基于超塑性力学的软粘土本构理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超塑性力学以热力学定律为基础,通过构建耗散函数和自由能函数确定应力应变关系,打破了传统塑性力学通过屈服函数、流动法则和硬化定律确定应力应变关系的理论框架,理论体系更为严密,结构更为严谨。本文对超塑性力学理论进行了概括总结,应用物理元件的组合说明了内变量的物理含义,阐述了Ziegler正交假设和最大熵产生率原理的关系,通过Mises系列模型对超塑性力学构建自由能函数和耗散函数的方法进行了说明。
     岩土材料在塑性变形过程中,塑性功不能完全耗散,而是一部分以自由能的形式储存起来。本文分析了最大塑性功原理和最大熵产生率原理的关系和相关联流动法则不适用于岩土材料的原因。弹塑性耦合和耗散函数耦合是使相关联流动法则不适用于岩土材料的主要原因,Drucker公设中初始应力在加载曲线上是可以任选的,因此Drucker公设隐含了耗散函数与应力状态无关的假设,也就隐含了耗散函数不耦合的假设。通过超塑性力学理论得出,考虑弹塑性耦合会使屈服面的位置随所处应力状态的变化而变化,考虑耗散函数耦合会使屈服面从耗散应力空间转换到真实应力空间时形状发生改变。在耗散函数与所处应力状态无关的情况下,如果不考虑弹塑性耦合,Drucker公设仍然对岩土材料适用。
     把同一回弹线与正常压缩线和临界状态线交点对应的有效体积应力的比值定义为间隔应力比,原始剑桥模型中间隔应力比的值为2.72,修正剑桥模型中间隔应力比的值为2,实际上间隔应力比是与土性有关的参数,它对土体的力学行为有重要的影响。本文在超塑性力学的框架内讨论了间隔应力比的物理含义和该参数对屈服面形状及应力应变曲线的影响。
     原状粘土的压缩曲线有多种表示形式,本文通过拟合13种原状粘土的压缩曲线说明了双对数坐标下双段线形式可以合理的表征原状粘土的压缩特性,并分析了单对数和双对数坐标下塑性体积应变比的差别。
     通过分析原状粘土确定结构屈服应力的W-p′方法指出原状粘土颗粒之间的胶结作用可能在结构屈服应力点处有很大一部分发生破坏,通过一些典型的原状粘土的试验数据说明了超过结构屈服应力后原状粘土的间隔应力比可近似取为常数。
     因为破坏是变形的最后阶段,所以土的强度和本构具有密不可分的关系。各向异性是天然土体的一个重要特征,本文在超塑性力学的框架内,将真实应力空间的屈服面简化为倾斜的椭圆屈服面,结合临界状态土力学的有关理论给出了轴对称和平面应变条件下K_0固结软粘土不排水强度和上覆压力比值的解析式,并通过试验数据对这些解析式进行了验证。在其他参数一定的条件下,土体的不排水强度比与有效内摩擦角近似呈线性关系,本文根据这个线性关系给出了便于工程应用的临界不排水强度比关于有效内摩擦角的简易表达式。
     在超塑性力学的框架内构建了一个适用于粘性土的本构模型,针对粘性土的力学行为构建了一个指数形式的各向异性演化定律,分析了模型参数的物理含义及其对应力应变曲线和屈服面形状的影响,并通过实验进行了验证。
Hyper-plasticity is a new method to construct models of soils, which is basedon the first and second law of thermodynamics, and the stress-strain relations can bedetermined by free energy function and dissipation function. This new method hasbroken the framework of classical plasticity theory. Some physical models have beenused to interpret the internal variables, and the hypothesis of taking plastic strain asthe internal state parameter is analyzed in this paper. Ziegler's orthogonalitypostulate is proved to be equal to the maximum rate of dissipation criterion withLegendre transformation and Euler's theory. The role of free energy function anddissipation function has been analyzed, and the series of Mises models have beenused to explain the method of hyper-plasticity.
     Part of plastic work can be interlocked by plastic deformation in the form offree-energy. This point has led to the difference of maximum plastic work theory andmaximum entropy product theory. The relations between the two theories have beenproposed in this paper. Elastic-plastic coupling and dissipative coupling are mainreasons to make the associated flow rule unsatisfied for geomaterials. Dissipativeuncoupling is involved in Drucker postulate as the the choice of initial stress isarbitrary. Yield surface will move with stress state when Elastic-plastic coupling isconsidered, and the shape of yield surface will change when transformed fromdissipative stress space to true stress space when dissipative coupling is considered.
     The spacing ratio is defined to be the ratio between volumetric stresses of NCLand CSL on the same unloading line, which has been chosen as 2.72 in OriginalCam-Clay model and 2 in Modified Cam-Clay model. In fact, the spacing ratio is aparameter of soil properties, which has much influence on soil behavior. Based onhyper-plasticity theory, a model has been proposed to take account of the change ofthe spacing ratio, and the influence of spacing ratio on constitutive relations has beenanalyzed.
     Bases on the analysis of 13 typical intact clays' compression line, conclusioncan be drawn that the consolidation line of intact clays can be divided into two linearparts in double logarithm space. The compresson index and unloading index havebeen analyzed in both single-logarithm and double-logrithm space. It is proposedthat the spacing ratio can be taken as a constant parameter based on experimentalresult of some typical intact clays.
     As failure is the last phase of deformation, there are close relations betweensoil's constitutive model and strength. Anisotropy is an important feature of naturalsoils, it is proved that the inclined ellipsoid is the simplest yield surface shape thatcan take account of anisotropy of soft clays based on hyper-plasticity theory.Companied with critical state soil mechanics, formulas of undrained strength under K_0 consolidation have been proposed, these formulas can be used in triaxial stressconditions and plane strain conditions. Based on a large number of experimental data,the formulas are validated to be true. If we take other parameters as constant, a linearrelation can be got between the undrained strength ratio and the effective frictionalangle. Simplized formulas have been proposed based on this linear relation forengineering application.
     A unified model for clays has been proposed within the framework ofhyper-plasticity theory. A rotational hardening rule has been proposed. The physicalmeaning of model parameters and the method to determine them have been putforward.
引文
Allman M A, Atkinson J H(1992). Mechanical properties of reconstituted Bothkennar clay[J]. Geotechnique, 42(2): 289-301.
    
    Been K, Jefferies M G.(1985). A state parameter for sands[J].Geotechnique, 99-112.
    Bishop A W(1971). Shear strength parameters for undisturbed and remoulded soil specimens[C]. Stress-strain behaoiour of. soils. Proc. Roscoe Memorial Symp, Cambridge. 31 -39.
    Bishop A W, D.J.Henkel D J(1957). The Measurement of Soil Properties in the Traxial Test[J], Edward Arnold Publishers Ltd, London.
    Bishop, A. W.(1966). The strength of soils as engineering materials[J]. Geotechnique, 16(2): 91-128.
    Bolton M D(1999). The role of micro-mechanics in soil mechanics[J]. Presented at the internal Workshop on Soil Crushability, Yamaguchi University, Japan.
    Burland J B Rampello S (1996). Georgiannou V N Calabresi G A laboratory study of the strength of four stiff clays[J].Geotechnique, 46(3):491-514.
    Burland J B(1990). On the compressibility and shear strength of natural clays. [J]. Geotechnique, 40 (3): 329—378.
    
    Butterfield R.A.(1979). Natural compression law for soils[J]. Geotechnique ,29:445-458.
    
    Chang M F, Teh C I Cao L F (1999). Critical state strength parameters of saturated clays from the modified Cam clay model[J]. Canadian Geotechnical Journal, 36: 876-890.
    Collins I F(2002). Associated and non-associated aspects of the constitutive laws for coupled elastic/plastic materials[J].ASCE, The International Journal of Geomechanics, 2:259-267.
    Collins I F(2003). Closure to "Associated and non-associated aspects of the constitutive laws for coupled elastic/plastic materials" by I F Collins [J].ASCE, The International Journal of Geomechanics, 3:130-131.
    Collins I F(2003). A systematic procedure for constructing critical state models in three dimensons[J]. Solids and Structures, 40: 4379-4397.
    Collins I F(2005). Elastic/plastic models for soils and sands[J]. International Journal of Mechanical Sciences, (47):493-508
    Collins I F(2005). The concept of stored plastic work or frozen elastic energy in soil mechanics[J].Geotechnique, 5(5),373-382
    Collins I F, Einav I.(2005). On the validity of elasticity/plasticity decompositions in soil mechanics[C]. Proceedings of Symposium on Elastoplasticity for Prof. K Hashiguchi Retirement Annibersary, Kyushu University, Japan, Edited by T Tanaka and T Okayasu.
    
    Collins I F, Hilder T(2002). A theoretical framework for constructing elastic/plastic constitutive models of triaxial test[J]. Int .J. Anal. Meth. Geomech. 26:1313-1347.
    Collins I F, Houlsby G T(1997). Application of thermomechanical principles to the modeling of geotechnical materials[J]. Proceedings of the Royal Society of London A, 45(3): 1975-2001.
    Collins I F, Kelly P A(2002). A thermomechanical analysis of a family of soil models[J].Goetechnique, 52(7):507-525.
    Collins I F, Muhunthan B(2003). The relationship between stress-dilatancy, anisotropy and plastic dissipation for granular materials[J]. Geotechnique, 53(7): 611-619.
    Cotecchia F, Chandler R J(2000). A general framework for the mechanical behabiour of clays[J]. Geotechnique, 50(4): 431-447.
    CundaU P A, Strack O D L(1977). A discrete numerical model for grnular assemblies[J]. Geotechnque. 29(1): 47~65.
    Dafalias Y F(1986). Anisotropie critical state clay plasticity model[C]. In Proceedings of the 2nd International Conference on Constitutive Laws for Engineering Materials. Tucson, Ariz, Elsevier, N Y, 1: 513-521.
    Dafalias Y, Herrmann L R(1982). Bounding surface formation of soil plasticity[M]. Soil Mechanics Cyclic and Transient Loads(Pande G N, Zienkiewicz O C), Chapter 10, 253~282, New York, John Wiley&Sons.
    Desal CS(1974). A consistent finite element technique for work-softening behavior[C]. In Proceedings of the International Conference on Computation Methods in nolinear mechanics, Austin, Oden et al.(eds).
    Drucker D C(1988). Conventional and unconventional plastic response and representation[J]. Appl. Mech. Rev. 41(4): 151-167.
    Einav I(2004a). Thermomechanical relations between basic stress-space and strain-space models[J]. Geoteehnique, 54(5): 315-318.
    Futai M M, Almeida M S S, Lacerda W A(2004). Yield, strength, and critical state behavior of a tropical saturated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130(11): 1169~1179.
    Gajo A, Wood M(2001). A new approach anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behaviour[J]. Int. J. Numer. Anal. Meth. Geomech, 25: 207-241.
    Graham J, Li E C C(1985). Comparison of natural and remolded plastic clay.[J]. Journal of Geotechnieal Engineering, ASCE, 111 (7): 865-881.
    Graham J, Noonan M L, Lew K V(1983). Yield states and stress-strain relationships in a natural plastic clay[J]. Canadian Geotechnical Journal, 20(3): 502-516.
    H S Yu(1998). CASM: A unified state parameter model for clay and sand. International Journal of Numerical and Analytical Methods in Geomechanics[J], 22: 621-653.
    Hashiguchi K(1995). on the linear relations of v-lnp and lnv-lnp for isotropic consolidation of soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 19: 367-376.
    Hashiguchi K, Chen Z P(1998). Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 22: 197-227.
    Hight D W, Bond A J, Legge J D(1992). Characterizaton of the Bothkennar clay: an ovewview[J]. Geotechnique, 42(2): 303-347.
    Henkel D J(1959). The relationships between the strength, pore-water pressure and volume-change characteristics of saturated clays[J]. Geotechnique, 9(2): 119-135.
    Houlsby G T(1993). Interpretation of dilation as a kinematic constraint. Modern approaches to plasticity(ed. D. Kolymbas). New York: Elsevier. 19-38.
    Houlsby G T(1996). Derivation of incremental stress-strain response for plasticity models based on thermodynamic functions.[C]. IUTAM symposium on Mechanics of Granular and Porous Materials. 161-172.
    Houlsby G T(1981). A study of plasticity theories and their application to soils[D]. Ph.D. Thesis, University of Cambridge.
    Houlsby G T(2000). Critical state models and small strain stiffness[C]. In developments in theretical geomechanics(Smith D W, Carter J ). 295-312.
    Houlsby GT(1982). A derivation of the small-strain incremental theory of plasticity from thermodynamics[J]. Proceeding of INTAM conference on deformation and Failure of granular materials, Delft, 109-118.
    Houlsby GT(2002). Some Mathematics for the Constitutive Modelling of Soils[C]. Proc. Conference on Mathematical Methods in Geomechanics, Horton, Greece, "Advanced Mathematical and Computational Geomechanics", ed. D. Kolymbas, Springer, ISBN 3-540-40547-X, pp 35-53
    Houlsby, G T, Puzrin, A M(2000). A thermomechanical framework for constitutive models for rate-independent dissipative materials[J]. International Journal of Plasticity, 16:1017-1047.
    Houlsby, G T, Puzrin, A M(2002). Rate-dependent plasticity models derived from potential functions[J].Journal of Rheology, 46(1): 113-126.
    Hueckel T, Tutumluer E (1994). Modeling of elastic anisotropy due to one-dimentional plastic consolidation of clays[J]. Comp. & Geo., 16:311-349.
    
    Janbu N(1985). Soil models in offshore engineering[J]. Geotechnique. 35(3): 241-281.
    
    Kobayashi I, Soga K, lizuka A, Ohta H(2003). Numerical Interpretation of a shape of yield surface obtained from stress probe tests[J]. Soils and Foundations, 43(3):93-103.
    Kulhawy, F H, Mayne P W(1990). Manual on engineering soil properties for foundation design[C]. Report EL-6800, Electic Power Resreach Institute, Palo Alto, Calif. Ladd C C, Foot R(1974). New design procedure for stability of soft clays[J]. Journal of Geotechnical Engineering, ASCE, 100 (7): 763-786.
    Larsson R(1980). Undrained shear strength in stability calculation of embankments and foundations on soft clays. [J].Canadian Geotechnical Journal, 17(4): 591-602.
    Leroueil S(1996). Compressibility of clays: fundamental and practical aspects[J]. J. Geotech. Engng Div. ASCE. 122(7): 534-543.
    Leroueil S, Vaughan P R(1987). Discussion on "Composition and Compressibility of typical samples of Mexico City clay" by Mesri et al[J]. J. Geotech. Engng Div. ASCE. 113(9): 1067-1070.
    Leroueil S, Vaughan P R(1990). The general and congruent effects of struture in natural soils and weak rocks[J]. Geotechnique, 40(3): 467-488.
    
    Li X S, Dafalias Y F(2000). Dilatancy for cohesionless soils[J]. Geotechnique, 50(4): 449-460.
    
    Likilersuang S(2003). A hyperplasticity model for clay behavior: an application to bangkok clay. [D]. Ph.D. Thesis, University of Oxford.
    Liu M D, Carter J P(1999). Virgin compression of structured soils[J]. Geotechnique, 49(1), 43-57.
    Liu M D, Carter J P(2000). Modeling the destructuring of soils during virgin compression[J]. Geogtechnique, 50(4) 479-483.
    Liu M D, Carter J P(2002). A structured Cam clay model[J]. Canadian Geotechnical Journal, 39: 1313-1332.
    Locat J, Lefebvre G(1985). The compressibility and sensitivity of an artificially sedimented clay soil: the Grande Baleine marine clay, Quebec, Canada. Marine Geotechnics[J]. 6(1): 1-28.
    M F Chang, Cee Ing Teh, LaiFa Cao.(1999). Critical state strength parameters of saturated clays from the modified Cam clay model[J]. Can Geotech, 36(5): 876-890.
    Maugin G A(1992). The thermomechanics of plasticity abd fracture[M]. Cambridge University Press.
    Mayne P W(1980). Cam-Clay predictions of undrained strength[J]. Journal of Geotechnical Engineering, ASCE, 106: 1219-1242.
    Mayne P W(1985). Stress anisotropy effects on clay strength[J]. Journal of Geotechnical Engineering, ASCE, 111(3): 356-366.
    Mayne P W, Kulhawy F H(1982). K_0-OCR relationship in soil[J]. Journal of Geotechnical Engineering, ASCE, 108(6): 851-872.
    Mcdowell, G R, BoRon M D(1996). The fractal crushing of granular materials[J]. International Journal of the Mechanics and Physics of Solids, 44(12): 2079-2102.
    Mcdowell, G R, BoRon M D(1998). On the micromechanics of crushable aggregates[J]. Geotechnique, 1998, 48(5), 667-679.
    Mesri G, Rokhsar A, Bohor B F(1975). Composition and Compressibility of typical samples of Mexico City clay[J]. Geotechnique. 25(3): 527-554.
    Mesri G. (1975). Discussion of "New design procedure for stability of soft clays."by Ladd, C. C, &Foott, R.[J]. Journal of the Geotechnical Engineering Division. ASCE, 101(4): 409-412.
    Mesri G. (1989). A Reevaluation of S_(u(mob))=0.22σ'_p using laboratory shear tests[J]. Canadian Geotechnical Journal, 26(1): 162-164.
    Mitchell G, Soga K(2005). Fundamentals of Soil Behavior(3rd Edition)[M]. New York: John Wiley & Sons.
    Nagaraj T S(1990). Analysis of compressibility of sensitive soils[J]. J. Geotech. Engng, ASCE, 116(1): 105-118.
    Nagaraj T S, Miura N(2001). Soft clay behaviour: Analysis and Assessment[M]. Balkema, Rotterdam.
    Ohta H, Nishihara A(1985). Anisotropy of undrained shear strength of clays under axi-symmetric loading conditions[J]. Can Geotech, 25(2): 78-86.
    Oikawa H(1987). Compression curve of soft soils[J]. Soils and Foundations. 27(3): 99-104.
    Palmer A C, Maier G, Drucker D C(1967). Normality relations and convexity of yield surfaces for unstale materials or structural elements[J]. J. Appl. Mech, 34: 464-470.
    Perret D, Locat G, Leroueil S(1995). Strength development with burial in fine-grained sediments from the Saguenay Fjord, Quebec[J]. Can Geotech. J. 32(2): 247-262.
    Puzrin, A. M., Einav I(2003). Discussion of "Associated and non-associated aspects of the constitutive laws for coupled elastic/plastic materials" by I F Collins[J]. ASCE, The International Journal of Geomechanics, 3:129-129.
    Puzrin, A.M., Houlsby, GT(2000). A thermomechanical framework for rate-independent dissipative materials with internal functions[J]. International Journal of Plasticity ,17:1147-1165.
    Puzrin A M, Houlsby GT(2001). Fundamentals of kinematic hardening hyperplasticity[J]. Int J Solids and Structures, 38:3771 ~3794.
    
    R.希尔,王仁等译(1966),塑性数学理论.科学出版社[M].
    
    Radjai F, Jean M, Moreau J J, et al(1996). Force Distributions in Dense Two- Dimensional Granular Systems[J]. Phys Rev Lett, 77(2) :274-277.
    Rajagopal K R, Srinavasa A R(1998). Mechanics of the inelastic behaviour of materials-Part 1, theoretical underpinnings[J]. International Journal of plasticity, 14: 945-67.
    Rajagopal K R, Srinavasa AR(1998). Mechanics of the inelastic behaviour of materials-Part 2, inelastic response[J]. International Journal of plasticity, 14: 969-995.
    Rice, J R(1971). Inelastic Constitutive Relations for Solids: An Integral Variable Theory and Its Application to Metal Plasticity[J], L,Mech. Solids, 19,433-455.
    Roscoe K H, Burland J B(1968). On generalized stress-strain behavior of wet clay. In Engineering plasticity. Edited by J.Heyman and F.A.Leckie[M]. London:Cambrige University Press, 535-609.
    Roscoe K H, Schofield A N, Thurairajah A(1963). Yielding of clays in states wetter than critical[J]. Geotechnique, 8(1): 22-52.
    Roscoe K H, Schofield A N, Wroth C P(1958). On the yielding of soils[J]. Geotechnique, 13(3): 211-240.
    Rouainia M , Wood D M(2000). A kinematic hardening constitutive model for natural clays with loss of structure[J]. Grotechnique, 50(2): 153-164.
    Rowe P W(1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[M]. Proc. Roy. Soc., 267: 500-527.
    Satake M(1982). On equivalent Mohr's circle for granular materials[C]. Report No. R-205. University of New South Wales.
     Schofield A N(2006). Interlocking, and peak and design strengths[J]. Geotechnique, 56(5): 357-358.
    
    Schofield A N, Wroth C P(1968). Critical state soil mechanics[M]. London: McGraw-Hill. Sekiguchi H, Ohta H(1977). Induced anisotropy and time dependency in clays[C]. Proc. Specialty Session 9,9th ICSMFE, Tokyo. 229-239.
    Sewell M J(1982). Legendre transformations and extremum principle. Mechanics of olids, The Rodney Hill 60th anniversary volume(ed. Hopkins H G, Sewell M J), 563-605. Oxford: Pergamoh.
    Silvestri V(1984). Discussion on 'The preconsolidaton pressure of Champlain clay,Part 2'. Can Geotech.J. 21(3): 600-602.
    
    Smith P R, Hight D W(1992). The yielding of Bothkennar clay [J].Geotechnique, 42(2): 257-274
    Takaharu Shogaki, Yuichi Nochikawa(2004). Triaxial strength prorperties of natural deposits at K_0 consolidation state using a precision triaxial apparatus with small size specimens. [J]. Soils and Foundation, 44(2): 41-52.
    Tavenas F, Blancher R, Gameau R et al. (1978). The Stability of Staged-Constructed Embankments on Soft Clays[J]. Canadian Geotechnical Journal, 15: 162-164.
    Tavenas F, Leroueil S(1977). Effects of stress and time on yielding of clays[C]. Proceedings of 9th ICSMFE, Tokyo, Vol 1, 319-326.
    Verdugo R, Ishihara K (1996). The steady state of sandy soils[J]. Soils Foundations, 36(2): 81-91.
    Wallace K B(1973). Structural behaviour of residual soils of continually wet highlands of Papua New Guinea[J]. Geotechnique. 23(2): 203-218.
    Wang L B, Frost J D(2004). Dissipated strain energy methods for determining preconsolidation pressure[J], Can. Geotech, 41: 760-768.
    Wang N, Wei R(1996). Evaluation of sample quality of soft clay[C]. Proc. 2nd Int. conf. Soft Soil Engng, Nanjing, 120-125.
    Wang Z L, Dafalias Y F, Li X S, Makdisi F I(2002). State pressure index for modelling sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 128(6): 511-519.
    Wheeler S J, Naatanen A, et al(2003). An anisotropic elastoplastic model for soft clays.[J]. Can Geotech J, 40 (2): 403-418.
    Whittle A J(1993). Evalution of a constitutive model for overconsolidation clays[J]. Geotechnique, 43(2): 289-313.
    Wood D M(1990). Soil behaviour and critical state soil mechanics[M]. London: Cambridge University Press.
    Wood D M(1995b). Kinematic hardening model for structured soil[C]. Proceedings of the international symposium on numerical models in geomechanics Davos, 83-88.
    Wroth C P(1984). The interpretation of in situ soil tests[J]. Geotechnique, 34(4): 449-489.
    Yashima A, Shigematsu H, Oka F(1999). Microstructure and geotechnical property of Osaka Pleistocene clay[C]. Characterization Soft Marine Clays. Tsuchida, Nakase(eds).
    Yong R N, Nagaraj T S(1977). Investigation of fabric and compressibility of a sensitive clay. Proc. Int. Symposium on soft Clay[C]. Asian Inst. Technology, 327-333.
    Zhenshun Hong(1997). Effect of sample disturbance on mechanical properties of natural soils[D]. Ph. D. Thesis, University of Saga.
    Ziegler H(1983). An introduction to thermomechanics[M]. North-Holland: Amsterdam.
    Ziegler H, Wehrli C(1987). The derivation of constitutive relations from the free energy and the dissipation function. Advances in Applied Mechanics[J], 25: 183-238.
    Zienkiewicz OC, Chan AHC(1988). Pastor M, Schrefler B A, Shiomi T. Computational Geomechanics[C]. Wiley: Chichester.
    洪振舜,刘松玉,于小军(2004).关于结构土屈服破坏的探讨[J].岩土力学,5:684-687.
    胡海昌(1985).关于拉格朗日乘子法及其它[J].力学学报,17(5):426-434.
    黄速建(1988).塑性力学的稳定性公设的热力学原理[J]固体力学学报,9(2):95-101.
    黄文彬(1992).关于塑性力学两公设适用性的分析[J].力学与实践,14(2):64-65.
    姜洪伟,赵锡宏(1997).K_0固结各向异性不排水剪强度研究.[J].岩土力学,18(2):1-7.
    李广信(2004).高等土力学[M].北京:清华大学出版社.
    李广信(2006).土的清华弹塑性模型及其及其发展[J].岩土工程学报,28(1):1-10.
    刘恩龙,沈珠江(2005).结构性土的二元介质模型[J].水利学报,36(4):391-395.
    秦理曼,迟世春,林皋(2006a).基于热力学的砂土统一模型[J].水利学报,4:403~410.
    秦理曼,迟世春,林皋(2006b).基于热力学的砂土不排水统一模型[J].岩石力学与工程学报,7:1316~1322.
    沈珠江(1993).结构性粘土的弹塑性损伤模型[J].岩土工程学报,15(3):21-28.
    沈珠江(1998).软粘土工程特性和软粘土地基设计[J].岩土工程学报,20(1):108-110.
    沈珠江(2003).岩土破损力学:理想脆弹塑性模型[J].岩土工程学报,25(3):253-257.
    沈珠江,刘恩龙,陈铁林(2005).岩土二元介质模型的一般应力应变关系[J].岩土工程学报,27(5):489-494.
    松岗元(2001).土力学[M].罗汀,姚仰平译.北京:中国水利水电出版社.
    王立忠,丁利,陈云敏,李玲玲(2004a).结构性软土压缩特性研究[J].土木工程学报,37(4):46-53.
    王立忠,叶盛华,沈恺伦,胡亚元(2006).K_0固结软粘土不排水抗剪强度[J].岩土工程学报,28(8):970-977.
    王立忠,赵志远,李玲玲(2004b).考虑土体结构性的修正邓肯-张模型[J].水利学报,35(1):83-89.
    王仁,黄文彬,黄筑平(1992).塑性力学引论(修订版)[M].北京大学出版社.1992.
    谢定义(2000).考虑土结构性的本构关系[J].岩土工程学报,33(4),36-41.
    殷有泉,曲圣年(1982).弹塑性耦合和广义正交法则[J].力学学报,1:63-70.
    张诚厚.(1983).两种结构性粘土的土工特性[J].水利水运科学研究,(4):65-71.
    张诚厚,袁文明,戴济群(1995).软粘土的结构性及其对路基沉降的影响[J].岩土工程学报[J],17(5):25-32.
    周成,沈珠江,郦能惠等(2003).结构性土模型及固液耦合弹塑性损伤动力分析[J].水利水运工程学报,3:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700