Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite to Nitroolefins:Synthesis Chiral Precursors ofα-Substitutedβ-Aminophosphonates[J]. Adv.Synth.Catal.2007, 349, 1052-1056.
    [44] Malerich,J.P.; Hagihara,K.; Rawal,V.H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts[J]. J.Am.Chem.Soc.2008, 130, 14416-14417.
    [45] Zhu,Y.; Malerich,J.P.; Rawal,V.H. Squaramide-Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite to Nitroalkenes[J]. Angew.Chem.2010, 122, 157-160.
    [46] Bergmeier, S. C. The synthesis of vicinal amino alcohols[J]. Tetrahedron, 2000, 56, 2561-2576.
    [47] Dinér,P.; Nielsen,M.; Bertelsen,S.; Niess,B.; Jorgensen,K.A. Enantioselective hydroxylation of nitroalkenes: an organocatalytic approach[J]. Chem Commun, 2007, 3646-3648.
    [48] Biddle,M.M.; Lin,M.; Scheidt,K.A. Catalytic enantioselective synthesis of flavanones and chromanones[J]. J Am Chem Soc, 2007, 129, 3830-3831.
    [49] Li,D.R.; Murugan,A.; Falck,J.R. Enantioselective, organocatalytic oxy-Michael addition toγ,δ-hydroxy-α,β-enones: Boronate-amine complexes as chiral hydroxide synthons[J]. J Am Chem Soc, 2008, 130, 46-48.
    [50] Greene,T.W.; Wuts,P.G..M. Protective groups in organic synthesis; John Wiley & Sons: New York, 1999; p 454.
    [51] Li,B.J.; Jiang,L.; Liu, M.; Chen, Y. C.; Ding, L. S.; Wu, Y. Asymmetric Michael addition of arylthiols toα,β-unsaturated carbonyl compounds catalyzed by bifunctional organocatalysts[J]. Synlett, 2005, 4, 603-606.
    [52] Rana,N. K.; Selvakumar,S.; Singh, V. K. Highly enantioselective organocatalytic sulfa-Michael addition toα,β-unsaturated ketones[J]. J Org Chem, 2010, 75, 2089-2091.
    [53] Liu,Y.; Sun,B.; Wang,B.; Wakem, M.; Deng, L. Catalytic asymmetric conjugate addition of simple alkyl thiols toα,β-unsaturated N-acylated oxazolidin-2-ones with bifunctional catalysis[J]. J Am Chem Soc, 2009, 131, 418-419.
    [54] Enders,D.; Hoffman,K. Organocatalytic asymmetric sulfa-Michael addition toα,β-unsaturated sulfonates[J]. Eur J Org Chem, 2009, 1665-1668.
    [55] Li,H.;Wang, J.; Zu,L.; Wang,W. Organocatalytic asymmetric conjugate addition of thioacetic acid toβ-nitrostyrenes[J]. Tetrahedron Letters, 2006, 47, 2585-2589.
    [56] Kimmel, K.L.; Robak, M.T.; Ellman, J.A. Enantioselective addition of thioacetic acid to nitroalkenes via N-sulfinyl urea organocatalysis[J]. J Am Chem Soc.2009, 131, 8754-8755.
    [1]林梦海.量子化学简明教程[M].北京:化学工业出版社,2005.
    [2] Hohenberg, P.; Kohn, W. Phys. Rev. B., 1964, 136, 964.
    [3] Kohn, W.; Sham, L. J. Self-Consistent Equations Ineluding Exehange and Correlation Effects [J]. Phys. Rev. A., 1965, 140, 1133-1138.
    [4] Slater, J. The self-consistent field for molecules and solids: Quantum theory of Molcules and Solids [M]. New York: McGraw-Hill, 1974, 4, 1-152.
    [5] Vosko, S. H.; Wik, L.; Nusair, M. Accurate spin dependent electron liquid correlation energies for local spin density.calculations: a critical analysis [J]. Can. J. Phys., 1980, 58, 1200-1211.
    [6] Becker, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys Rev A, 1988, 38, 3098-3100.
    [7] Perdew, J. P. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation [J]. Phys Rev B, 1986, 33, 8800-8802.
    [8] Lee, C.; Yang, W.; Parr, R. G.. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B, 1988, 37, 785-789.
    [9] Becker, A. D. Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction [J]. J. Chem. Phys, 1992, 97, 9173-9177.
    [10] Becke, A. D. Density-functional thermochemistry. 3. The role of exact exchange [J]. J. Chem. Phys. 1993, 98, 5648–5652.
    [11] Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. Gaussian-2 Theory for Molecular Energies of First- and Second-Row Compounds [J]. J. Chem. Phys., 1991, 94, 7221-7230.
    [12] Eyring, H. The Activated Complex and the Absolute Rate of Chemical Reactions [J]. Chem. Rev., 1935, 17, 65-77.
    [13] Fukui, K. Formulation of the reaction coordinate [J]. J. Phys. Chem., 1970, 74, 4161–4163.
    [14] Gonzalez, C.; Schlegel, H. B. An improved algorithm for reaction path following [J].J. Chem Phys, 1989, 90, 2154-2161.
    [15] Gonzalez, C.; Schlegel, H. B. Reaction path following in mass-weighted internal coordinates [J]. J. Phys. Chem., 1990, 94, 5523–5527.
    [16] Fukui, K.; Kato, S.; Fujimoto, H. Constituent analysis of the potential gradient alonga reaction coordinate. Method and an application to methane + tritium reaction[J]. J. Am. Chem. Soc. 1975, 97, 1-7.
    [17] Tachibana, A.; Fukui, K. Differential geometry of chemically reacting systems [J]. Theoret. Chim. Acta. 1978,49, 321-347.
    [18] Fukui, K.; Int. Variational principles in a chemical reaction.[J]. In. J. Quantum Chem. 1981, S15, 633-642.
    [19] Ishida, K.; Morokuma, K.; Komorniki, A. The intrinsic reaction coordinate. An ab initio calculation for HNC to HCN and H- + CH4 to CH4 + H-[J]. J. Chem. Phys. 1977, 66, 2153-2156.
    [20] Wong, M. W.; Frisch, M. J.; Wiberg, K. B. Solvent effects. 1. The mediation of electrostatic effects by solvents [J]. J. Am. Chem. Soc. 1991, 113, 4776-4782.
    [21] Wong, M. W.; Wiberg, K. B.; Frisch, M. J. Solvent effects. 2. Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid [J]. J. Am. Chem. Soc. 1992, 114, 523-529.
    [22] Wong, M. W.; Wiberg, K. B.; Frisch, M. J. Solvent effects. 3. Tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution: an ab initio SCRF study [J]. J. Am. Chem. Soc., 1992, 114, 1645-1652.
    [23] Wong, M. W.; Wiberg, K. B. Hartree-Fock second derivatives and electric field properties in a solvent reaction field: Theory and application [J]. J. Chem. Phys. 1991, 95, 8991-8998.
    [24] Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model [J]. Chem. Phys. Lett., 1996, 255, 327-335.
    [25] Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Ab initio study of ionic solutions by a polarizable continuum dielectric model [J]. Chem. Phys. Lett., 1998, 286, 253-260.
    [26] Cancès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for thepolarizable continuum model: Theoretical back-ground and applications to isotropic and anisotropic dielectrics [J]. J. Chem. Phys. 1997, 107, 3032-3041.
    [27] Barone, V.; Cossi, M.; Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J]. J. Chem. Phys., 1997, 107, 3210-3221.
    [1] Greene, T. W.; Wuts, P. G.. M. Protective groups in organic synthesis [M].John Wiley & Sons: New York, 1999, 454.
    [2] Quaglia, M. G.; Donati, E.; Desideri, N.; Fanali, S.; D’Auria, F. D.; Tecca, M. Chiral discrimination by HPLC and CE and antifungal activity of racemic fenticonazole and its enantiomers[J].Chirality 2002, 14, 449-454.
    [3] Lamb, D. C.; Kelly, D. E.; Baldwin, B. C.; Gozzo, F.; Boscott, P.; Richards, W. G.; Kelly, S. L. Differential inhibition of Candida albicans CYP51 with azole antifungal stereoisomers[J].FEMS Microbiol.Lett.1997, 149, 25-30.
    [4] Foguet, R.; Ramentol, J.; Guglietta, A.; Palacin, C.; Anglada, L. (Ferrer Internacional S.A., Spain) PCT Appl. WO 03/068770, February 4, 2003.
    [5] Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M.A Catalytic Michael Addition of Thiols toα,β-Unsaturated Carbonyl Compounds:Asymmetric Michael Addition and Asymmetric Protonations[J]. J.Am.Chem.Soc.1998, 120, 4043-4044.
    [6] Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K.Steric Tuning of Reactivity and Enantioselectivity in Addition of Thiophenol to Enoates Catalyzed by an External Chiral Ligand[J]. J.Am.Chem.Soc.1997, 119, 12974-12975.
    [7] Wabnitz, T.C.; Spencer, J.B. A General, Br?nsted Acid-Catalyzed Hetero-Michael Addition of Nitrogen, Oxygen, and Sulfur Nucleophiles[J].Org.Lett.2003, 5, 2141-2144.
    [8] Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng, L. Catalytic Asymmetric Conjugate Addition of Simple Alkyl Thiols toα,β-Unsaturated N-Acylated Oxazolidin-2-ones with Bifunctional Catalysts[J]. J.Am.Chem.Soc.2009, 131, 418-419.
    [9] Abe, A.M.M.; Sauerland, S.J.K.; Koskinen, A.M.P. Highly Enantioselective Conjugate Addition of Thiols Using Mild Scandium Triflate Catalysis[J]. J.Org.Chem.2007, 72, 5411-5413.
    [10] Enders, D.; Luttgen, K.; Narine, A.A. Asymmetric Sulfa-Michael Additions[J].Synthesis 2007, 7, 959-980.
    [11]Rana, N.K.; Selvakumar, S.; Singh, V.K. Highly Enantioselective OrganocatalyticSulfa-Michael Addition toα,β-Unsaturated Ketones[J].J.Org.Chem.2010, 75, 2089-2091.
    [12] Taylor, M. S.; Jacobsen, E. N. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors [J]. Angew.Chem.Int.Ed. 2006, 45, 1520-1543.
    [13] Connon, S. J. Organocatalysis Mediated by (Thio)urea Derivatives[J].Chem. Eur. J. 2006, 12, 5418-5427.
    [14] Takemoto, Y. Recognition and activation by ureas and thioureas: stereoselective reactions using ureas and thioureas as hydrogen-bonding donors [J]. Org. Biomol.Chem.2005, 3, 4299-4306.
    [15] Schreiner, P. R. Metal-free organocatalysis through explicit hydrogen bonding interactions [J].Chem. Soc. ReV. 2003, 32, 289-296.
    [16] Hmza, A.; Schubert, G.; So?s, T.; Pápai, I. Theoretical Studies on the Bifunctionality of Chiral Thiourea-Based Organocatalysts: Competing Routes to C-C Bond Formation [J]. J.Am.Chem.Soc.2006, 128, 13151-13160.
    [17] Zhu, R.X.; Wang, R.X.; Zhang, D.J.; Liu, C.B. A Density Functional Theory Study on the Ring-Opening Polymerization of D-Lactide Catalyzed by a Bifunctional-Thiourea Catalyst[J]. Aust.J.Chem.2009, 62, 157-164.
    [18] Zhu, R.X.; Zhang, D.J.; Wu, J.; Liu, C.B. Theoretical study of the bifunctional-urea catalyzed Michael reaction of 1,3-dicarbonyl compounds and nitroolefins: reaction mechanism and enantioselectivity[J]. Tetrahedron: Asymmetry 2006, 17, 1611-1616.
    [19] Zhu, R.X.; Zhang, D.J.; Wu, J.; Liu, C.B. Theoretical study on the enantioselective a-amination reaction of 1,3-dicarbonyl compounds catalyzed by a bifunctional-urea[J]. Tetrahedron: Asymmetry 2007, 18, 1655-1662.
    [20] Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. Enantio- and Diastereoselective Michael Reaction of 1,3-Dicarbonyl Compounds to Nitroolefins Catalyzed by a Bifunctional Thiourea[J].J.Am.Chem.Soc.2005, 127, 119-125.
    [21] Hoashi, Y.; Okino, T.; Takemoto, Y. Enantioselective Michael Addition toα,β- Unsaturated Imides Catalyzed by a Bifunctional Organocatalyst[J].Angew.Chem.Int.Ed.2005, 44,4032-4035.
    [22] Li, H.; Wang, J.; Zu, L.; Wang, W. Organocatalytic asymmetric conjugate addition ofthioacetic acid toβ-nitrostyrenes[J].Tetrahedron 2006, 47, 2585-2589.
    [23] Robak, M.T.; Trincado, M.; Ellman, J.A. Enantioselective Aza-Henry Reaction with an N-Sulfinyl Urea Organocatalyst[J].J.Am.Chem.Soc.2007,129, 15110-15111.
    [24] Kimmel, K.L.; Robak, M.T.; Ellman, J.A. Enantioselective addition of thioacetic acid to nitroalkenes via N-Sulfinyl urea organocatalysis[J]. J.Am.Chem.Soc.2009, 131, 8754-8755.
    [25] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, Revison B.03; Gaussian, Inc.: Pittsburgh, PA, 2003.
    [26] (a) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys., 1993, 98, 5648-5652;. (b) Becke, A. D. Density -functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988, 38, 3098-3100.
    [27] Lee, C.; Yang, W.; Parr, R. G. Charm Spectroscopy via Electron-Positron Annihilation [J]. Phys. Rev. B, 1988, 37, 785-788.
    [28] Tapia, O. Solvent effect theories: Quantum and classical formalisms and their applications in chemistry and biochemistry [J]. J Math Chem 1992,10, 139-181.
    [29] Tomasi,J.; Persico,M. Molecular Interactions in Solution:An Overview of Methods Based on Continuous Distributions of the Solvent [J]. Chem. Rev., 1994, 94,2027-2094.
    [30] Simkin, B.Y.; Sheikhet, I. Quantum Chemical and Statistical Theory of Solutions—AComputational Approach, Ellis Horwood, London, 1995.
    [31] Cances, E.; Mennunci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical back-ground and applications to isotropic and anisotropic dielectrics [J]. J. Chem. Phys., 1997, 107,3032-3041.
    [32] Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model [J]. Chem. Phys. Lett., 1996, 255,327-335.
    [33] Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model[J]. J Comput Chem 1998, 19, 404-417.
    [34] Chen, D. Z.; Lu, N.; Zhang, G. Q.; Mi, S. Z. The mechanism of enantioselective control of an organocatalyst with central and axial chiral elements[J]. Tetrahedron: Asymmetry 2009, 20, 1365-1368.
    [1] Horiguchi, M.; Kandatsu, M. Isolation of 2-Aminoethane Phosphonic Acid from Rumen Protozoa [J] Nature 1959, 184, 901-902.
    [2] Quin,L.D. AGuide to Organophosphorus Chemistry[J]. Wiely,New York.NY.2000, PP.351-386.
    [3] Palacios, F.; Alonso, C.; de Los Santos, J. M. Synthesis ofβ-Aminophosphonates and–Phosphinates[J] Chem. Rev. 2005, 105, 899– 931.
    [4] Palacios, F.; Alonso, C.; de Los Santos J. M. in Enantioselective Synthesis ofβ-Amino Acids, 2nd ed. (Eds.: E. Juaristi, V. A. Soloshonok), Wiley, Hoboken,NJ, 2005, pp. 277– 318.
    [5] Metcalf, W.W.; van der Donk, W. A. Biosynthesis of Phosphonic and Phosphinic Acid Natural Products [J] Annu. Rev. Biochem. 2009, 78, 65– 94.
    [6] Lefebvre, I. M.; Evans, S. A. Asymmetric Synthesis ofα-Amino Phosphonic Acids Employing Versatile Sulfinimines and Sulfonimines[J]. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 144, 397-400.
    [7] Gr?ger, H.; Hammer, B. Catalytic Concepts for the Enantioselective Synthesis of -Amino and -Hydroxy Phosphonates[J]. Chem.Eur. J. 2000, 6, 943-948.
    [8] Ma, J.A. Catalytic asymmetric synthesis ofα- andβ-amino phosphonic acid derivatives [J]. Chem. Soc. ReV. 2006, 35, 630-636.
    [9] Enders, D.; Saint-Dizier, A.; Lannou, M.-I.; Lenzen, A. The Phospha-Michael Addition in Organic Synthesis[J]. Eur. J. Org. Chem. 2006, 2006, 29-49.
    [10] Mandal, T.; Samanta, S.; Zhao, C.G. Organocatalytic Highly Enantioselective Nitroaldol Reaction ofα-Ketophosphonates and Nitromethane[J]. Org. Lett.2007, 9, 943– 945.
    [11] Chen, X.; Wang, J.; Zhu, Y.; Shang, D.; Gao, B.; Liu, X.; Feng, X.; Su, Z.;. Hu, C. A Secondary Amine Amide Organocatalyst for the Asymmetric Nitroaldol Reaction of -Ketophosphonates[J]. Chem. Eur. J. 2008, 14, 10896– 10899.
    [12] Chen, Z.; Yakura, K.; Matsunaga, S.; Shibasaki, M. Direct Catalytic Asymmetric Mannich-Type Reaction ofβ-Keto Phosphonate Using a Dinuclear Ni2?Schiff BaseComplex[J]. Org. Lett.2008, 10, 3239–3242.
    [13] Wilt, J. C.; Pink, M.; Johnston, J. N. A diastereo- and enantioselective synthesis ofα-substituted anti-α,β-diaminophosphonic acid derivatives[J]. Chem. Commun. 2008, (35):4177– 4179.
    [14] Doherty, S.; Knight, J. G.; Bell, A. L.; El-Menabawey, S.; Vogels, C. M.;. Decken, A; Westcott, S. A. Rhodium complexes of (R)-Me-CATPHOS and (R)-(S)-JOSIPHOS: highly enantioselective catalysts for the asymmetric hydrogenation of (E)- and (Z)-β-aryl-β-(enamido)phosphonates[J]. Tetrahe-dron: Asymmetry 2009, 20, 1437– 1444.
    [15] Enders, D.; Saint-Dizier, A.; Lannou, M. I.; Lenzen, A. The Phospha-Michael Addition in Organic Synthesis[J]. Eur. J. Org. Chem. 2006, 2006(1): 29– 49.
    [16] Pachamuthu, K.; Figueroa-Perez, I.; Ali, I. A. I.; Schmidt, R. R. Synthesis of Glycosyl Phosphonates by Michael-Type Addition to 2-Nitroglycals[J]. Eur. J. Org. Chem. 2004, 2004(19): 3959-3961.
    [17] Enders, D.; Tedeschi, L.; Foerster, D. Asymmetric Michael Additions of a Chiral Phosphite to Nitroalkenes and Knoevenagel Acceptors [J]. Synthesis 2006, (9): 1447– 1460.
    [18] Rai, V.; Namboothiri, I. N. N. Enantioselective conjugate addition of dialkyl phosphites to nitroalkenes[J]. Tetrahedron: Asymmetry 2008, 19, 2335– 2338.
    [19] Wang,J.; Heikkinen,L.D.; Li,H.; Zu,L.; Jiang,W.; Xie,X.; Wang,W. Quinine-Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite to Nitroolefins:Synthesis of Chiral Precursors ofα-Substitutedβ-Aminophosphonates[J]. Adv.Synth.Catal.2007, 349, 1052-1056.
    [20] Terada,M.; Ikehara,T.; Ube,H. Enantioselective 1,4-Addition Reactions of Diphenyl Phosphite to Nitroalkenes Catalyzed by an Axially Chiral Guanidine[J]. J.Am.Chem.Soc.2007, 129, 14112-14113.
    [21] Malerich,J.P.; Hagihara, K .; Rawal,V.H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts[J]. J. Am. Chem. Soc. 2008, 130, 14416–14417.
    [22] Dai, L.; Wang, S.X.; Chen, F.E. A Bifunctional Cinchona Alkaloid-SquaramideCatalyst for the Highly Enantioselective Conjugate Addition of Thiols to trans-Chalcones[J]. Adv. Synth. Catal. 2010, 352, 2137– 2141
    [23] Wang,Y.F.; Zhang,W.; Luo,S.P.; Zhang,G.C.; Xia,A.B.; Xu,X. S.; Xu,D.Q. Highly Enantioselective Organocatalytic Michael Addition of 2-Hydroxy-1,4-naphthoquinone toβ,γ-Unsaturatedα-Oxo Esters[J]. Eur.J.Org.Chem. 2010, 4981–4985.
    [24] Zhu,Y.; Malerich, J.P.; Rawal,V.H. Squaramide-Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite to Nitroalkenes[J]. Angew. Chem. 2010, 122, 157–160.
    [25] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, Revison B.03; Gaussian, Inc.: Pittsburgh, PA, 2003.
    [26] (a) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys., 1993, 98, 5648-5652; (b) Becke, A. D. Density -functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988, 38, 3098-3100.
    [27] Lee, C.; Yang, W.; Parr, R. G. Charm Spectroscopy via Electron-Positron Annihilation [J]. Phys. Rev. B, 1988, 37, 785-788.
    [28] Tapia, O. Solvent effect theories: Quantum and classical formalisms and their applications in chemistry and biochemistry [J]. J Math Chem 1992, 10, 139-181.
    [29] Tomasi,J.; Persico,M. Molecular Interactions in Solution:An Overview of MethodsBased on Continuous Distributions of the Solvent [J]. Chem. Rev., 1994, 94, 2027-2094.
    [30] Simkin, B.Y.; Sheikhet, I. Quantum Chemical and Statistical Theory of Solutions—A Computational Approach, Ellis Horwood, London, 1995.
    [31] Cances, E.; Mennunci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical back-ground and applications to isotropic and anisotropic dielectrics [J]. J. Chem. Phys., 1997, 107, 3032-3041.
    [32] Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model [J]. Chem. Phys. Lett. 1996, 255, 327-335.
    [33] Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model[J]. J Comput Chem 1998, 19, 404-417.
    [34] Chen, D. Z.; Lu, N.; Zhang, G. Q.; Mi, S. Z. The mechanism of enantioselective control of an organocatalyst with central and axial chiral elements[J]. Tetrahedron: Asymmetry 2009, 20, 1365-1368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700