有源电力滤波器的T-S建模及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有源电力滤波器(APF)是改善电能质量、治理电网谐波污染的重要手段。本文研究APF的T.s模糊建模及其控制,分析并联型APF采用T.s模糊控制方法的可行性和具体方法及结果,讨论APF补偿参考电流的检测及T.s模糊反馈跟踪控制问题,以及降低APF容量的控制策略。
     T.s模糊控制作为模糊控制的一个重要分支,是非线性系统建模和非线性系统控制十分有效的设计方法之一。本文采用T.s模糊控制方法,对并联型APF进行分析和建模的基础上,设计控制器并实施控制,仿真及实验验证了该方法应用于APF的参考电流检测及非线性控制是可行和有效的。对单相并联型APF进行电路分析,在此基础上利用T.s模糊控制进行建模,以直流侧电压的误差及其积分作为模糊前件输入,确立了前件输入三值逻辑的控制规则,基于并行分布补偿的方法,利用求解线性矩阵不等式获得满足稳定性前提下的状态反馈系数矩阵,在此基础上设计了模糊控制器。对三相三线并联型APF进行分析,利用T.s模糊控制进行建模,为降低控制的复杂性,确立了前件输入两值逻辑的控制规则,并设计了模糊控制器;讨论在电压存在畸变条件下,提出三相三线并联型APF的T.s模糊H控制方法,将电源电压存在的畸变视为一种有限有干扰项,建立了T.s模糊H。控制模型,并在保证系统稳定的前提下,设计了相应的T.s模糊控制器,对系统实施有效的控制,为解决新能源发电比重不断增加而引起电力系统供电质量下降条件下的APF提供一种新的控制方法。针对分裂电容中点式三相四线并联型APF的特点,将直流侧两路直流电压的误差及其积分值分别作为模糊前件输入变量,设计了T.s模糊控制器,实现了对APF参考补偿电流的检测及系统的非线性控制,同时解决了直流侧分裂电容的均压问题。分析了四桥臂三相四线并联型APF的动态方程,建立了相应的T.s模糊控制模型,在保证稳定性的前提下,设计了状态反馈控制器,以此获得了相应的补偿参考电流,有效地解决了四桥臂三相四线APF多变量强耦合等非线性控制难题,既补偿了负载电流的非线性也补偿了负载电流的不平衡性。
     对比分析了有源电力滤波器补偿参考电流检测的几类方法,指出在电源电压正常以及畸变条件下,各种方法的适用性能。提出了基于RBF动态模型预测控制的参考电流检测法,快速地获得参考电流;提出了基于T.s模糊反馈控制的一类APF参考电流检测方法,即使当电源电压存在畸变或不对称时,反馈控制系统也能够自动补偿电源电压的畸变干扰。讨论了有源电力滤波器的滞环控制、三角波调制PwM控制、空间矢量PwM控制等电流跟踪控制方法,指出svPwM的双滞环电流跟踪方法具有较高的稳态电流精度和较快的电流响应,可获得APF更好的补偿性能。
     指出APF补偿的首要目标是消除谐波,其次是补偿无功功率。通过综合分析并联型APF的控制策略,提出降低并联型APF容量的控制策略;提出了一种适用于电源电压畸变条件下产生基波正序分量的改进方法,获得了不包含基波正序有功功率及基波正序无功功率的补偿参考电流,为实现APF容量的小型化及在传统无功电力补偿领域的改造应用提供参考。
     仿真及实验分析验证了采用T.s模糊控制方法综合解决APF补偿参考电流的检测及直流侧电压的控制等问题的正确性和工程应用的可行性。
Active Power Filter (APF) is an important means for restraining power harmonics and then improving the quality of power system. With modeling the shunt APF in T-S fuzzy control and researching on the control strategy of APF, the feasibility and application of these kinds of method were analyzed. While the reference current detection way and current tracking control means were discussed, a control strategy for minimizing the capacity of APF was put forwards.
     As an important branch of the fuzzy control theory, T-S fuzzy control can be used for modeling the nonlinear systems and managing those nonlinear systems conveniently. The shunt APF were analyzed and then modeled by means of this T-S fuzzy control, the fuzzy controller were designed, simulation and experimentation were carried through that the method were feasible for APF reference current measurement and nonlinear control. Analyzing the single-phase shunt APF and modeling with T-S fuzzy control, setting the error of DC-link and its integral as its antecedents, considering three cost logic to setup control rules, basing on the parallel distributed compensation and linear matrix inequality to obtain state feedback coefficient matrix for the fuzzy controller. Analyzing the three-phase-three-wire shunt APF and modeling with T-S fuzzy control, in order to depress the complexity of system control, two antecedents combined in the error of DC-link and its integral were set, which consider double cost logic to setup control rules, and then the fuzzy controller designed. In the condition of power source distortion, T-S fuzzy H control was presented to the three-phase-three-wire shunt APF, under the stabilization of system, the corresponding H controller was designed which provides one kind of solution for APF control in the descending power quality that increasing the proportion of new energy. In allusion to split capacitor midpoint three-phase-four-wire APF, the two routes of DC-link errors and their integral were set as antecedents, and the corresponding T-S fuzzy controller was designed. Reference currents were detected and the problem of balancing the splited voltage was also solved. After establishing the dynamic equation of four-arms three-phase-four-wire APF, T-S fuzzy controller was constituted under stabilization pledged, the compensated currents were attained and the puzzle of multi-variable coupling strongly of nonlinear control to the APF was also raveled out. The nonlinear currents and the imbalance currents of the nonlinear load were compensated too.
     Several kinds of reference currents detection methods were discussed, those applicability were indicated under condition of power source normal or distorted. A novel currents detection method by means of RBF dynamical model forecast control was put forward, which can obtain the reference currents. A kind of reference currents detection method which can automatically do compensation even power voltage distorted or imbalance by means of T-S fuzzy feedback control was mentioned. The currents tracking control techniques such as hysteresis control, delta modulation PWM control, space vector PWM control were argued. Double hysteresis SVPWM currents tracking was indicated that has better precision and rapidly response may achieve better compensation preferment.
     The compensation goal of APF is indicated that main of eliminating the harmonics then of compensating the reactive power. While analyzing the control strategy of APF, a novel control strategy of reducing the APF capacity was brought forward. An improvement of generating the voltage fundamental positive-sequence was taken into use for obtaining the reference currents except fundamental positive-sequence active power and reactive power, which offering a way to make the APF capacity miniaturization in reforming the traditional reactive power compensation of power delivery systems.
     Simulations and experimental results indicate the correctness of the theories above and the validities of the T-S fuzzy control strategy described.
引文
[1] Hans Bloem, Fabio Monforti-Ferrario, Marta Szabo, etc. Renewable Energy Snapshots2010[R]. Italy: European Commission Joint Research Centre Institute, 2010
    [2]中国可再生能源学会中国新能源与可再生能源年鉴2009『Ml_北京:中国可再生能源学会,2009
    [3]王兆安,杨君,刘进军,等谐波抑制和无功功率补偿(第2版)口川北京:机械工业出版社,2006
    [4] Roiu D, Bojoi RI, Limongi LR, et al. New Stationary Frame Control Scheme for Three-Phase PWMRectifiers Under Unbalanced Voltage Dips Conditions[J]. IEEE Transactions on Industry Applications.2010, 46(1): 268-277
    [5] Neves FAS, de Souza HEP, Bradaschia F, et al. A Space-Vector Discrete Fourier Transform forUnbalanced and Distorted Three-Phase Signals[J]. IEEE Transactions on Industrial Electronics. 2010,57(8): 2858-2867.
    [6]谢小荣,姜齐荣柔性交流输电系统的原理与应用[M]北京:清华大学出版社,2006
    [7] Xiao-ping Zhang, Christian Rehtanz, Bikash Pal. Flexible AC Transmission Systems: Modelling andControl[M]. Berlin: Springer, 2006.
    [8] Ying Xiao, Song Y.H., Chen-Ching Liu. Available transfer capability enhancement using FACTSdevices[J].IEEE Transactions on Power Systems. 2003,18(l):305-312
    [9] Tjing T. Lie, Wan-hong Deng. Optimal flexible AC transmission systems (FACTS) devicesallocation^]. International Journal of Electrical Power & Energy Systems. 1997, 19(2): 125-134
    [10] B.A. Renz, A. Keri, et al. AEP unified power flow controller performance[J]. IEEE Transctions onPower Delivery. 1999,14(4):1374-1381
    [11] Rastogi M., Mohan N., Edris A.A.. Hybrid-active filtering of harmonic currents in power systems[J]. IEEE Transactions on Power Delivery. 1995,10(4):1994-2000
    [12] H. Akagi. Trends in Active Power Line Conditioners [J]. IEEE Transctions on Power Electronics.1994,9(3):263-269
    [13] Robert J.Nelson, Donald G.Ramey. Dynamic Power and Voltage Regulator for an AC TransmissionLine[P]. U.S. Patents, 5610501,1997
    [14] Daniel W., Shinier, et al . High voltage dc-dc converter with dynamic voltage regulation anddecoupling during load-generated arcs[P]. U.S. Patents, 5418707,1995
    [15] Freitas W., Morelato A., Wilsun Xu, et al. Impacts of AC Generators and DSTATCOM devices on thedynamic performance of distribution systems[J]. IEEE Transactions on Power Delivery. 2005,20(2):493-1501
    [16]许胜基于四象限双H桥变流器级联型大容量DsTATcOM关键技术的研宄[D]博士学位论文南京:东南大学,2009
    [17] Nyati S., Wegner C.A., Delmerico R.W., et al. Effectiveness of thyristor controlled series capacitor inenhancing power system dynamics: an analog simulator study [J]. IEEE Transactions on PowerDelivery. 1994, 9(2):1018-1027
    [18] Kejun Li, Jianguo Zhao, Chenghui Zhang, et al. Dynamic Simulator for Thyristor-Controlled SeriesCapacitor[J]. IEEE Transactions on Industry Applications. 2010,46(3): 1096 - 1102
    [19] IEEE Special Stability Control Working Group. Static VAr compensator models for power flow anddynamic performance simulation[J]._IEEE Transactions on Power Systems. 1994, 9(1):229 - 240
    [20] Zhi-kang Shuai, Wen-ji Zhu, An Luo, et al. A Dynamic Hybrid Var Compensator and a Two-LevelCollaborative Optimization Compensation Method[J]. IEEE Transactions on Power Electronics.2009,24(9): 2091-2100
    [21] Fujita H., Akagi H.. The unified power quality conditioner: the integration of series and shunt-activefilters[J]. IEEE Transactions on Power Electronics. 1998,13(2): 315 - 322
    [22] Karanki S.B., Mishra M.K., Kumar B.K.. Particle Swarm Optimization-Based Feedback Controller forUnified Power-Quality Conditioner [J]. IEEE Transactions on Power Delivery. 2010, 25(4): 2814 - 2824
    [23] Wu Jian, He Na, Xu Dianguo. A 10KV shunt hybrid active filter for a power distribution system[C].IEEE Applied Power Electronics Conference and Exposition 23rd Annual. Austin,Texas,USA,2008:927-932
    [24] Hurng-Liahng Jou; Jinn-Chang Wu; Yao-Jen Chang; etc. A novel active power filter for harmonicsuppression[J]. IEEE Transactions on Power Delivery. 2005,20(2): 1507 - 1513
    [25] Wu Longhui, Zhuo Fang, Zhang Pengbo, et al. Study on the Influence of Supply-Voltage Fluctuationon Shunt Active Power Filter[J]. IEEE Transactions on Power Delivery. 2007,22(3): 1743 - 1749
    [26] Virmani Rahul, Gaur Prerna, Santosi Himanshu, et al. Performance comparison of UPQC and Active Power Filters for a non-linear load[C]. 2010 Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES) & 2010 Power India. New delhi, India, 2010:1-8
    [27] Al-Zamil A.M., Torrey D.A.. A passive series Active Shunt Filter for high power applications[J]. IEEE Transactions on Power Electronics. 2001,16(l):101-109
    [28]刘介才.工厂供电(第5版)[M]北京:机械工业出版社2011
    [29] IEC std. 519 -1992. IEEE Recommended Practices and Requirements for Harmonic Control in ElectricPower systems[S]. New York : IEEE, 1993.
    [30] Krause, P.C.. The Method of Symmetrical Components Derived by Reference Frame Theory [J]. IEEETransactions on Power Apparatus and Systems. 1985, PAS-104(6): 1492 - 1499
    [31]GB/T 14549—93:电能质量一公用电网谐波[s]北京:中国标准出版社,1994
    [32] Jos Arrillaga, Neville R. Watson. Power System Harmonics (Second Edition) (林海雪,范明天,薛蕙等译电力系统谐波(第二版))[M]北京:中国电力出版社,2008
    [33]Yacamini, R. Power system harmonics: Part 3. Problems caused by distorted supplies[J]. PowerEngineering Journal. 1995, 9(5): 233 - 238
    [34] Mohod S.W., Aware M.V.. A STATCOM-Control Scheme for Grid Connected Wind Energy Systemfor Power Quality Improvement J]. IEEE Systems Journal. 2010,4(3): 346 - 352
    [35] Verma V., Singh B., Chandra A., et al. Power Conditioner for Variable-Frequency Drives in OffshoreOil Fields[J]. IEEE Transactions on Industry Applications. 2010,46(2): 731 - 739
    [36] H Akagi, Y.Kanazawa, A.Nabae. Instantaneous Reactive Power Compensators Comprising SwitchingDevices without Energy Storage Components[J]. IEEE Transaction on Industry Applications. 1984,20(3): 625-630
    [37]Takeda M, Ikeda K, Tominaga Y. Harmonic current compensation with active filter[J]. IEEETransaction on Industry Applications. 1987, 20(2): 808-815
    [38] H. Fujita, H. Akagi. A practical approach to harmonic compensation in power systems-seriesconnection of passive and active filters[J]. IEEE Transaction on Industry Applications. 1990, 27(6):587-593
    [39]王跃并联混合型有源电力滤波器及其应用研宄『D]博士学位论文西安:西安交通大学,2003
    [40] H Akagi. New Trends in Active Filters for Power Conditioning [J]. IEEE Transaction on Industry Applications. 1996, 32(6): 1312-1321
    [41]魏学良,戴珂,梁志珊,等不平衡负载下并联有源电力滤波器的补偿性能[J]高电压技术2008134r61:1 195—1202
    [42]卢盈应用于飞机交流电源的有源电力滤波器研究[D]硕士学位论文南京:南京航空航天大学,2009
    [43]曹震三相四桥臂有源电力滤波器的控制与实验研究lD]硕士学位论文武汉:华中科技大学,2008
    [44]刘鑫正具有光伏发电功能的并联型有源电力滤波器的研究[D]硕士学位论文济南:山东大学,2009
    [45]李建林,张仲超,许洪华基于级联H桥五电平变流器sAPF的应用研究[J]电工技术学报2006,21-21:79—82
    [46]李建林,李晶,王立乔cPs—sPwM在级联型有源电力滤波器中的应用[J[电力系统自动化2006.30(9):64—68
    [47]李建林,赵栋利,赵斌,等载波相移sPwM级联H型变流器及其在有源电力滤波器中的应用[J].中国电机工程学报2006,26(10):109—105
    [48]林金燕,王正仕,陈辉明一种高性能三相四桥臂逆变器控制器的设计[J]中国电机工程学报2007.27r21:101—107
    [49]吴玉杨基于三维空间矢量调制的三相四桥臂逆变器研究[D]硕士学位论文合肥:合肥工业大学,2009
    [50]孙驰,毕增军,魏光辉一种新颖的三相四桥臂逆变器解耦控制的建模与仿真[J]中国电机工程学报2004,24f2):124—133
    [51]陈兵,谢运祥新型三电平三相四桥臂APF矢量模式单周控制策略[J]电力自动化设备2叭O,30(7):74—82
    [52]刘进军,王兆安基于旋转空间矢量分析瞬时无功功率理论及其应用[J]电工技术学报1999,14(1):49—54
    [53] G.W.Chang, T.Shee. A novel reference compensation current strategy for shunt active power filter control[J]. IEEE Trans on Power Dilivery. 2004, 19(4): 1751-1758
    [54]黄民聪,三相四线制并联型电能质量控制器的研究lD]博士学位论文北京:清华大学,2003
    [55]丁洪发殷献忠,何仰赞同步检测法的改进及其在三相不对称无功补偿中的应用[J]中国电机工程学报’2000,20(6):17—20
    [56] A.Nabae, S.Ogasawara, H.Akagi. A novel control scheme for current controlled PWM inverters[J].IEEE Transaction. On Industry Applications. 1986, 22(4): 312-323
    [57] Micah E, Ortuzar, Rodrigo E. etc. Voltage-Source Active Power Filters Based on Multilevel ConverterandUltracapacitorDC link[J]. IEEE Transaction on Industry Electronics. 2006, 53(2): 477^85
    [58] Hurng-Liang, Jinn-Chang Wu, Yao-Jen Chang, etc. A novel active power filter for harmonicsuppression[J]. IEEE Transaction on Power Delivery. 2005, 20(2): 1507-1513
    [59]陈东华,吴睿,谢少军,等基于FPGA的三相四线有源滤波器的电流控制方案[J]电力系统自动化2006.30(3):56—60
    [60] Luo-wei Zhou, Zi-cheng Li. A Novel Active Power Filter Based on the Least Compensation CurrentControl Method[J]. IEEE Transaction on Power Electronics. 2000, 15(4): 655-659
    [61] D.Shen, P.W.Lehn. Fixed-frequency space-vector-modulation control for three-phase four-leg activepower filters[J]. IEE Proceeding on Electric Power Application. 2002, 149(4):268-274
    [62]李建林载波相移级联H桥型多电平变流器及其在有源电力滤波器中的应用研宄[D]博士学位论文杭州:浙江大学,2005
    [63] E.D.Lavers, P.W.Lehn. A Benchmark System for Digital Time-Domain Simulation of an Active Powerfilter[J]. IEEE Transaction on Power Delivery. 2005, 20(1): 234-241
    [64] Hurng-Liang, Jinn-Chang Wu, Yao-Jen Chang, etc. A novel active power filter for harmonicsuppression[J]. IEEE Transaction on Power Delivery. 2005, 20(2): 1507-1513
    [65]颜文旭,纪志成三相并联型有源电力滤波器的T—s模糊建模与控制[J]电机与控制学报201O,14(11):92—99
    [66]颜文旭,纪志成适用于并联型有源电力滤波器的新型模糊控制[J]电力系统及其自动化学报2010.22(2):113—1 18
    [67]胡寿松自动控制原理(第五版)[M]北京:科学出版社,2010
    [68] Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes [J].IEEE Transactions on SMC. 1973, 3(1): 28^4
    [69] Zadeh L A. Fuzzy Sets [J]. Information and Control. 1965, 8(2): 338-353
    [70]李少远,王景成智能控制[M]北京:机械工业出版社,2005
    [71]韩峻峰,李玉惠,等模糊控制技术[M]重庆:重庆大学出版社,2003
    [72]袁立嵩,蒋慰孙具有H,H混合性能约束的离散系统的极点配置[J]信息与控制1993,22(4):215—220
    [73] Yedavalli R K, Liu Y. H^ control with regional stability constraints [J]. Automatica. 1995, 31(4):611-615
    [74] Garcia G, Bernussou J. Pole assignment for uncertain systems in a specified disk by state feedback [J].IEEE Transactions on Automatic Control. 1995, 40(1): 184-190
    [75] Haddad W M, Bernstein D S. Controller design with regional pole constraints [J]. IEEE Transactionson Automatic Control. 1992, 37(1): 54-69
    [76] Hong S K, Nam Y. Stable fuzzy control system design with pole-placement constraint: an LMIapproach [J]. Computers in Industry. 2003, 51(1): 1-11
    [77]刘飞,苏宏业,褚健基于模糊模型的不确定非线性系统鲁棒D镇定[J]控制与决策2002,17(5):532—535
    [78] Nguang S K, Shi P. Robust H^ output feedback control design for fuzzy dynamic systems withquadratic D stability constraints: an LMI approach[J]. Information Sciences. 2006,176(15):2161-2191
    [79] He L, Duan G R. Multiobjective control synthesis for a class of uncertain fuzzy systems[C].Proceedings of the fourth International Conference on Machine Learning and Cybernetics. Guangzhou,2005, 2563-2567
    [80] Feng G, Lee T H, Zhang N. Stable filter design of fuzzy dynamic systems[C]. IEEE World Congresson Computational Intelligence. 1998,(1): 474-480
    [81] Tseng C S, Chen B S. H^ fuzzy estimation for a class of nonlinear discrete-time dynamic systems[J]. IEEE Transactions on Signal Processing. 2001,49(11): 2605-2619
    [82] Nguang S K, Assawinchaichote W. H^ filtering for fuzzy dynamical systems with D stabilityconstraints [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications.2003, 50(11): 1503-1508
    [83] Lun S, Zhang H. Fuzzy H^ filter design for a class of nonlinear systems with time delays via LMI[J]. ACTA Automatica Sinica. 2005, 31(3): 394-401
    [84] Assawinchaichote W, Nguang S K. H^ filtering for fuzzy singularly perturbed systems with poleplacement constraints: An LMI approach [J]. IEEE Transactions on Signal Processing. 2004, 52(6):1659-1667
    [85] Nguang S K, Shi P. Delay-dependent H^ filtering for uncertain time delay nonlinear systems: anLMI approach [J]. IET Control Theory and Applications. 2007, 1(1): 133-140
    [86] Xu S, Lam J. Exponential H^ filter design for uncertain Takagi-Sugeno fuzzy systems with timedelay [J]. Engineering Applications of Artificial Intelligence. 2004, 17(6): 645-659
    [87] Zhou S, Lam J, Xue A. H^ filtering of discrete-time fuzzy systems via basis-dependent Lyapunovfunction approach [J]. Fuzzy Sets and Systems. 2007, 158(2): 180-193
    [88] Scherer C W, Gahinet P, Chilali M. Multiobjective output-feedback control via LMI optimization[J].IEEE Transactions on Automatic Control. 1997, 42(7): 896-911
    [89] Jadbabaie A, Jamshidi M, Titli A. Guaranteed-cost design of continuous-time Takagi-Sugeno fuzzycontrollers via linear matrix inequalities[C]. Proceedings of the IEEE International Conference onFuzzy Systems. Anchorage, Alaska, 1998, (1): 268-273
    [90] Gong C Z, Chen D G, Wang W. Guaranteed cost control of uncertain discrete fuzzy systems[C].International Conference on Machine Learning and Cybernetics. 2003, 4: 2520-2523
    [91] Wu H N, Cai K Y. H2 guaranteed cost fuzzy control design for discrete-time nonlinear systems withparameter uncertainty[J]. Automatica. 2006, 42(7): 1183-1188
    [92] Wu H N, Cai K Y. H2 guaranteed cost fuzzy control for uncertain nonlinear systems via linearmatrix inequalities[J]. Fuzzy Sets and Systems. 2004, 148(3): 411-429
    [93] Chen B, Liu X P. Fuzzy guaranteed cost control for nonlinear systems with time-varying delay[J].IEEE Transactions on Fuzzy Systems. 2005, 13(2): 238-249
    [94] Xie S, Xie L, Wang Y, etc. Decentralized guaranteed cost control of a class of large-scaleinterconnected systems[C]. Proceedings of the 38th IEEE Conference on Decision and Control. 1999, 4:3297-3302
    [95] Guan X P, Chen C L. Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays[J]. IEEE Transactions on Fuzzy Systems. 2004, 12(2): 236-249
    [96] Dorato P. Non-fragile controller design: An overview[C]. Proceedings of the American ControlConference. Philadelphia Pennsylvania, USA, 1998: 2829-2831
    [97] Kim J M, Park J B, Choi Y H. Non-fragile guaranteed cost control of time-delayed uncertainsystems[C]. International Conference on Control, Automation and Systems. Coex, Seoul, Korea,2007:1651-1655
    [98] Lien C H. H^ non-fragile observer-based controls of dynamical systems via LMI optimizationapproach[J]. Chaos, Solitons and Fractals. 2007, 34(2): 428-436
    [99] Famularo D, Dorato P, Abdallah C T, etc. Robust non-fragile LQ controllers: the static state feedback case[J]. International Journal of Control. 2000, 73(2): 159-165
    [100]Yang G H, Wang J L, Lin C. H^ control for linear systems with additive controller gain variations[J].International Journal of Control. 2000, 73(16): 1500-1506[l0l]Yee J S, Wang J L, Yang G H. An LMI approach to non-fragile guaranteed cost control of uncertain discrete time-delay systems[J]. Asian Journal of Control. 2001, 3(3): 226-233
    [102]Yang G H, Wang J L. Non-fragile H^ control for linear systems with multiplicative controller gain variations[J]. Automatica. 2001, 37(5): 727-737
    [103]王俊玲,舒酷醒,陈亮,等不确定性非线性离散系统的非脆弱模糊保性能控制[cl_Proceedings of the 26 Chinese Control Conference Zhm~gjiajie,China,2007:361—365
    [104]Liu G Y,Zhang e L,Zhai D Non—fragile H—infinite control for T—S fuzzy systems via LMI[C]2005International Conference on Control mid Automation(ICCA2005)Budapest,Hungary,2005:171—175
    [105]岳菊梅,李俊民,闰永义基于T—S模型不确定非线性系统的鲁棒非脆弱以控制[cl_Proceedings ofthe 26th Chinese Control Conference Zhangjiajie,China,2007:257—261
    [106]郑科,俞立,张贵军基于T—S模型的非线性系统非脆弱保性能模糊控制l Jl系统工程与电子技术2006,28r41:577—581
    [107]陈郡基于T—S模型的非线性系统模糊控制器设计及应用[D]博士学位论文无锡:江南大学,2009
    [108]孙林,郑煜,姚娟不确定离散奇异系统的鲁棒非脆弱H。状态反馈控制l Jl山东大学学报(理学版) 2011,46(1):35-41
    [109]Geoge J Wakileh Power System Harmonics Fundamentals,Analysis and Filter Design f徐政译电力系统谐波一基本原理、分析方法和滤波器设计)[Ml_北京:机械工业出版社,2008
    [110]王忠,宋琦,黄声,等数字带通滤波器在有源滤波器中的应用[J]电源技术应用2005(8):24—27
    [111]徐金榜,何悦嘉,沈安文,等基于FFT与坐标变换的谐波电流检测[J]华中科技大学学报(自然科学版1 2009,r71:83—85
    [112]庞浩,李东霞,俎云霄,等应用FFT进行电力系统谐波分析的改进算法[J]中国电机工程学报,2003.r61:50一54[1 13]Kishore Chatterjee,B G Femmldes,Gopal K Dubey An Instantaneous Reactive Volt—ATnpereCompensator and Harmonic Suppressor System[J]IEEE Transaction on Power Electronics1999,14(2):381—392[1 14]Joao L Afonso,M J Sepulveda Freitas,Julio s Martins P—e Theory Power ComponentsCalculations[J] IEEE Transactions on Industrial Electronics 2003,(1):385—390[1 ls]Herrera R S,Sahneron P Present point of view about the instantaneous reactive power theory[J]Power Electronics,IET 2009,2(5):484—495[1 16]De Leon F,Cohen J Discussion of“Instantaneous Reactive Power P—qTheory and Power Prope~iesofThree-Phase Systems”[Jl_IEEE Transactions on Power Delivery 2008,23(3):1693—1694[1 17]Pigazo A,Moreno V M,Estebanez E J A Recursive Park Transformation to Improve thePerformance of Synchronous Reference Frame Controllers in Shunt Active Power Filters[J]IEEETransactions on Power Electronics,2009,24(9)
    :2065—2075
    [118]陈东华,谢少军,周波用于有源电力滤波器谐波和无功电流检测的一种改进同步参考坐标法l Jl_中国电机工程学报2005,25(20):62—67
    [119]孙驰,魏光辉,毕增军基于同步坐标变换的三相不对称系统的无功与谐波电流的检测l Jl中国电机工程学报,2003,(12):43-48
    [120]殷波,陈允平abc坐标系下广义无功电流和功率的定义及补偿[J]电网技术,2003,(7):43-47
    [121]陈东华,纪志成适用于飞机电网的并联型有源电力滤波器功率电路及其控制策略l Jl_电网技术2008,32(13):75—80
    [122]自勇有源电力滤波器检测与控制技术的研究及应用lD]博士学位论文长沙:湖南大学,2007
    [123]钟庆,吴捷,杨金明,等现代控制理论在有源电力滤波器中的应用[J]电力自动化设备2004,24(3):88—94
    [124] T_d~华,何怡刚一种新的基于神经网络的高精度电力系统谐波分析算法l Jl电网技术2005,r31:72—75
    [125]Parmod Kuiilar~Alka Mahajml Soft Computing Techniques for the Control of all Active PowerFilter[J]IEEE Transaction on Power Delivery 2009,24(1):452—461
    [126]杜天军基于抗混叠小波理论的电力系统谐波检测与抑制研究[D]博士学位论文成都:电子科技大学,2006
    [127]A E Fitzgerald,Charles Kingsleg Jr,Stephen D Unmns Electric Machinery(刘新正,苏少平,高琳等译电机学)『M]北京:电子工业出版社,2004
    [128]U_茂海,刘会金通用瞬时功率定义及广义谐波理论[J]中国电机工程学报2001,21(9):68—73
    [129]L Czamecki On some misinterpretations of the instantaneous reactive power P—q theory[J]IEEETransaction on Power Electronics 2004.19r31:828—836
    [130]RUl—xim~g Hao,Zhi—gumlg Cheng,Xiao-jie You A novel harmonic currents detection method based onRotating d-q reference frame for active power filter[C]35。Ammal IEEE Power ElectronicsSpecialists Conference Aachen,Germany 2004:3034—3038
    [131]陈仲并联有源电力滤波器实用关键技术的研究[D]博士学位论文杭州:浙江大学,2005
    [132]钟洪浩新型混合有源电力滤波器研究[Dl_博士学位论文杭州:浙江大学,2005
    [133]陈东华有源滤波应用于飞机交流电源系统的关键技术研究[D]博士学位论文南京:南京航空航天大学,2007
    [134]Chong~ulng Qiao,Smedley K M Three-phase bipolar mode active power filters[J]IEEE Transactionson Industry Applications 2002.38f11:149~158
    [135]Guozhu Chen.Smedley K M Steady—state and dynamic study of one—cycle controlled three-phaseactive power filter[C]38“Industry Applications Socialty Ammal Meeting Salt Lake City,USA,2003,(2):1075—1081
    [136]Taotao Jin,Smedley K M Operation of tmified constant—frequency integration controlled three—Dbaseactive power filter with unbalanced load[C]Applied Power Elec订onics Conference aim Exposition Miami,USA,2003,r11:148—153
    『1 371Taotao Jin,Xiaofall Chen;Smedlev,K M A new one—cycle con订oiled FACTS element with the function ofSTATCOM aim active power filter[C]The 29th Annual Conference ofthe IEEE Indus订ial Elec订onics Society Virginia.USA.2003r31:2634—2638
    [1 38]颜文旭,韩立圣,惠晶,等三相四线有源电力滤波器新型神经预测控制[J]电力系统及其自动化学报201 1,23r1):28—33
    [1 39]~g涛,陈东华,谢少军基于DSP的数字控制并联电力有源滤波器[J[电力系统及其自动化学报2005.17 r51:90—93
    [140]吕征宇,钱照明,Green T C并联有源电力滤波器的神经网络预测控制[J]中国电机工程学报1999.19f121:22—26
    [141]于晶荣,滕召胜,章兢,等有源电力滤波器预测电流控制及稳定性分析[J]电工技术学报2009,24r71:164—170『142]Mohallty.A R.Kapoor.A K Performallce evaluation of HCC&SVPWM entrent controllers for shunt APF under fault conditions[C]2010 India International Conference on Power Electronics (iicPE)New Delhi.India.2011:1—8
    [143]李建林,张仲超组合变流器载波相移空间向量调~(cPs—SVM)技术[J]高电压技术2003,29(1):18—20
    [144]林磊,邹云屏,钟和清,等二极管箝位式三电平逆变器控制系统研究[J]中国电机工程学报2005.25(15、:33—39[14s]Dengming Peng,Fred C Lee,Dushall Boroyevich A novel SVM algorithnl for multilevel three-phase converters[C]33“Ammal IEEE Power Elec订onics Specialists Conference Caims.Australia.2002:509—513
    [146]D Shen.P W Lehn Fixed—frequency space—vector—modulation control for three—phase four—leg activepower filters[J]IEE Proceeding on Electric Power Appllication 2002,149(4):268—274
    [147]张崇魏,张兴PWM整流器及其应用[M]机械工业出版社,北京:2003
    [148]Chongming Qiao,Taotao Jin,Smedley K M One—cycle control ofthree—phase active power filter with vector operation[J]IEEE Trallsactions on Indus订ial Elec订onics 2004,51r21:455-463[1491~_广柱并联型有源电力滤波器电流控制的等效原理[J]中国电机工程学报2006,26(15):40—45
    [150]Wallg Xu-hong,He Yi—gallg Fuzzy Neural Network based Predictive Control for Active PowerFilter[C]2006 International Conference on Power System Technology Chongqing,China,2006:1-5[1511M Mohseni,M A Zammfi,M Joorabial~Harmonic Conlponents Identification through the Adaline with Fuzzy Learning Parameter[C]The 33rd Ammal Conference of the IEEE Indus订ial Elec订onics Society(IECON、Taiwall.China.2007:2515—2520
    [152]T Takagi.aim M Sugeno Fuzzy identification of systems and its applications to modeling mid control[J]IEEE nallsaction on System,Mall,Cybem 1985,15r11:116—132
    [153]C N Bhende,S Mishra,S K Jain TS—fuzzy—controlled active power filter for load compensation[J] IEEE nallsaction on Power Delivery 2006.21r31:1459—1465
    [154]Shyu Kuokai,Yallg Mingji,Wallg Tewei,et al T—S Fuzzy Controller Design Based on LMI for a Shunt Active Power Filter System[C]The 33rd Ammal Conference ofthe IEEE Indus订ial Elec订onics Society(IECON、Taiwall.2007:620—625
    [155]K Talmka.aim H O Wallg Fuzzy control systems design and almlysis:a linear matrix inequality approach[M]San Fralmisco.USA:John Wiliey&Son Inc.2001:49—82
    [156]Talmka K,Sugeno M Stability alialysis aim design of fuzzy control systems[J]IEEE Trallsaction on Fuzzy Sets aim Systems 1992.45r21:135—156
    [157]颜文旭,纪志成三相三线APF~b偿电流的模糊反馈检测与控制[J]控制工程2010,17(6):759—763
    [158]石峰,岳永涛,查晓明,等三相APF~;线性解耦控制的建模与仿真[J]高电压技术2008,34(5):935—941
    [159]K Y Liall,J J Liou,C Y Huallg LMI-based integral fuzzy control ofDC_DC converters[J]IEEE Tralisaction on Fuzzy System 2006.14(11):71—80
    [160]JI Zhi—cheng.Zhou Ying—huall Stabilization of a class of fuzzy control systems via piecewise fuzzyLyapmlov function approach[C]American Control Conference New York,USA,2007:4065-4070
    [161]YAN Wen—xu.儿Zhi—cheng.HUI Jing Shunt Active Power Filter Line Current Control Based on T—S Fuzzy Model[C]The 4“IEEE Conference on Indus ial Elec onics and Applications Xi’atl.China.2009:2241—2246
    [162]ACS800—77LC风力发电传动硬件手册(840~tj3180 kw)[M]北京ABB电气传动系统有限公司北京,2008:24
    [163]Wang,H O,Tanaka,K Griffin,M An approach to fuzzy control on nonlinear systenls:Stability and design issues]J]IEEE Transactions on Fuzzy Systems 1996.4(1):14—23
    [164]Watanabe EH,Aredes M,Afonso_『I_,et al Instantaneous P—q power theory for control ofcompensators in micro—grids[C]2010 Intemational School on Nonsinusoidal Currents andCompensation Lagow,Poland,2010:17—26
    [165]Hirofmni Akagi,Edson Hirokazu Watanabe,Mauricio Aredes Instantaneous Power Theory andApplications to Power Conditioning]M]America:Wiley—IEEE Press,2007:1 16—129
    [166]陈东华,祁晓蕾,纪志成dSPACE控制的三相四线有源电力滤波器[J]电力系统及其自动化学报2009.21(5):36-40
    [167]唐健,王翔,何英杰等三相四线制有源滤波器的新型无差拍控制[J]电力系统自动化2007,31(19):59—63
    [168]颜文旭,纪志成新型模糊控制有源滤波器移相调压补偿的研究[J]电力电子技术2011,45(3):25—28
    [169]颜文旭,纪志成新型模糊反馈电流检测有源滤波器的研究]J]电力自动化设备2011,31(5):53一57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700