基于Fryze功率定义的有功电流检测与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子装置的飞速发展与广泛应用,电网中的谐波污染也日趋严重,各种基于电力有源滤波器的谐波抑制和无功功率补偿方法层出不穷,有源滤波器具有实时性和准确性的工作特点,如果再结合信号处理和控制技术等学科的优点,就可在实现对有源电力滤波器功能优化的同时,提高有源电力滤波器的性能。目前应用于有源滤波器的功率理论有很多种,无论从电路实现、计算量、物理意义以及公平对等意义上而言,Fryze时域功率理论都有着其独特的优势所在。
     本文首先从Fryze时域功率定义法入手,分别讨论了应用于单相和三相电路的时域功率理论,并且对广义无功电流进行了分解,同时介绍了以此功率理论为基础发展形成的FBD功率理论体系。
     本文提出了均值滤波器的有功电流实时检测方法,该滤波器为一具有线性相位的有限冲激响应(FIR)数字滤波器,可以使得应用于三相电路的控制系统在三分之一个周期处就跟随电网的变化,单相电路的控制系统在一个周期处就跟随电网的变化;为了进一步提高检测的动态响应,引入电流检测量作为反馈量,在理论分析的基础上,本文对该方法进行了仿真,仿真结果表明反馈环节的加入可以将动态过程缩短三分之二,缩短到半个周期。
     最后,基于以上方法的研究,在DSP检测装置中对其进行了实验验证,实验表明了以上各种方法的仿真结果的正确性。
With the development abroad application of the electric power electron equipments, the harmonics pollution in the electric power net is more serious day by day. All kinds of methods based on the active filter to restrain the harmonics and to compensate the reactive power emerge in endlessly. Active filter having real-time and veracity, taking advantage of the virtue of the signal processing and controlling technology, not only optimize the function of the active filter but improve the performance of the active.
    The thesis starts with the Fryze time-domain power definition, discusses the time-domain power theory applied to the single-phase and three-phase circuits. Then it decomposes the generalized reactive current. Recommend the FBD power theory system based on the Fryze time-domain power theory.
    The thesis puts forward an active current detection based on the mean filter. The filter is a finite impulse response (FIR) digital filter. It makes that the control system can follow the power system after three-one period in three-phase system, one period in single-phase system. To advance the dynamic response ulteriorly, the thesis takes the output as the feedback. The result is that the dynamic response is shorten to two third of the period.
    At last, the correctness and validity of these proposed measurement approaches put forward by the thesis are clearly shown by the simulation studies and the experiments.
引文
[1] 吴竞昌.供电系统谐波.中国电力出版社.1998
    [2] 许克明、徐云、刘付平.电力系统高次谐波.重庆大学出版社.1991
    [3] 王兆安、杨君、刘进军.谐波抑制和无功功率补偿.机械工业出版社.1998
    [4] Piotr Filipski. A New Approach to Reactive Current and Reactive Power Measurement in Nonsinusoidal Systems. IEEE Transactions on Instrumentation and Measurement. Vol. IM-29, No. 4, 1980, pp. 423-426
    [5] Chester. H. Page. Reactive Power in Nonsinusoidal Situations. IEEE Transactions on Instrumentation and Measurement. Vol. IM-29, No. 4, 1980, pp. 420-423
    [6] S. Fryze. Wirk, Blind, und Scheinleistung in Elektrischen Stromkreisen mit nichtsinusoidalem Verlauf von Strom und Spannung. Elektrotech Zeitschrift. Vol. 53, No. 53, 1932, pp. 596-599
    [7] S. Fryze. Wybrane Zagadnienia Elektrotechniki. Warsaw, Poland: PWN, 1996
    [8] 王耀德、魏炜.畸变电流的分析与检测.东南大学学报,1996(3):68-75
    [9] Piotr Filipski. The Measurement of Distortion Current and Distortion Power. IEEE Transactions on Instrumentation and Measurement. Vol. IM-33, No. 1, 1984, pp. 36-40
    [10] L. S. Czarnecki. Considerations on the Reactive Power in Nonsinusoidal Situitions. IEEE Transactions on Instrumentation and Measurement. Vol. IM-34, No. 4, 1985, pp. 399-404
    [11] 王群、王兆安.时域中非正弦周期电流的分解及其各分量的测量.仪器仪表学报.2000(4):371-375
    [12] 王群、王兆安、刘进军.非正弦周期电流的频域和时域分解方法.电力系统自动化.2000(1):21-25
    [13] (美)阿罕麦得(N.Ahmed)、罗(K.R.Rao).数字信号处理中的正交变换.胡正名、陆传赉译.人民邮电出版社.1979
    [14] J. H. R. Enstin. Measurement and Compensation of Fictitious Power under
    
    Nonsinusoidal Voltage and Current Conditions. IEEE Transactions on Instrumentation and Measurement. Vol. IM-37, No. 3, 1985, pp. 403-408
    [15] Jacques L. Willems. A New Interpretation of the Akagi-Nabae Power Components for Nonsinusoidal Three-Phase Situations. IEEE Transactions on Instrumentation and Measurement. Vol. IM-41, No. 4, 1992, pp. 523-527
    [16] L. S. Czarnecki. Reactive and Unbalanced Currents Compensation in Three Phase Asymmetrical Circuits under Nonsinusoidal Conditions. IEEE Transactions on Instrumentation and Measurement. Vol. IM-38, 1989, pp. 754-759
    [17] M. Depenbrock. The FBD-Method, A Generally Applicable tool for Analyzing Power Relations. IEEE Transactions on Power System. Vol. 8, No. 2, 1993, 381-387
    [18] Akagi H. Trends in Active Power Line Conditioners. IEEE Transactions on Power Electron. Vol. 9, No3, 1994, pp. 263-268
    [19] Akagi H、Kanazawa Y、Nabae A. Generalized Theory of the Instantaneous Reactive Power in Three-Phase Circuits. IEEE & JIEE. Proceedings IPEC Tokyo: IEEE, 1983, 1375-1386
    [20] L. S. Czarnecki. Comments on "Measurement and Compensation of Fictitious Power under Nonsinusoidal Voltage and Current Considerations" IEEE Transactions on Power Electron. Vol. 38, 1989, pp. 839-841
    [21] L. S. Czarnecki. Scattered and Reactive Current, Voltage, and Power in Circuits with Nonsinusoidal Waveforms and Their Compensation. IEEE Transactions on Power Electron. Vol. 38, No. 3, 1991, pp. 563-567
    [22] L. S. Czarnecki、W. Swietlicki. Powers in Nonsinusoidal Networks: Their Interpretation, Analysis, and Measurement. IEEE Transactions on Power Electron. Vol. 39, No. 2, 1990, pp. 340-346
    [23] L. S. Czarnecki. Distortion Power in Systems with Nonsinusoidal Voltage. IEE Proceeding. pt.B. Vol.139, No. 3, 1992, 276-280
    [24] L. S. Czarnecki. What is Wrong with the Budeanu Concept of Reactive and Distortion Power and Why is Should be Abandoned. IEEE Transactions on Power Electron. Vol. 36, 1987, pp. 828-837
    [25] L. S. Czarnecki. Minimization of Reactive Power under Nonsinusoidal
    
    Conditions. IEEE Transactions on Power Electron. Vol. 36, No. 1, 1987, pp. 18-22
    [26] Akagi H、Kanazawa Y、Nabae A. Instantaneous Reactive Power Compensator Comprising Switching Devices without Energy Storage Components [J] . IEEE Trans. on IA. 1984, Vol. 20, No. 3, 625-630
    [27] Alexander. E. E. Powers in Nonsinusoidal Situations A Review of Definitions and Physical Meaning. IEEE Transactions on Power Delivery. Vol. 5, No. 3, 1990, 1377-1389
    [28] 李庚银、陈志业、丁巧林、王听伟.dq0坐标系下广义瞬时无功功率定义及其补偿.中国电机工程学报.Vol.16,No.3,1996,pp.176-179
    [29] 孙士乾、叶受读.PARK变换与瞬时无功功率.浙江大学学报(自然科学版).Vol.28,No.5,1994,pp.570-576
    [30] M. Depenbrock. The FBD-method, A Generally Applicable Tool for Analyzing Power Relations. IEEE Transactions on Power Systems. Vol. 8, NO. 2, 1993, pp. 381-387
    [31] M. Depenbrock. Quantities of A Multiterminal Circuit Determined on The Basis of Kirchhoff's Laws. 4th Workshop on Power Definition and Measurements under Nonsinusoidal Conditions. Milano, 1997, pp. 29-35
    [32] Luo Shiguo、Hou Zhengcheng. An Adaptive Detecting Method for Harmonic and Reactive Current [J] . IEEE Trans on Industrial Electronics. 1995, 42(1): 85-89
    [33] 查晓明.统一电能质量调节器(UPDC)的理论研究及其实现.武汉大学博士学位论文.2001
    [34] 张俊敏.电力有源滤波中的几种谐波实时检测方法研究.武汉大学硕士学位论文.2003
    [35] 孙卓.谐波抑制、无功补偿技术进展与电力机车整流-斩波方案的研究.西北工业大学硕士学位论文.2000
    [36] 刘开培、张俊敏、宣扬.基于重采样理论和均值滤波的三相电路谐波检测方法.中国电机工程学报.2003,23(10):78-82
    [37] 李庚银、陈志业、丁巧林.用于有源补偿器的广义瞬时无功电流实时检测方法.电力系统自动化.1997(10):28-31
    [38] 李文娟.关于单相非正弦电路的功率分解.电网技术.1995,19(2):43-46
    
    
    [39] 王世一.数字信号处理.北京理工大学出版社.1997
    [40] 陶骏、刘正之.谐波及无功电流检测方法的研究.电力系统自动化.2001(1):31-34
    [41] 薛蕙、杨仁刚.改进的瞬时无功和谐波电流检测理论.电力系统及其自动化学报.2002,Vol.14,NO.2,pp.8-11
    [42] 王群,姚为正,王兆安.低通滤波器对谐波检测电路的影响.西安交通大学学报.1999,Vol.33,No.4,pp.5-8
    [43] 王群、姚为正、王兆安.高通和低通滤波器对谐波检测电路检测效果的影响研究.电工技术学报.1999,Vol.14,No.5,pp.22-26
    [44] 刘开培、李俊娥.正弦信号干扰下低通带限型频谱信号的采样.仪器仪表学报.2003,Vol.24,No.1,pp.89-91
    [45] 刘开培等.正弦信号干扰下带通信号的采样.数据采集与处理.2002,Vol.17,No.3,pp.300-304
    [46] 刘和平、王维俊、江渝、邓力.TMS320LF240xDSP C语言开发应用.北京航空航天大学出版社.2002
    [47] 刘和平、严利萍、张学锋、卓清锋.TMS320LF240xDSP结构、原理及应用.北京航空航天大学出版社.2002
    [48] 张旭俊、张春强、徐福生.非正弦波形下功率测量技术的探讨.电力自动化设备.2002,Vol.22,No.5,pp.67-69
    [49] 张旭俊.非正弦波形下各种无功功率定义的剖析.华中电力.2001,Vol.14,No.5,pp.5-7
    [50] 王茂海、刘会金.通用瞬时功率理论的完善与负载性能评价指标的建立.中国电机工程学报.2002,Vol.22,No.7,81-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700