反应加工制备结构可控的接枝共聚物PS-g-PA6及其相容特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物相容共混是不相容聚合物共混过程中加入或原位生成嵌段或接枝共聚物实现相容的技术,已成为制备高性能高分子材料的重要方法。相容剂的相容有效性取决于它们的分子结构、分子量、组成以及与共混物的每一组分之间的相互作用力等。现在盛行的原位相容技术主要是在共混过程中通过界面偶合反应生成接枝共聚物而起相容作用的,但至今什么组成和结构的接枝共聚物具有高效的相容性仍不明确,急需研究。
     论文创造性地采用结构可控的聚苯乙烯(PS)和尼龙6(PA6)的接枝共聚物(PS-g-PA6)作为PS/PA6共混体系的相容剂,建立了接枝共聚物的链结构和组成与其相容特性的定量关联,这对于指导具有高效相容特性的接枝共聚物的组成和结构优化有重要的意义。
     论文主要包括三部分内容:(1)提出新的反应加工技术制备结构可控的PS-g-PA6;(2)研究PS-g-PA6作为PS/PA6共混体系的相容剂的相容特性以及热历史下稳定共混物相形态的特性;(3)提出示踪相容剂的概念,将传统的化学工程概念(停留时间分布)引入到高分子材料加工领域,研究双螺杆挤出加工过程中共混物的相形态的动态演变规律。论文取得了以下创新性研究结果:
     1、在催化剂己内酰胺(NaCL)存在下,3-异丙烯基-α,α-二甲基苄基异氰酸酯(TMI)和苯乙烯(St)的共聚物(PS-co-TMI)中异氰酸官能团引发己内酰胺(CL)聚合,形成接枝共聚物PS-g-PA6。接枝共聚物的结构主要由以下三因素所决定:主链链长、接枝链长和接枝密度。CL接枝到PS-co-TMI主链上的过程中,PS-co-TMI没有发生链降解,因此PS-g-PA6的主链链长可由PS-co-TMI的分子量决定;所有的异氰酸官能团都参与了引发CL的聚合,从而接枝密度可由PS-co-TMI中TMI的含量决定;接枝链长可通过PS-co-TMI/CL的摩尔比来控制。
     2、接枝共聚物PS-g-PA6作为PS/PA6共混体系的相容剂的相容效率通过分散相/母体形态中分散相尺寸以及在静态热处理下共连续相形态的稳定来衡量。结果表明接枝共聚物的结构和组成对它的相容特性有较大的影响:对于具有相同主链链长和接枝密度的接枝共聚物,接枝链越长,相容效率越高;对于具有相同组成的接枝共聚物,接枝密度越低而接枝链越长,相容效率越高。
     3、在短时间混合内,加料方式对分散相尺寸有较大的影响,但随着混合时间的延长,这种影响减小甚至可以忽略。这表明加料方式主要影响接枝共聚物Ps-g-PA6到达和稳定界面所需的时间。有效的加料方式应遵循两个原则:第一,为了避免分散相和母体的相反转,母体应在分散相之前熔融;第二,相容剂应在分散相开始熔融前加入。
     4、对于工业级的聚合物混合过程,很难建立乳化曲线来评估相容剂的相容能力。论文创新性的提出示踪相容剂的概念来解决这一问题。首先将少量的荧光性官能团(如蒽基)反应到Ps-co-TMI上,然后利用Ps-co-TMI中未反应的异氰酸官能团引发CL聚合,形成含有荧光性官能团的接枝共聚物,即示踪相容剂。连续混合装置(如双螺杆挤出机)中的乳化曲线能通过示踪相容剂的浓度分布(即停留时间分布)和相应的共混物的分散相尺寸分布的结合来实现。乳化曲线不仅能够反映相容剂的相容特性,更重要的是能够反映聚合物的混合状况,这无疑将开创聚合物共混的新的研究领域。
Polymer compatibilizing blending,block or graft copolymers pre-made are added or generated in-situ by reaction in the mixing process of the immsible polymers, offers an important route to prepare new materials with combinations of properties. The efficiencies of compatibilizer are believed to depend on their molecular architecture,molecular weight,composition and the interaction between the homopolymers and the copolymer block.Now the prevailing method of in-situ compatibilization results mainly from the formation of graft copolymer by the coupling reaction between two functional polymers.Therefore,it is very necessary to research the relationship of the structure and composition of graft copolymer and its compatibilizing efficiency.
     This thesis use the graft copolymer(PS-g-PA6) with polystyrene(PS) as backbone and polyamide 6(PA6) as grafts as the compatibilizer of PS/PA6 blend systems to establish the relationship of the structure and composition of graft copolymer and its compatibilizing efficiency,which is awfully significant to optimize the structure and composition of graft copolymer in order to achieve the high compatibilizing efficiency.
     This thesis is composed of three parts:(1) development of a novel reactive processing technology for synthesizing graft copolymer PS-g-PA6;(2) studying emulsification efficiency of PS-g-PA6 graft copolymers for PS/PA6 blends and the ability of stabilizing the phase morphology of PS/PA6 blend in the process of annealing;and(3) bringing forward the concept of tracer-emulsifier and extending an old concept(residence time distribution) in chemical engineering to polymer blending in order to study the morphology evolvement of polymer blends in continuous mixer. The results are as follows:
     1.The underlying chemistry for the synthesis of PS-g-PA6 graft copolymers was based on the use of a copolymer of styrene(St) and 3-isopropenyl-α,α-dimethylbenzene isocyanate(TMI),PS-co-TMI,to activate the polymerization ofε-caprolactam(CL) in the presence of sodiumε-caprolactam(NaCL) as an anionic catalyst.The structure of a graft copolymer is mainly determined by the following three parameters,backbone length,graft density,and graft chain length.The backbone length of the PS-g-PA6 depended only on the molar mass of the initial PS-co-TMI as the latter was not subjected to chain scission during the synthesis process.The PA6 graft density was determined by the TMI content in PS-co-TMI because all the isocyanate moieties had participated in the activation of the polymerization of CL. The PA6 graft chain length was controlled primarly by the PS-co-TMI/CL molar ratio.
     2.The efficiency of graft copolymers at compatibilizing the dispersed phase/matrix morphology of PS and PA6 blends and stabilizing the co-continuous morphology of the blends during quiescent annealing were studied.Results showed that it depended very much on its molecular architecture and/or composition.For graft copolymers with similar backbone and graft density,the longer the grafts,the higher their efficiency;for a given backbone/graft composition,graft copolymers having fewer and longer grafts were more efficient at comaptibilizing and stabilizing the morphology.
     3.Feeding mode had a very significant effect on the size of the dispersed phase domains at short mixing time and its effect decreased or became negligible at long mixing time.This indicates that feeding mode affected mostly the time necessary for the PS-g-PA6 compatibilizer to reach and emulsify the interfaces between PS and PA6. A good feeding mode should meet the following two requirements:first,the matrix should melt faster than the dispersed phase in order to avoid the phase inversion; second,the compatibilizer should be present as soon as the blending process starts, namely,the dispersed phase begins to melt.
     4.Building up an emulsification curve may not always be practical because of limited amounts of copolymers available.This is especially true for an industrial polymer blending process.A so-called concept of tracer-emulsifier was developed to solve the problem.Very small amounts of fluorecent moities such as anthracene were incorporated in PS-co-TMI.When the latter was used to activate the polymerization of CL,the resulting graft copolymer contained fluorescent moities.An original method for constructing the emulsification curve of a polymer blend in a continuous mixer such as a twin-screw extruder was developed based on the tracer-emulsifier concentration distribution(i.e.the residence time distribution) and the corresponding dispersed phase domain size distribution of the blend system.The resulting emulsification curves exhibited unique features that would open a new research field for polymer blending.
引文
[1]Baker,W.;Scott,C.;Hu,G.H.Reactive polymer blending,Hanser publisher,Munich,2001.
    [2]Li,T.;Topolkaraev,V.A.;Hiltner,A.;Baer,E.;Ji,X.Z.;Qurik,R.P.Block copolymers as compatibilizers for blends of linear low density polyethylene and polystyrene.Journal of Polymer Science Part B:Polymer Physics 1995,33:667-683.
    [3]Li,H.;Hu,G.H.;Sousa,J.A.Morphology development of immiscible polymer blends during melt blending:Effects of interfacial agents on the liquid-solid interfacial heat transfer.Journal of Polymer Science Part B:Polymer Physics 1999,37:3368-3384.
    [4]Cigana,P.;Favis,B.D.;Jerome,R.;Diblock copolymers as emulsifying agents in polymer blends:Influence of molecular weight,architecture,and chemical composition.Journal of Polymer Science Part B:Polymer Physics 1996,34:1691-1700.
    [5]Cigana,P.;Favis,B.D.The relative efficacy of diblock and triblock copolymers for a polystyrene/ethylene-propylene rubber interface.Polymer 1998;39:3373-3378.
    [6]Harrats,C.;Fayt,R.;Jer(?)me R.Effect of block copolymers of various molecular architecture on the phase morphology and tensile properties of LDPE rich(LDPE/PS) blends.Polymer 2002;43:863-873.
    [7]Jannasch,P.;Hassander,H.;Wesslen,B.On the macro- and microphase separation of compatibilizers in immiscible polymer blends.Journal of Polymer Science Part B:Polymer Physics 1996,34:1289.
    [8]Edgecombe,B.D.;Stein,J.A.;Frechet,J.M.J.;Xu,Z.;Kramer,E.J.The role of polymer architecture in strengthening polymer-polymer interfaces:A comparison of graft,block,and random copolymers containing hydrogen-bonding moieties.Macromolecules 1998,31:1292-1304.
    [9]Stary,Z.;Fortelny,I.;Krulis,Z.;Slouf,M.Effect of molecular structure of ethane-propene and styrene-butadiene copolymers on their compatibilization efficiency in low-density polyethylene/polystyrene blends.Journal of applied polymer science 2008,107:174-186.
    [10]Vranjes,N.;Lednicky,F.;Kotek,J.;Baldrian,J.;Rek,V.;Fortelny,I. Compatibilization efficiency of styrene-butadiene block copolymers as a function of their block number. Journal of Applied Polymer Science 2008, 108:466-472.
    [11] Matos, M.; Favis, B. D.; Lomellini, P. Interfacial modification of polymer blends-the emulsification curve: 1. Influence of molecular weight and chemical composition of the interfacial modifier. Polymer 1995, 36:3899-3907.
    [12] Chio, W. M.; Park, O. O.; Lim, J. G. Effect of diblock copolymer on morphology and mechanical properties for syndiotactic polystyrene/ethylene-propylene copolymer blends. Journal of Applied Polymer Science 2004, 91: 3618-3626
    [13] Hong, B. K.; Jo, W. H. Effects of molecular weight of SEBS triblock copolymer on the morphology, impact strength, and rheological property of syndiotactic polystyrene/ethylene-propylene rubber blends. Polymer 2004, 41:2069-2079.
    [14] Bourry, D.; Favis, B. D. Cocontinuity and Phase inversion in HDPE/PS blends: Influence of interfacial modification and elasticity. Journal of Polymer Science Part B: Polymer Physics 1998,36: 1889-1899.
    [15] Soares, B. G.; Moreira, A. C. F.; Sirqueira, A. S.; Barbosa, R. V.; Simao, R. A.Effect of the molecular architecture of graft copolymers on the phase morphology and tensile properties of PS/EVA blends. Journal of Applied Polymer Science 2008, 107: 930-938.
    [16] Retsos, H.; Anastasiadis, S. H.; Pispas, S.; Mays, J. W.; Hadjichristidis, N.Interfacial tension in binary polymer blends in the presence of block copolymers. 2. Effects of additive architecture and composition.Macromolecules 2004, 37: 524-537.
    [17] Lyatskaya, Y.; Gersappe, D.; Gross, N. A.; Balazs, A. C. Designing compatibilizers to reduce interfacial tension in polymer blends. Journal of Physical Chemistry 1996, 100: 1449-1458.
    [18] Lyatskaya, Y.; Jacobson, S. H.; Balazs, A. C. Effect of composition on the compatibilizing activity of comb copolymers. Macromolecules 1996, 29:1059-1061.
    [19] Gersappe, D.; Irvine, D.; Balazs, A. C.; Liu, Y.; Sokolov, J.; Rafailovich, M.;Schwarz, S.; Peiffer, D. G The use of graft copolymers to bind immiscible blends.Science 1994,265:1072-1074.
    [20]Israels,R.;Foster D.P.;Balazs,A.C.Designing optimal comb compatibilizers:AC and BC combs at an A/B interface.Macromolecules 1995,28:218-224.
    [21]Kvist,L.;Bertilsson,H.;Meuller,P.Poly(styrene-g-ethylene oxide)copolymers as interfacial agents in immiscible polymer blends.Polymer Engineering and Science 1998,38:1303-1312.
    [22]Adedeji,A.;Hudson,S.D.;Jamieson,A.M.Effect of exothermic interfacial mixing on interfacial activity of a block copolymer.Macromolecules 1996,29:2449-2456.
    [23]Kim,S.;Kim,J.K.;Park,C.E.Effect of molecular architecture of in situ reactive compatibilizer on the morphology and interfacial activity of an immiscible polyolefin/polystyrene blend.Polymer 1997,38:1809-1815.
    [24]Kitayama,N.;Keskkula,H.;Paul,D.R.Reactive compatibilization of nylon 6/styrene-acrylonitrile copolymer blends.Part 2.Dispersed phase particle size.Polymer 2000,41:8053-8060.
    [25]Weber,M.Engineering polymer alloys by reactive extrusion.Macromolecular Symposia 2000,181:189-200.
    [26]Willemse,R.C.;Boer,A.P.;Dam,J.V.;Gotsis,A.D.Co-continuous morphologies in polymer blends:the influence of the interfacial tension.Polymer 1999,40:827.
    [27]Bhadane,P.A.;Champagne,M.F.;Huneault,M.A.;Tofan,F.;Favis,B.D.Erosion-dependant continuity development in high viscosity ratio blends of very low interfacial tension.Journal of Polymer Science Part B:Polymer Physics 2006,44:1919-1929.
    [28]Bhadane,P.A.;Champagne,M.F.;Huneault,M.A.;Tofan,F.;Favis,B.D.Continuity development in polymer blends of very low interfacial tension.Polymer 2006,47:2760-2771.
    [29]Li,J.;Ma,P.L.;Favis,B.D.The role of the blend interface type on morphology in cocontinuous polymer blends.Macromolecules 2002,35:2005-2016.
    [30]Sarazin,P.;Favis,B.D.Influence of temperature-induced coalescence effects on co-continuous morphology in poly(ε-caprolactone)/polystyrene blends.Polymer 2005,46:5966-5978.
    [31]Gersappe,D.;Harm,P.K.;Irvine,D.;Balazs,A.C.Contrasting the compatibilizing activity of comb and linear copolymers.Macromolecules 1994,27:720-724.
    [32]Zhu,Y.;Ma,Z.;Li,Y.;Cui,J.;Jiang,W.Monte carlo simulation of the compatibility of graft copolymer compatibilized two incompatible homopolymer blends:Effect of graft structure.Journal of Applied Polymer Science 2007,105:1591-1596.
    [33]Asaletha,R.;Thomas,S.;Kumaran,M.The technological compatibilization of natural rubber/polystyrene blends by the addition of natural rubber-graft-polystyrene.Rubber Chemistry and Technology Journal 1995,68:671.
    [34]Feng,H.;Ye,C.;Tian,J.;Feng,Z.;Huang,B.Compatibilization effect of graft copolymer on immiscible polymer blends:1.LLDPE/SBS/LLDPE-g-PS systems.Polymer 1998,39:1787-1792.
    [35]Pernot,H.;Baumert,M.;Court,F.;Leibler,L.Design and properties of co-continuous nanostructured polymers by reactive blending.Nature Materials 2002,1:54-58.
    [36]Bhanu,N.;Kandpal,L.D.;Mathur,G.N.Poly(ether ether Ketone)/poly(aryl ether sulfone) blends:Relationships between morphology and mechanical properties.Journal of Applied Polymer Science 2003,90:2887-2905.
    [37]Arns,C.H.;Knackstedt,M.A.;Roberts,A.P.;Pinczewski,V.W.Morphology,cocontinuity,and conductive properties of anisotropic polymer blends.Macromolecules 1999,32:5964.
    [38]Meincke,O.;Kaempfer,D.;Weickmann,H.;Friedrich,C.;Vathauer,M.;Warth,H.Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene.Polymer 2004,45:739-748.
    [39]Li,Y.;Hiroshi,S.Co-continuous polyamide 6(PA6)/acrylonitrile -butadiene-styrene(ABS) nanocomposites.Macromolecular Rapid Communications 2005,26:710-715.
    [40]Lee,J.K.;Han,C.D.Evolution of a dispersed morphology from a co-continuous morphology in immiscible polymer blends.Polymer 1999,40:2521-2536.
    [41]Willemse,R.C.Co-continuous morphologies in polymer blends:stability. Polymer 1999,40:2175-2178.
    [42]Mekhilef,N.;Favis,B.D.;Carreau,P.J.Morphological stability,interfacial tension,and dual-phase continuity in polystyrene-polyethylene blends.Journal of Polymer Science Part B:Polymer Physics 1997,35:293-308.
    [43]Yuan,Z.;Favis,B.D.Coarsening of immiscible co-continuous blends during quiescent annealing.AIChE Journal 2005,51:271-280.
    [44]Yuan,Z.;Favis,B.D.Influence of the efficacy of interfacial modification on the coarsening of cocontinuous PS/HDPE blends during quiescent annealing.Journal of Polymer Science Part B:Polymer Physics 2006,44:711-721.
    [45]Dedecher,K.;Groeninchx,G.Reactive compatibilisation of A/(B/C) polymer blends.Part 2.Analysis of the phase inversion region and the co-continuous phase morphology.Polymer 1998,39:4993-5000.
    [46]Chuai,C.Z.;Almdal,K.Lyngaae-Jφrgensen,J.Phase continuity and inversion in polystyrene/poly(methyl methacrylate) blends.Polymer 2003,44:481-493.
    [47]Galloway,J.A.;Jeon,H.K.;Bell,J.R.;Macosko,C.W.Block copolymer compatibilization of cocontinuous polymer blends.Polymer 2005;46:183-191.
    [48]Harrats,C.;Blacher,S.;Fayt,R.;Jer(?)me,R.;Teyssie,Ph.Molecular design of multicomponent polymer systems XIX:Stability of cocontinuous phase morphologies in low-density polyethylene-polystyrene blends emulsified by block copolymers.Journal of Polymer Science Part B:Polymer Physics 1995,33:801-811.
    [49]Harrats,C.;Fayt,R.;Jer(?)me,R.;Blacher,S.Stabilization of a cocontinuous phase morphology by a tapered diblock or triblock copolymer in polystyrene-rich low-density polyethylene/polystyrene blends.Journal of Polymer Science Part B:Polymer Physics 2003,41:202-216.
    [50]Zhang,M.F.;M(u|¨)ller,H.E.Cylindrical polymer brushes.Journal of Polymer Science Part A:Polymer Chemistry 2005,43:3461-3481.
    [51]Bhattacharya,A.;Misra,B.N.Grafting:a versatile means to modify polymers techniques,factors and applications.Progress in Polymer Science 2004,29:767-814.
    [52]Pitsikalis,M.;Pispas,S.;Mays,J.W.;Hadjichristidis,N.Nonlinear block copolymer architectures.Advances in Polymer Science 1998,135:1-137.
    [53]B(o|¨)mer,H.G.;Matyjasewski,K.Graft copolymer by atom transfer polymerization.Macromolecular Symposium 2002,177:1-15.
    [54]Vivek,A.V.;Dhamodharan,R.Grafting of methacrylates and styrene on to polystyrene backbone via a "grafting from" ATRP process at ambient temperature.Journal of Polymer Science Part A:Polymer Chemistry 2007,45:3818-3832.
    [55]Li,Z.;Li,P.;Huang J.Synthesis of amphiphilic copolymer brushes:poly(ethyleneoxide)-graft-polystyrene.Journal of Polymer Science Part A:Polymer Chemistry 2006,44:4361-4371.
    [56]Ruokolainen,J.;Tanner,J.;Ikkala,O.;Brinke,G.T.;Thomas,E.L.Direct imaging of self-organized comb copolymer-like systems obtained by hydrogen bonding:poly(4-vinylpyridine)-4-nonadecylphenol.Macromolecules 1998,31:3532-3536.
    [57]Bazuin,C.G.;Tork,A.Generation of liquid crystalline polymeric materials from non liquid crystalline components via ionic complexation.Macromolecules 1995,28:8877-8880.
    [58]Matyjaszewski,K.;Xia,J.Atom transfer radical polymerization.Chemical reviews 2001,101:2921-2990.
    [59]Tsukahara,Y.;Mizuno,K.;Segawa,A.;Yamashita,Y.Study on the radical polymerization behavior of macromonomers.Macromolecules 1989,22:1546-1552.
    [60]Al-muallem,H.A.;Knauss,D.M.Graft copolymers from star-shaped and hyperbranced polystyrene macromonomers.Journal of Polymer Science Part A:Polymer Chemistry 2001,29:3547-3555.
    [61]Matyjaszewski,K.;Beers,K.L.;Kern,A.;Gaynor,S.G.Hydrogels by atom transfer radical polymerization.I.Poly(N-vinylpyrrolidinone-g-styrene) via the macromonomer method.Journal of Polymer Science Part A:Polymer Chemistry 1998,36:823-830.
    [62]Edgecombe,B.D.;Stein,J.A.;Frechet,J.M.J.;Xu,Z.;Kramer,E.J.The role of polymer architecture in strengthening polymer-polymer interfaces:a comparision of graft,block and random copolymers containing hydrogen-bonding moieties.Macromolecules 1998,31:1292-1304.
    [63]Shinoda,H.;Miller,P.J.;Matyjaszewski,K.Improving the structural control of graft copolymers by combining ATRP with the macromonomer method. Macromolecules 2001,34:3186-3194.
    [64]Rieger,J.;Dubois,P.;Jer(?)me,C.Controlled synthesis and interface properties of new amphiphilic PCL-g-PEO copolymers.Langmuir 2006,22:7471-7479.
    [65]Roos,S.G.;Miiller,A.H.E.;Matyjaszewski,K.Copolymerization of n-butyl acrylate with methyl methacrylate and PMMA macromonomers:comparison of reactivity ratios in conventional and atom transfer radical copolymerization.Macromolecules 1999,32:8331-8335.
    [66]You,Y.Z.;Hong,C.Y.;Wang,W.P.;Wang,P.H.;Lu,W.Q.;Pan,C.Y.A novel strategy to synthesize graft copolymers with controlled branch spacing length and defined grafting sites.Macromolecules 2004,37:7140-7145.
    [67]Roovers,J.;Toporowski,P.Synthesis and characterization of multiarm star polybutadienes.Macromolecules 1989,22:1897-1903.
    [68]Beers,K.L.;Gaynor,S.G.;Matyjaszewski,K.;Sheiko,S.S.;M(o|¨)ller,M.The synthesis of densely grafted copolymers by atom transfer radical polymerization.Macromolecules 1998,31:9413-9415.
    [69]Zhang M.;Breiner,T.;Mori,H.;M(u|¨)ller,A.H.E.Amphiphilic cylindrical brushes with poly(acrylic acid) core and poly(n-butyl acrylate) shell and narrow length distribution.Polymer 2003,44:1449-1458.
    [70]Venkatesh,R.;Yajjou,L.;Koning,C.E.;Klumperman,B.Novel brush copolymers via controlled radical polymerization.Macromolecular chemistry and physics 2004,205:2161-2168.
    [71]Wang,X.S.;Luo,N.;Ying,S.K.Synthesis of EPDM-g-PMMA through atom transfer radical polymerization.Polymer 1999,40:4515-4520.
    [72]Cao,C.;Dong,J.Y.;Hu,Y.;Chung,T.C.Synthesis of polypropylene graft copolymers by the combination of a polypropylene copolymer containing pendant vinylbenzene groups and atom transfer radical polymerization.Journal of Polymer Science Part A:Polymer Chemistry 2005,43:429-437.
    [73]Inoue,Y.;Matsugi,T.;Kashiwa,N.;Matyjaszewski,K.Graft copolymers from linear polyethylene via atom transfer radical polymerization.Macromolecules 2004,37:3651-3658.
    [74]Liu,S.;Sen,A.Synthesis of novel linear polyethene-based graft copolymers by atom transfer radical polymerization.Macromolecules 2001,34:1529-1532.
    [75]Matyjaszewski,K.;Teodorescu,M.;Miller,P.J.;Peterson,M.L.Graft copolymers of poyethylene by atom transfer radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2000, 38: 2440-2448.
    [76] Pae, Y. Preparation of polyimide/nylon 6 graft copolymers from polyimides containing ester moieties: synthesis and characterization. Journal of Applied Polymer Science 2006, 99: 309-318.
    [77] Koutalas, G.; Lohse, D. J.; Hadjichristidis, N. Novel block-comb/graft copolymers with macromonomer strategy and anionic polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43: 4040-4049.
    [78] Carrier, H.; Hu, G. H. Morphology development of in situ compatibilized semicrytalline polymer blends in a co-rotating twin-screw extruder. Polymer Engineering and Science 1999, 39: 996-1013.
    [79] Su, W. Y; Wang, Y; Min, K.; Quirk, R. P. In situ copolymerization and compatibilization of polyester and polystyrene blends. I. Synthesis of functionalized polystyrenes and the reactions with polyester. Polymer 2001,42:5107-5119.
    [80] Maric, M.; Ashurov, N.; Macosko, C. W. Reactive blending of poly(dimethylsiloxane) with nylon 6 and poly(styrene): effect of reactivity on morphology. Polymer Engineering and Science 2001, 41: 631 -642.
    [81] Seo, Y.; Ninh, T. H. Enhanced interfacial adhesion between polypropylene and nylon 6 by in situ reactive compatibilization. Polymer 2004,45: 8573-8581.
    [82] Jose, S.; Francis, B.; Thomas, S.; Karger-kocsis, J. Morphology and mechanical properties of polyamide 12/polypropylene blends in presence and absence of reactive compatibiliser. Polymer 2006,47: 3874-3888.
    [83] Jeon, H. K.; Zhang, J.; Macosko, C. W. Premade vs. reactively formed compatibilizers for PMMA/PS melt blends. Polymer 2005,46: 12422-12429.
    [84] Jeon, H. K.; Feist, B. J.; Koh, S. B.; Chang, K.; Macosko, C. W.; Dion, R. P.Reactively formed block and graft copolymers as compatibilizers for polyamide 66/PS blends. Polymer 2004,45: 197-206.
    [85] Yu, X.; Wu, Y; Li, B.; Han, Y. Studies on interfacial reaction kinetics and properties at a reactive compatibilization interface. Polymer 2005, 46:3337-3342.
    [86] Moad, G The synthesis of polyolefin graft copolymers by reactive extrusion.Progress in Polymer Science1999, 24: 81-142.
    [87] Hu, G H.; Cartier H. Reactive extrusion: toward nanoblends. Macromolecules, (1999),32,4713-4718.
    [88]Cartier,H.;Hu G.H.A novel reactive extrusion process for compatibilizing immiscible polymer blends.Polymer 2001,42:8807-8816.
    [89]Hu G.H.;Feng,L.F.Extrusion processing for nanoblends and nanocomposites.Macromolecular symposia 2003,195:303-308.
    [90]Teng,J.;Otaigbe,J.U.;Taylor,E.P.Reactive blending of functionalized polypropylene and polyamide 6:in situ polymerization and in situ compatibilization.Polymer Engineering and Science 2004,44:648-659.
    [91]Datta,S.;Lohse,D.J.Polymeric compatibilizers:uses and benefits in polymer blends,Hanser,New York,1996.
    [92]Macosko,C.W.;Jeon,H.K.;Hoye,T.R.Reactions at polymer-polymer interfaces for blend compatibilization.Progress in polymer science 2005,30:939-947.
    [93]Tan,N.C.B.;Tai,S.K.;Briber,R.M.Morphology control and interfacial reinforcement in reactive polystyrene/amorphous polyamide blends.Polymer 1996,37:3509-3519.
    [94]Jeon,H.K.;Kim,J.K.Effect of reaction rate on morphological change of reactive blends.Macromolecules 2000;33:8200-8210.
    [95]Dedecker,K.;Groeninckx,G.Interfacial graft copolymer formation during reactive melt blending of polyamide 6 and styrene-maleic anhydride copolymers.Macromolecules 1999,2472-2479.
    [96]Moon,B.;Hoye,T.R.;Macrosko,C.W.Synthesis and application of fluorescently labeled phthalic anhydride(PA) functionalized polymers by ATRP.Polymer 2002,43:5501-5509.
    [97]Moon,B.;Hoye,T.R.;Macosko,C.W.Anionic synthesis and detection of fluorescence-labeled polymers with a terminal anhydride group.Journal of Polymer Science Part A:Polymer Chemistry 2000,38:2177-2185.
    [98]Hu,G.H.;Li,H.;Feng,L.F.A two-step reactive extrusion process for the synthesis of graft copolymers with polyamides as grafts.Macromolecules 2002,35:8247-8250.
    [99]Hu,G.H.;Li,H.;Feng,L.F.Rate of the activated anionic polymerization of ε-caprolactam onto an isocyanate bearing polypropylene in the melt.Polymer 2005,46:4562-4570.
    [100]Ji,Y.;Li,W.;Ma,J.;Liang,B.A novel approach to the preparation of nanoblends of poly(2,6-dimethyl-1,4-phenylene oxide)/polyamide 6.Macromolecular rapid communications 2005,26:116-120.
    [101]Matzer,M.;Schober,D.L.;Mcgrath,J.E.Polystyrene-nylon 6 graft copolymers.European Polymer Journal 1973,9:469-480.
    [102]Petit,D.;Jerome,R.;Teyssie,Ph.Anionic block copolymerization of ε-caprolactam.Journal of Polymer Science:Polymer Chemistry Edition 1979,17:2903-2916.
    [103]Yamashita,Y.;Matsui,H.;Ito,K.Block copolymerization.V.block anionic polymerization of lactams.Journal of Polymer Science:Polymer Chemistry Edition 1972,10:3577-3587.
    [104]Hu,G.H.;Li,H.;Feng,L.F.Follow-up of the course of the anionic ring-opening polymerization of lactams onto an isocyanate-bearing polymer backbone in the melt.Journal of Applied Polymer Science 2006,102:4394-4403.
    [105]Sebenda,J.Lactam Polymerization.Journal of Macromolecular Science,Part A 1972,6:1145-1199.
    [106]Udipi,K.;Dave,R.S.;Kruse,R.L.;Stebbins,L.R.Polyamides from lactams via anionic ring-opening polymerization:1.chemistry and some recent findings.Polymer 1997,38:927-938.
    [107]Sebenda,J.;Kouril,V.Anionic polymerization of carprolactam-XL.Estimation of the content of active base from the rate of polymerization and from the increase of the number of polymer molecules in activated polymerization.European Polymer Journal 1972,8:437-447.
    [108]Sebenda,J.;Kouril,V.Anionic polymerization of caprolactam-ⅩⅩⅩⅨ.Number of polymer molecules formed per molecule of acyl caprolactam in high-temperature polymerization.European Polymer Journal 1971,7:1637-1648.
    [109]Dave,R.S.;Robert,L.K.;Linonel,R.S.Udipi,K.Polyamides from lactams via anionic ring-opening polymerization:2.Kinetics.Polymer 1997,38:939-947.
    [110]Marelova,J.;Roda,J.;Stehlicek,J.Anionic polymerization of ε-caprolactam in the presence of symmetrically substituted ureas.European Polymer Journal 1999,35:145-155.
    [111]Mateva,R.;Ishtinakova,O.;Nikolov,R.N.;Djambova,Ch.Kinetics of polymerization of ε-caprolactam in the presence of inorganic dispersed additives.European Polymer Journal 1998,34:1061-1067.
    [112]Hu,G.H.;Kadri,I.Preparation of macromolecular tracers and their use for studying the residence time distribution of polymeric systems.Polymer Engineering and Science 1999,39:299-311.
    [113]Mohammed,S.;Daniels,E.S.;Klein,A.;El-Aasser,M.S.Bulk copolymerization of dimethyl meta-isopropenyl benzyl isocyanate(TMI):Determination of reactivity ratios.Journal of Applied Polymer Science 1998,67:559-568.
    [114]Wu,H.S.;Chuang,M.H.;Hwang,J.W.Kinetics and thermal analysis of copolymerization of m-isopropenyl-α,α'-dimethylbenzyl isocyanate with styrene.Journal of applied polymer science 1999,73:2763-2770.
    [115]Barner,L.;Barner-kowollik,C.;Davis,T.P.Free-radical copolymerization of styrene and m-isopropenyl-α,α'-dimethylbenzyl isocyanate studied by 1H NMR kinetic experiments.Journal of Polymer Science Part A:Polymer Science 2002,40:1064-1074.
    [116]Hu,G.H.;Li,H.;Feng,L.F.;Pessan,L.A.Strategies for maximizing free-radical grafting reaction yields.Journal of applied polymer science 2003,88:1799-1807.
    [117]Ricco,L.;Russo,S.;Orefice,G.;Riva,F.Anionic poly(ε-caprolactam):Relationships among conditions of synthesis,chain regularity,reticular order,and polymorphism.Macromolecules 1999,32:7726-7731.
    [118]Mateva,R.;Petrov,P.;Rousseva,S.;Dimitrov,R.;Zolova,G.On the structure of poly-ε-caprolactams,obtained with bifunctional N-carbamyl derivatives of lactams.European Polymer Journal 2000,36:813-821.
    [119]Rusu,G.;Ueda,K.;Rusu,E.;Rusu,M.Polyamides from lactams by centrifugal molding via anionic ring-opening polymerization.Polymer 2001,42:5669-5678.
    [120]Ongemach,G.C.;Moody,A.C.Determination of caprolactam monomer content in nylon 6 extractables by gas chromatography.Analytical chemistry 1967,39:1005-1006.
    [121]Zilio-Grandi,F.;Sassu,G.M.;Callegaro,P.Direct determination or residual caprolactam in nylon 6 by gas chromatography.Analytical chemistry 1969,41:1847-1849.
    [122]Kotelnikov,V.A.;Persits,I.E.;Surin,N.N.;Danilevskaya,L.B.;Sekiguchi,H.;Bui,Ch.European Polymer Journal 1996,32:767-771.
    [123]Heberstroh,E.;Jakisch,L.;Henβge,E.;Schwarz,P.Real-time monitoring of reactive extrusion processes by means of in-line infrared spectroscopy and infrared temperature measurement.Macromolecular Materials and Engineering 2002,287:203-208.
    [124]Jacobi,E.;Schuttenberg,R.C.Schulz,R.C.A new method for gel permeation chromatography of polyamides.Die Makromolekulare Chemie,Rapid Communications 1980,1:397.
    [125]Dudley,M.A.Characterization of nylon 66 by gel permeation chromatography.Journal of Applied Polymer Science 1972,16:493-504.
    [126]Pastuska,G.;Just,U.Gelpermeationschromatographie von polyamiden.Angewandte Makromolekulare chemie 1979,81:11-18.
    [127]Pastuska,G.;Just,U.;August,H.Zur analyse von polyamiden.Bestimmung der molek(u|¨)lmassen und ihre verteilung.Angewandte Makromolekulare chemie 1982,107:173-184.
    [128]Marot,G.;Lesec,J.Size exclusion chromatography of polyamides.Journal of Liquid Chromatography & Related Technologies 1988,11:3305-3319.
    [129]Panaris,R.;Pallas,G.Caracterisation des polyamides par chromatographie sur gel(GPC) en milieu hexamethylphosphorotriamide.Journal of Polymer Science Part B:Polymer letters 1970,8:441.
    [130]Girardon,V.;Tessier,M.;Marechal,E.Characterization of functional aliphatic oligoamides using N-trifluoroacetylation-Ⅱ.Size exclusion chromatography.European Polymer Journal 1998,34:1325-1330.
    [131]Schuttenberg,H.;Schulz,R.C.Trifluoracetylierung von aminen mit N-trifluoracetyl-Nylon 66.Angewandte Chemie 1976,88:848-849.
    [132]Weisskopf,K.;Meyerhoff,G.Molecular weight determinations of polyamides by N-trifuoroacetylation.Polymer 1983,24:72-76.
    [133]Biagini,E.;Costa,G.;Gattiglia,E.;Imperato,A.;Russo,S.Gel permeation chromatographic analysis of N-trifluoroacetylated poly(ε-caprolactam):calibration procedures.Polymer 1987,28:114-118.
    [134]李广赞,冯连芳,顾雪萍,许忠斌,胡国华,刘金华.PSt-TMI合成及其共聚动力学研究.功能高分子学报2005,2005,18:127-133.
    [135]Hu,G.H.;Kadri,I.Modeling reactive blending:an experimental approach. Journal of Polymer Science Part B:Polymer Physics 1998,36:2153-2163.
    [136]Hu,G.H.;Kadri,I.;Picot,C.On-line measurement of the residence time distribution in screw extruders.Polymer Engineering and Science 1999,39:930-939.
    [137]Sebenda,J.Comprehesive lactams kinetics.Elevies 1976,115:379.
    [138]Havlice,J.;Brozek,J.;Sachova,M.;Novakova,V.;Roda,J.Non-activated anionic polymerization of ε-caprolactam initiated with the sodium salt of ε-caprolactam.Macromolecular Chemistry and Physics 1999,200:1200-1207.
    [139]Lehrle,R.S.;Parsons,I.W.;Rollinson,M.P.Thermal degradation mechanisms of Nylon 6 deduced from kinetic studies by pyrolysis-g.c.Polymer Degradation and Stability 2000,67:21-33.
    [140]Zhang,Y.;Cheng,K.;Xu,J.Thermal stability studies of polyamides and their block copolymers.Thermochimica Acta 2005,425:137-141.
    [141]Oliveira,M.J.;Botelho,G.Degradation of polyamide 11 in rotational moulding.Polymer Degradation and Stability 2008,93:139-146.
    [142]Fornes,T.D.;Yoon,P.J.;Paul,D.R.Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites.Polymer 2003,44:7545-7556.
    [143]Russo,G.M.;Nicolais,V.;Maio,L.D.;Montesano,S.;Incarnato,L.Rheological and mechanical properties of nylon 6 nanocomposites submitted to reprocessing with single and twin screw extruders.Polymer Degradation and Stability 2007,92:1925-1933.
    [144]Shukla,S.R.;Harad,A.M.;Mahato,D.Depolymerization of nylon 6 waste fibers.Journal of Applied Polymer Science 2006,100:186-190.
    [145]Abastari;Sakai,T.;Sembokuya,H.;Kubouchi,M.;Tsuda,K.The reciprocal influence between ion transport and degradation of PA66 in acid solution.Polymer Degradation and Stability 2006,91:2595-2604.
    [146]Abastari;Sakai,T.;Sembokuya,H.;Kubouchi,M.;Tsuda,K.Study on permeation behavior and chemical degradation of PA66 in acid solution.Polymer Degradation and Stability 2007,92:379-388.
    [147]Chaupart,N.;Serpe,G.;Verdu,J.Molecular weight distribution and mass changes during polyamide hydrolysis.Polymer 1998,39:1375-1380.
    [148]Klun,U.;Krzan,A.Degradation of polyamide-6 by using metal salts as catalyst.Polymers for Advanced Technologies 2002,13:817-822.
    [149]Serpe,G.;Chaupart,N.Ageing of polyamide 11 in acid solutions.Polymer 1997,38:1911-1917.
    [150]Martinez-Salazar,J.;Cannon,C.G.Transmission electron microscopy of polyamides.Journal of Materials Science Letters 1984,3:693-694
    [151]Forsstr(o|¨)m,D.;Terselius,B.Thermo oxidative stability of polyamide 6 films Ⅰ.Mechanical and chemical characterization.Polymer Degradation and stability 2000,67:69-78.
    [152]Guaita,M.;Chiantore,O.;Luda,M.P.Monte carlo simulations of polymer degradations.1.Degradations with volatilization.Macromolecules 1990,23:2087-2092.
    [153]Gon(?)alves,E.S.;Poulsen,L.;Ogilby,P.R.Mechanism of the temperature-dependent degradation of polyamide 66 films exposed to water.Polymer Degradation and Stability 2007,93:1977-1985.
    [154]Brandrup,J.;Immergut,E.H,editors.Polymer Hanndbook.4 th ed.;1998.
    [155]Vinckier,I.;Laun,H.M.Assessment of the Doi-Ohta theory for co-continuous blends under oscillatory flow.Journal of Rheology 2001,45:1373-1385.
    [156]Jafari,S.H.;P(o|¨)tschke,P.;Stephan,M.;Warth,H.;Alberts,H.Multicomponent blends based on polyamide 6 and styrenic polymers:morphology and melt rheology.Polymer 2002,43:6985-6992.
    [157]Willemse,R.C.;Boer,A.P.;Dam,J.V.;Gotsis,A.D.Co-continuous morphologies in polymer blends:a new model.Polymer 1998,39:5879-5887.
    [158]Noolandi,J.;Hong,M.K.Interfacial properties of immiscible homopolymer blends in the presence of block copolymers.Macromolecules 1982,15:482-492.
    [159]Noolandi,J.;Hong,K.M.Effect of block copolymers at a demixed homopolymer interface.Macromolecules 1984,17:1531-1537.
    [160]Kim,K.H.;Jo,W.H.Effect of chain architecture of graft copolymer on the structure of adsorbed layer:a monte carlo simulation approach.Polymer 2001,42:3205-3211.
    [161]Cimmino,S.;Coppola,F.;D'Orazio,L.;Greco,R.;Maglio,G.;Malinconico,M.;Mancarella,C.;Martuscelli,E.;Ragosta,G.Ternary nylon-6/rubber/modified rubber blends:Effect of the mixing procedure on morphology,mechanical and impact properties.Polymer 1986,27:1874-1884.
    [162]Willis,J.M.;Favis,B.D.Processing-morphology relationships of compatibilized polyolefin/polyamide blends.Part Ⅰ:The effect of an ionomer compatibilizer on blend morphology.Polymer Engineering and Science 1988,28:1416-1426.
    [163]Lee,J.D.;Yang,S.M.Effects of mixing procedures on properties of compatibilized polypropylene/nylon 6 blends.Polymer Engineering and Science 1995,35:1821-1833.
    [164]Hu,G.H.;Sun,Y.J.;Lambla,M.Devolatilization:A critical sequential operation for in situ compatibilization of immiscible polymer blends by one-step reactive extrusion.Polymer Engineering and Science 1996,36:676-684.
    [165]Sun,Y.J.;Hu,G..H.;Lambla,M.;Kotlar,H.K.In situ compatibilization of polypropylene and poly(butylene terephthalate) polymer blends by one-step reactive extrusion.Polymer 1996,37:4119-4127.
    [166]Li,H.;Hu,G.H.The early stage of the morphology development of immiscible polymer blends during melt blending:Compatibilized vs.uncompatibilized blends.Journal of Polymer Science Part B:Polymer Physics 2001,39:601-610.
    [167]Wolf,D.;White,D.Experimental study of the residence time distribution in plasticating screw extruders.AIChE Journal 1976,22:122-131.
    [168]Chen,L.;Pan,Z.;Hu,G.H.Residence time distribution in screw extruders.AIChE Journal 1993,39:1455-1464.
    [169]Nauman,E.B.;Buffham,B.A.Mixing in continuous flow system,Wiley,New York,1983.
    [170]Unlu,E.;Failer,J.F.Geometric mean vs.arithmetic mean in extrusion residence time studies.Polymer Engineering and Science 2001,41:743-751.
    [171]Gao,J.;Walsh,G.C.;Bigio,D.;Briber,R.M.;Wetzel,M.D.Residence-time distribution model for twin-screw extruders.AIChE Journal 1999,45:2541-2549.
    [172]Carneiro,O.S.;Covas,J.A.;Ferreira,J.A.;Cerqueira,M.F.On-line monitoring of the residence time distribution along a kneading block of a twin-screw extruder.Polymer Testing 2004,23:925-937.
    [173] Zhang, X. M; Xu, Z. B.; Feng, L. F.; Song, X. B.; Hu, G. H. Assessing local residence time distributions in screw extruders through a new in-line measurement instrument. Polymer Engineering and Science 2006, 46:510-519.
    
    [174] Zhang, X. M.; Feng, L. F.; Hoppe, S.; Hu, G H. Local residence time,residence revolution, and residence volume distributions in twin-screw extruders. Polymer Engineering and Science 2008, 48: 19-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700