牵引变电站综合补偿方案的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力机车牵引比蒸气机车牵引和内燃机车牵引有许多优越性,所以电气化铁道在世界各国都得到了快速发展。但由于电力牵引负荷在运行中要产生大量的负序电流和谐波电流,这些电流注入电网后,会引起电力系统的电压、电流不对称和波形畸变,使电能质量下降,严重时还会威胁到电力系统的安全运行。因此,解决电气化铁道对电力系统的“污染”问题将是一个非常有意义的研究课题。
     本文首先分析了电力牵引负荷产生的负序电流、谐波电流及低功率因数对电力系统和电力用户的影响,介绍了目前国内外对电气化铁道综合补偿的主要技术方案,并对各种技术方案进行了评价。然后以国内电气化铁道广泛采用YNd11接线的牵引变电站为研究对象,针对不同情况,深入研究了牵引变电站的几种综合补偿方案。
     要治理电气化铁道对电力系统的污染,就必须了解电气化铁道的负荷特性,掌握其变化规律。本文列举了电力机车几种主要车型的结构以及它们产生的谐波电流。从分析YNd11接线变压器的牵引变电站负荷电流在变压器各绕组中分布的情况入手,导出了电气化铁道注入电力系统的负序电流、谐波电流的相关公式,得出了负序电流、谐波电流随电力机车负荷变化而变化的规律。为了便于分析综合补偿方案的效果,论文还给出了负序及谐波的有关标准规定。
     滤波器除具有滤波作用外,还具有基波下向系统输送无功的特性。因此,合理设计滤波器,可使牵引变电站的功率因数及谐波同时满足要求。本文阐述了单调谐滤波器的结构及工作原理,列出了滤波器设计所需要的基本参数和技术参数的计算公式,并提出以设备投资最小为目标函数,以功率因数和滤波率为约束的滤波器优化设计数学模型。文中介绍了求解具有约束条件的非线性数学模型的算法——广义拉格朗日乘子算法的原理及步骤,即如何把具有约束条件的非线性数学模型转化为无约束条件的非线性数学模型进行求解;同时还介绍了无约束的非线性数学模型的求解算法——步长加速法的原理及步骤。利用C++Builder5.0对某牵引变电站进行了滤波器优化设计,结果表明滤波效果良好,在功率因数满足要求的前提下,可使谐波低于国标标准规定的限值。
     随着技术的发展,新型的电力机车上已开始采用车载滤波器和变频调速技术,从而使谐波的问题有所缓解。但是随着电力牵引负荷的逐年增加,负序的问题却越来越突出。目
    
    郑州大学工学硕士论文
    前牵引变电站在进行综合补偿时,普遍忽视对负序电流的抑制。本文提出了在满足牵引变
    电站无功补偿的前提下,使注入电力系统的负序电流最小的两相优化补偿方案。文中分析
    了两供电臂负荷的负荷特性,对两供电臂正常运行时变压器各绕组中的功率因数及电压损
    失进行公式推导及理论分析,得出了滞后相多补偿无功容量,引前相少补偿无功容量有利
    于提高电压质量的结论。进而给出了以注入电力系统的负序电流最小为目标函数,以功率
    因数及各相电压为约束条件,确定各相补偿容量的数学模型。利用c++B uilders.o编制了
    根据负荷变化而调节两相补偿容量的程序。计算结果表明,两相优化补偿和常规补偿相比,
    在功率因数达到同一给定值时,优化补偿对负序电流的抑制具有明显的效果,从而起到提
    高电能质量的作用。
     电力牵引负荷属于典型的不对称负荷,利用斯坦美兹(Steinmetz)原理,可以对其
    进行平衡化处理。文中提出了一种基于斯坦美兹原理的三相补偿方案,导出了牵引变电站
    各相的补偿容量和电流的计算公式,并采用C++ Bui lders.o编制了计算程序。给定功率因
    数的期望值和两供电臂的负荷后,便可算出各相所需的补偿量。计算结果表明,该方案除
    能达到理想的无功补偿效果外,还能消除负序电流。这对于提高电能质量将是很有意义的。
     由于220kV电网比1 IOkV电网的短路容量大,对于负序和谐波有较强的承受能力,通
    过提高牵引变电站的供电电压,还可减少其注入电网的负序电流和谐波电流,进而减少对
    电力系统的影响。本文分析了哈大线电气化铁道采用的22OkV两相供电方案所存在的不足,
    从缓解负序电流和谐波电流的角度讨论了采用220kV电源向牵引变电站供电的可行性,并
    给出采用220kv三相供电的接线方案。
Nowadays, the electrified locomotives have an extremely rapid development all over the world because of its great advantage compared to internal-combustion engine. But this type of load during its operation generates tremendous negative sequence and harmonic currents which flow in the power system causing voltage, current asymmetric and wave distortion. This makes the power quality become worse. At present, with the development of electrified railway, the pollution engendered by the electrified locomotive is becoming more and more serious, even threats the safe and economic operation of the power system. Hence, it is a significative subject to study the comprehensive compensation of traction substation.
    Firstly, the harm to the power system and customers caused by electrified locomotives due to their characteristics of lower power factor, negative sequence current and harmonic currents is analyzed in the thesis. Secondly, the main several comprehensive compensation schemes of traction substation are introduced and evaluated. Finally, based on the widely used transformer with Yndll connection in traction substation, intensive observation is made on several compensation plans according to different conditions.
    In order to deal with the pollution caused by electrified locomotive, its characteristics and rule of change must be mastered. In this thesis, the configuration of several main types of electric locomotive and harmonic currents generated by them are illustrated. Based on the analysis of the loading currents distributed in each phase winding of traction transformer, the corresponding formulas are deduced, these formulas can define how many negative sequence and harmonic currents swarm into power system from the transformer's high voltage side and how these change versus the loads. In order to assay the result of different methods, the relevant parts of National Standards of Power Quality are given, too.
    Apart from filtering, filters can provide some fundamental reactive power to the power system. Hence, a filter could be designed to increase power factor of traction substation and decrease the harmonic currents. The configuration and principle of single-tuned passive filters are introduced, the basic parameters and relevant formulas are listed for the filter determination. Then a mathematic model for the filter optimization design is set up. The objective function is to minimize the total investment with qualified power factor and filtering rate. This is a nonlinear optimization problem. In this thesis, the extended Lagrange multiplication technique is applied. More over, the step-acceleration method is introduced to deal with nonlinear problem without constraints. As an example, the filter optimization design for traction substation is carried out using the C++ Builder 5.0. The designed filter works well. With the power factor satisfied, the harmonic currents are reduced to be lower than the required limit
    s in the National Standards of Power Quality.
    With the installation of filter on locomotives and the development of frequency converter, harmonic currents caused by the electric locomotive have been relieved. With the loads of locomotives increasing, the problems of negative sequence are becoming more and more noticeable that are ignored when traction substation is comprehensively compensated. In order to
    
    
    
    deal with the problem, an two-phase optimization compensation plan is put forward in this thesis. It is to increase power factor and minimize the injected negative sequence currents. After the analysis of the characteristics of loads in the two power supplying arms, power factor, as well as the voltage loss in each phase of traction transformer, a conclusion is achieved that it is reasonable to over-compensate the lagging phase and less-compensate the leading phase. According to this analysis a mathematic model is set up aimed at minimizing the negative sequence currents with the constraints for power factor and each phase voltage considered, and the compensation capacity of each phase is determined. F
引文
[1] 吴竟昌,孙树勤等.电力系统谐波.水利电力出版设,1988.11
    [2] 王兆安,杨君等.谐波抑制和无功功率补偿.机械工业出版社,1999.4
    [3] 林海雪.电力系统的三相不平衡.中国电力出版社,1998.5
    [4] 周勇.电网谐波源分析.中国人口出版社,1995.6
    [5] 陈珩.电力系统稳态分析(第二版).中国电力出版社,1995.11
    [6] 李光琦.电力系统暂态分析(第二版).中国电力出版社,1993.6
    [7] 曹建猷.电气化铁道供电系统.中国铁道出版社,1993.3
    [8] 铁道部电气化工程局电气化勘测设计院.电气化铁道设计手册——牵引供电系统.中国铁道出版社,1988.12
    [9] 赵书强,梁志瑞等.采用静止补偿器抑制电铁负序电流的研究.华北电力技术,1995 No.5
    [10] 陈柏超,陈维肾.磁阀式可控电抗器的数学模型及特性.武汉水利电力大学学报,1995.6
    [11] 尹忠东,陈柏超等.磁阀式可控电抗器的研究.变压器,1998.7
    [12] 李群湛,贺建闽.单调谐滤波器优化设计及滤波效果.铁道学报,1995.6
    [13] 王铮.无功补偿容量的确定.电工技术杂志,2002.9
    [14] 刘永和,李巴津等.谐波抑制,无功补偿,不对称负载平衡化的统一控制策略(一).内蒙古工业大学学报,1998.No.3
    [15] 贺建闽,李群湛.用于同相供电系统的对称补偿技术.铁道学报,1998.12
    [16] 张力民.电气化铁路无功补偿给谐波治理方案研究.牵引供电系统无功给综合补偿学术会议论文集,2000.10
    [17] 周志刚,钱植之.采用磁阀式可控电抗器MVCR的牵引变电所无功动态补偿装置.牵引供电系统无功给综合补偿学术会议论文集,2000.10
    [18] 朱儒楷,黄浩等.非线性规划.矿业大学出版社,1990
    [19] 甘应爱,田丰等.运筹学.清华大学出版设,2001
    [20] 朱革兰,任震.无源电力滤波器的最小容量优化设计.华南理工大学学报(自然科学版),2002.3
    [21] 钱照明,叶忠明等.谐波抑制技术.电力系统自动化,1997.10
    [22] 潘艳,刘连光等.补偿电容器串联电抗对无源LC滤波器性能的影响.电网技术,2001.7
    [23] 王庆平,陈超英等.无源滤波器设计的优化方法及其仿真研究.电网技术,2001.10
    [24] IEC61000-3-6 Technical Report-Type 3, Assessment c emission limits for Distorting loads in M V and H V power sys
    
    
    [25] Cheng Hao-zhong, Liao Pei-hong. Optimal Selection of Parameters in Electric Power Filter. [J].Power System Technology. 1995,(10):42-47.
    [26] 魏晓光,石新春等.无源滤波器参数的优化设计.华北电力大学学报,2003.5
    [27] Roman TGS, Ubeda JR. Power quality regulation in Argentina, filter and harmonics [J]. IEEE Trans. on Power
    [28] 王力法,张新黔.电铁谐波综合治理设计思路探索.四川电力技术,2003.3
    [29] 熊晔华.哈尔滨至大连电气化铁路供电系统.东北电力技术,2002,No.2
    [30] U zuka T, H ase S, Mochinaga Y. Development of Static Voltage Fluctuation Compensator for AC Electric Railway Using Self-eommutated Inverters[J]. Railway Technical Research Institute Quarterly Report, 1997, 38(4):218-223
    [31] 吴命利.牵引变电所采用220 kV进线的优越性,铁道学报,2001.6
    [32] 周勇,刘中元等.牵引变压器负序电流的分析.变压器,2003.2
    [33] 周勇,王绪雄等.阻抗匹配平衡变压器的负序电流.郑州大学学报,2002.12
    [34] Xia D,Heydt G.. Harmonic power flow studies part I-formulation and solution[J]. IEEE Trans on Power Apparatus and systems,1982,101 (6)
    [35] Sadany E F El, Salamn M M A. Reduction of the net harmonic current product by single-phase non-linear loads due to attenuation and diversity effects[J].Electrical Power & Energy Systems, 1998,20(4)
    [36] Zhao J F, Jiang P, L i N H, et al. Study of Power Quality Compensators in Power System. IEEE-PEDS'99. 1999.
    [37] G.Escobar and A.M.stankovic. Reactive power, Unbalance and hormonices Compensation using D-statcom with a Dissipativity-Based controller.Proceedings of the 39th IEEE conference on decision and control Sydney, Australla,Decemder 2000
    [40] Hideaki Fujita et al. A Practical Approach to Harmonic Compensation in Low Voltage Industrial Applications.IEEE/IAS,ann.meet.conf.rec. 1990
    [41] 李群湛,贺建闽.电气化铁路的同相供电系统与对称补偿技术.电力系统自动化,1996.4
    [42] Akagi H, Kanazawa Y, Nabae A. Generalized Theory of the Instantaneous Reactive Power in Three-Phase Circuits. Proc BEE IPEC, Tokyo, 1983
    [43] Akagi H, Kanazawa Y, Nabae A. Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components. IEEE trans IA, 1984, 20 (3)
    [45] 李群湛.关于电气化铁道的负序影响与限制问题的研究.铁道学报,1994.12
    
    
    [46] 施汉基.三相不对称负荷的无功功率对称化补偿.电网技术,1998.2
    [47] 曾国宏,Siam ak Farshad.三/单相平衡变换的铁路新型牵引供电系统的研究.机车电传动,1999.5
    [48] Wu J C, Jou H L. Sin plefied control method for the single-phase active power filter. IEEE Proc. Electric. Power. Appl,1996,143(3)
    [49] Bhavaraju V B, EnjetiP N. Analysis and design of an active power filter for balancing unbalanced loads. IEEE Trans. Power Electric. 1993, 8(4)
    [50] 张直平,李芬辰.城市电网谐波手册.中国电力出版社,2001.2
    [51] 楚振宇,张长梅.牵引供电系统综合补偿技术及其工程应用,牵引供电系统无功及综合补偿学术会议论文集,2000.10
    [52] 中华人民共和国国家标准GB/T 14549—93,电能质量公用电网谐波.国家技术监督局,1993-07-31.
    [53] 中华人民共和国国家标准GB/T 15543—1995,电能质量三相电压允许不平衡度.国家技术监督局,1995
    [54] Hirofumi Akagi et al.A New Power line Conditioner for Harmonic Compensation in Power System. IEEE ICHPS Ⅵ 1994 Bologna,Italy.
    [55] 崔国玮,李志民.TCR动态无功补偿原理及滤波器参数的计算,包头钢铁学 院学报,1998.4
    [56] 高明振,任震等.无源-有源混合滤波器容量优化设计,铁道学报,1999.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700