尼龙6/高密度聚乙烯/黏土复合材料结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Structure and Properties of Polyamide 6/High Density Polyethylene/Clay Composites
  • 作者:徐钰珍
  • 论文级别:博士
  • 学科专业名称:高分子化学与物理
  • 学位年度:2007
  • 导师:方征平
  • 学科代码:070305
  • 学位授予单位:浙江大学
  • 论文提交日期:2007-01-24
摘要
本文工作主要分成两部分:第一部分是高密度聚乙烯(HDPE)/黏土(Clay)和尼龙6(PA6)/Clay纳米复合材料的研究;第二部分是Clay对PA6/HDPE和PA6/高密度聚乙烯接枝丙烯酸(PEAA)共混体系增容作用研究。
     1.HDPE/Clay和PA6/Clay纳米复合材料的研究
     用熔融共混的方法制备了HDPE/Clay和PEAA/Clay纳米复合材料。采用正电子湮没技术(PALS)测试了自由体积的尺寸及浓度,研究了自由体积性能与拉伸模量之间的关系。结果表明:Clay在PEAA中有较好的分散,与基体形成较多的界面层,使自由体积强度(I_3)增加,且界面效应使复合材料的模量提高,而在HDPE体系中,发生团聚,模量下降。
     用熔融共混的方法制备了PA6/Clay纳米复合材料,采用XRD、SEM、TEM和DSC等实验手段对材料的结构和性能进行了表征。研究结果表明:Clay在PA6中有较好的剥离和分散。在低剪切速率下,Clay的加入降低了PA6的表观粘度,而当剪切速率大于3000s~(-1)时,加有Clay的PA6表观粘度稍高于纯PA6,而且在Clay加1~4 phr之间时,Clay的量对体系的粘度影响比较小。Clay在PA6中较好的剥离和分散,并且和PA6有较好的相互作用,在一定程度上阻碍了其链段运动,PA6的结晶温度随Clay量的增加而降低。
     2.Clay对PA6/HDPE和PA6/PEAA共混体系增容作用的研究
     用熔融共混的方法制备了PA6/HDPE/Clay和PA6/PEAA/Clay纳米复合材料,研究了Clay对PA6/HDPE和PA6/PEAA体系相容性的影响。
     对PA6/HDPE体系,从四个角度来分析Clay的增容作用:(1)Clay含量的变化。研究表明随Clay量的增加,分散相HDPE尺寸明显减小。XRD和TEM结果表明大部分的Clay已经剥离,并比较均匀地分散在PA6相或PA6和HDPE的界面周围。随着Clay含量的增加,插层的Clay也增加,Clay在界面上聚集增加,HDPE相被拉长而变形,界面层厚度有一定增加,界面变模糊。(2)加工工艺的变化。转速对相形态的影响:对于PA6/HDPE共混物,40rpm时分散相HDPE直径变得最小,继续增加转速,HDPE相尺寸有变大的趋势,相不是很稳定,而在加入4 phr Clay后,当转速大于等于40 rpm后相基本稳定。时间对相形态的影响:对于PA6/HDPE共混物,随着共混时间的增加,HDPE相尺寸逐渐变小。当体系中加入1phr Clay后,相尺寸要小于不加Clay的体系,但随共混时间延长,HDPE相尺寸还是会逐渐变小。加入较多Clay后,随时间的变化,HDPE相尺寸进一步变小,而且最后相趋于稳定。(3)PA6/HDPE共混物组成的变化。结果表明不加Clay时,PA6为主相的体系中,HDPE相尺寸要大于相应的HDPE为主相的PA6的相,添加2 phr Clay后,分散相尺寸都变小,而且PA6为主相的体系,影响较大,最后使体系的分散相尺寸和两聚合物的组成变化影响不大。(4)PA6粘度的变化。结果表明在不加Clay的情况下,PA6粘度高点,HDPE相尺寸就小些,这就说明PA6的粘度对共混物的相形态的确有一定的影响,加入4 phr Clay后,高粘度PA6中HDPE相尺寸减小没有低粘度PA6体系明显,而且最后两个体系中HDPE相尺寸比较接近。
     当HDPE接枝AA后,与PA6和Clay有较好的相互作用,从而Clay在PA6/PEAA中有较好的分散,少量的Clay聚集在两相的界面。同PA6/HDPE体系类似的是,随Clay量地增加,HDPE相被拉长,进而体系形成双连续结构。由于Clay较好的剥离和分散,与PA6、PEAA有较好的相互作用,从而较大地提高了体系的拉伸模量,并且由于分散的层状Clay阻碍了链段的运动,从而降低了两相的结晶度和结晶温度,而无定型区的增加也一定程度上有利于两相的相容。
     不管是HDPE、PEAA为主相还是PA6为主相,Clay对体系的增容作用表现在与两相的相互作用上,相互作用是Clay能提高相容性的主要原因。用PALS、红外光谱分析了Clay和PA6、PEAA之间的相互作用,并用Lipatov理论分析了增容机理,说明Clay对HDPE/PA6共混体系的增容作用要优于PEAA/PA6共混体系。
The dissertation consists of two parts. First, study on HDPE/clay and PA6/clay nanocomposites; second, the compatibilizaion effect of clay on PA6/HDPE and PA6/PEAA blends. All composites were prepared via melt compounding.
    1. Study on the HDPE/clay and PA6/clay nanocomposites
    For HDPE/clay and PEAA/clay composites, the size and concentration of free-volume in composites were investigated by PALS, and the relationship between free-volume properties and modulus was studied. The results indicated that most of the clay platelets are not intercalated in HDPE, resulted in lower modulus of the composites. In comparison, clay exfoliated and dispersed in PEAA better than that in HDPE matrix, resulting in more interfaces and higher free volume strength (I_3). Consequently, the modulus of the composites increased.
    For PA6/Clay composites, the dispersion of clay and the properties were investigated by XRD, SEM, TEM, and DSC. The results showed that the clay was exfolicated and dispersed well in PA6. At low shear rate, the viscosity of PA6 decreased with the addition of clay. However, when the shear rate was larger than 3000 s~(-1), the viscosity of PA6/clay was higher than pure PA6. Moreover, the effect was little when 1-4 phr clay was added in PA6. Because of finer dispersion of clay in PA6 and good interaction between PA6 and clay, the clay layers prevented the mobility of PA6 chain segments in certain extent and reduced the crystallization temperature.
    2. Compatibilizaion effect of clay on PA6/HDPE and PA6/PEAA blends
    For PA6/HDPE system, the compatibilization effect of clay was analyzed according to four factors: (1) Clay content. The HDPE domain size decreased dramatically with the increment of clay content. XRD and TEM results showed that the clay platelets mainly dispersed in PA6 phase and enriched around the interface between PA6 and HDPE. With the increment of clay content, the clay layers which enriched around the interface increased and the thickness of interface also increased.
    (2) Processing parameters (including rotation speed and mixing time). The variation of rotation speed: for PA6/HDPE (70/30) blend, the HDPE domain size was the smallest when the rotation speed was 40 rpm. With the increment of rotation speed, the HDPE domain size increased. Adding 4 phr clay into this blend, the morphology began to be stable at 40 rpm or faster. The variation of mixing time: for PA6/HDPE blend, with the increment of mixing time, the HDPE domain size decreased. For PA6/HDPE/1 phr clay, HDPE domain size decreased, however, with the increment of mixing time, the HDPE domain size also decreased. When adding more clay into this blend and mixed same time, the HDPE domain size decreased further, and with the increment of mixing time, the domain size began to be stable. (3) The composition of PA6/HDPE. The HDPE domain size (PA6/HDPE-90/10 and 70/30) was lager than that of PA6 in HDPE/PA6=90/10 and 70/30 blends for the blends without clay. When adding 2 phr clay into these blends, the dispersed domain size decreased to a similar level. (4) PA6's viscosity. The higher is the PA6's viscosity, the smaller the HDPE domain size is. However, when adding 4 phr clay into these blends, the HDPE domain size decreased to a similar level.
    For PA6/PEAA system, there were strong interaction between PA6, PEAA and clay. The clay was exfolicated and dispersed well in PA6/PEAA blend, and partial clay sheets enriched around the interface. With the increment of clay content, the PEAA domain was elongated and finally formed co-continuous morphology. Because of the fine dispersion of clay and its strong interaction with PA6 and PEAA, the tensile modulus increased dramatically. The dispersed clay platelets prevented the mobility of PA6 chain and induced the decrement of crystallization temperature and crystallinity. The increment of amorphous portion also induced the compatibility of HDPE and PA6.
    Whether PA6 was the continuous phase or not, the interaction between clay and the matrix was the most important reason that determines the compatibilization effect of clay. Lipatov theory was used to analyze the compatibilization mechanism.
引文
1. Ray S S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003; 28: 1539.
    2. Hoffmann U. Kristallstruktur and quelling von montmorillonit, Z Krist, 1993; 86: 340.
    3. Pinnavaia TJ, Beall G W. Polymer-clay nanocomposites. John Wiley & Sons Ltd. 2000; 50.
    4. 王立新,张楷亮,任丽,袁金凤,赛锡高.聚合物/层状硅酸盐纳米复合材料的研究进展.复合材料学报.2001;3:5.
    5. 何恩广.插层型聚合物基纳米复合材料.材料导报.2001;15:40.
    6. 陈光明,李强,漆宗能,王佛松.聚合物/层状硅酸盐纳米复合材料研究进展.高分子通报.1999;4:1.
    7. Roy R. Ceramics by the solution-sol-gel route. Science. 1987; 238: 1664.
    8. Mark J E. Ceramic reinforced polymers and polymer-modified ceramics. Polym Eng Sci. 1996; 36: 2905.
    9. Reynaud E, Gauthier C, Perez J. Nanophases in polymers. Rev Metall/Cah Inf Tech. 1999; 96: 169.
    10. Herron N, Thorn D L. Nanoparticles uses and relationships to molecular clusters. Adv Mater. 1998; 10: 1173.
    11. Calvert P. Potential applications of nanotubes, in: Ebbesen T W(Ed.), Carbon Nanotubes, CRC Press, Boca Raton, FL, 1997, pp. 277.
    12. Favier V, Canova G R, Shrivastava S C, Cavaile J Y. Mechanical percolation in cellulose whiskers nanocomposites. Polym Eng Sci. 1997; 37:1732.
    13. Chazeau L, Cavaille J Y, Canova G, Dendievel R, Boutherin B. Viscoelastic properties of plasticized PVC reinforced with cellulose whisker, J Appl Polym Sci. 1999; 71: 1797.
    14. Liao B, Song M, Liang H, Pang Y. Polymer-layered silicate nanocomposites. 1. A study of poly(ethylene oxide)/Na+-montmorillonite nanocomposites as polyelectrolytes and polyethylene-block-poly(ethylene glycol) copolymer/Na+- montmorillonite nanocomposites as fillers for reinforcement of polyethylene. Polymer. 2001; 42: 10007.
    
    15. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering. 2000; 28:1.
    
    16. Krishnamoorti R, Vaia R A, Glannelis E P. Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater. 1996; 8: 1728.
    
    17. Oriakhi C. Nano sandwiches. Chem Br. 1998; 34: 59.
    
    18. Vaia R A, Vasudevan S, Krawiec W. New polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv Mater. 1995; 7: 154.
    
    19. Lerner M, Oriakhi C. in: Goldstein A(Ed.), Handbook of nanophase materials, Marcel Dekker, New York, 1997, p. 199.
    
    20. Lagaly G Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites. Appl Clay Sci. 1999; 15:1.
    
    21. Greenland D J. Adsorption of polyvinylalcohols by montmorillonite. J Colloid Sci. 1963; 18: 647.
    
    22. Ogata N, Kawakage S, Ogihara T. Poly(vinyl alcohol)-clay and poly(ethylene oxide)-clay blend prepared using water as solvent. J Appl Polym Sci. 1997; 66: 573.
    
    23. Parfitt R L, Greenland D J. Adsorption of poly(ethylene glycols) on montmorillonites. Clay Mineral. 1970; 8: 305.
    
    24. Zhao X, Urano K, Ogasawara S. Adsorption of polyethylene glycol from aqueous solutions on montmorillonite clays. Colloid Polym Sci. 1989; 267: 899.
    
    25. Ruiz-Hitzky E, Aranda P, Casal B, Galvan J C. Nanocomposite materials with controlled ion mobility. Adv Mater. 1995; 7: 180.
    
    26. Billingham J, Breen C, Yarwood J. Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: an in situ study using ATR-FTIR. Vibr Spectrosc 1997; 14: 19.
    27. Levy R, Francis C W. Interlayer adsorption of polyvinylpyrrolidone on montmorillonite, J Colloid Interface Sci. 1975; 50: 442.
    28. Jeon H G, Jung H T, Lee S W, Hudson S D. Morphology of polymer silicate nanocomposites. High density polyethylene and a nitrile. Polym Bull. 1998; 41: 107.
    29. 郭存悦,柳忠阳,徐德民,贺大为,胡友良.粘土/聚烯烃纳米复合材料进展研究.应用化学.2001:5:351.
    30. 杨凤,赵海超,张学全,王葆同,冯之榴.原位聚合制备聚乙烯/蒙脱土纳米复合材料的研究.高等学校化学学报.2003;24:711.
    31. 郭存悦,马志,张明革,贺爱华等.单体插层原位共聚制备聚乙烯/蒙脱土纳米复合材料.科学通报.2002:47:519.
    32. Vaia R A, Jandt K D, Kramer E J. Macromolecules evolution of melt intercalated polymer-organically modified layered silicates nanocomposites. Chem Mater. 1996; 8: 2628.
    33. Liu T X, Liu Z H, Ma K X, Shen L, Zeng K Y, He C B. Morphology, thermal and mechanical behavior of polyamide6/layered-silicate nanocomposites. Comp Sci Tech. 2003; 63: 331.
    34. Liu X H, Wu Q J. Polyamide66/clay nanocomposites via melt intercalation. Macromol Mater Eng. 2002; 287:180.
    35. Garcia-Lopea D, Gobernado-Mitre I, Fernandez J F, Merino J C, Pastor J M. Influence of clay modification process in PA6-layered silicate nanocomposite properties. Polymer. 2005; 46: 2758.
    36. Wang K H, Choi M H, Koo C M, Choi Y S, Chung I J. Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polymer. 2000; 42: 9819.
    37. 陈光明,李强,漆宗能,王佛松.聚合物/层状硅酸盐纳米复合材料研究进展.高分子通报.1999;4:1.
    38. Vaia R A, Jandt K D, Kramer E J. Giannelis E P. Kinetics of polymer melt intercalation, Macromolecules. 1995; 28: 8080.
    39. Vaia R A, Giannelis E P. Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment, Macromolecules. 1997; 30: 8000.
    40. Vaia R A, Ishii H, Giannelis E P. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates, Chem Mater. 1993; 5: 1694.
    41. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide-clay hybrid. J Polym Sci: Part A: Polym Chem. 1993; 31: 2493.
    42. 赵竹第,李强,欧玉春,漆宗能,王佛松.尼龙6/蒙脱土纳米复合材料的制备、结构与力学性能的研究.高分子学报.1997;5:519.
    43. 刘立敏,乔放,朱晓光,漆宗能.熔体插层制备尼龙6/蒙脱土纳米复合材料的性能表征.高分子学报. 1998;3:304.
    44. 王一中,张捕,余鼎声.挤出法制备尼龙6/蒙脱土纳米复合材料.工程塑料应用.1997;27:1.
    45. Heinemann J, Rdichert P, Thomann R, Mulhaupt R. Polyolefin nanocomposites formed by melt compounding and transition metal catalyzed ethane homo- and copolymerization in the presence of layered silicates, Macromol Rapid Commun. 1999; 20: 423.
    46. Shin S A, Simon L C, Soares J B P, Scholz G. Polyethylene-clay hybrid nanocomposites: in situ polymerization using bifunctional organic modifiers. Polymer. 2003; 44: 5317.
    47. Gopakumar T G; Lee J A, Kontopoulou M, Parent J S. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer. 2002; 43: 5483.
    48. Wang S, Hu Y, Qu Z, Wang Z, Chen Z, Fan W. Preparation and flammability properties of polyethylene/clay nanocomposites by melt intercalation method from Na+ montmorillonite. Materials Letters. 2003; 57: 2675.
    49. Wang K H, Choi M H, Koo C M, Xu M, Chung I J, Jang M C, Choi S W, Song H H. Morphology and physical properties of Polyethylene/silicate nanocomposite prepared by melt intercalation. J Polym Sci: Part B: Polym Phy. 2002; 40: 1454.
    50. 刘晓辉,范家起,李强等.聚丙烯/蒙脱土纳米复合材料:I.制备、表征及动态力学性能.高分子学报.2000;5:563.
    51. 陈中华,龚克成,刘书根.聚丙烯/改性膨润土复合材料的制备、结构与性能.合成树脂及塑料.2000;17:44.
    52. Maiti P, Nam P H, Okamoto M. Influence of crystallization on intercalation, morphology and mechanical properties of polypropylene/clay nanocomposites. Macromolecules. 2002; 35: 2042.
    53. 王一中,武保华,余鼎声.聚苯乙烯/蒙脱土嵌入混杂材料的研究.合成树脂及塑料.2000;17:22.
    54. Fu X, Qutubuddjn S. Polymer-clay nanocomposites: exfoliation of organophilic montmorillonites nonalayers in polystyrene. Polymer. 2001; 42: 807.
    55. 朱笑初,景肃,孟娟等.PBT/粘土复合材料的制备和性能表征.塑料工业.2000;28:45.
    56. 吕建坤,漆宗能,益小苏等.插层聚合制备粘土/环氧树脂纳米复合材料过程中粘土的剥离行为的研究.高分子学报.2000;1:85~89.
    57. 戈明亮,姚胜,徐卫兵等.聚氯乙烯/蒙脱土纳米复合材料的制备及性能.现代塑料加工与应用.2001;13:11.
    58. Agag T, Takeichi T. Poltbenzoxazine-montmorillonite hybrid nanocomposites: synthesis and characterization. Polymer. 2000; 41: 7083.
    59. L A Utracki. Polymer Alloys and Blends. Hanser Publishers, Munich 1989.
    60. Halimatudahiana, Ismail H, Nasir M. Morphological studies of uncompatibilized and compatibilized polystylene/polypropylene blend. Polymer Test. 2002; 21: 263.
    61. Fayt R, Jerome R, Teyssie Ph. Molecular design of multicomponent polymer system Ⅱ emulsifying effect of a poly(hydrogenated butadiene-b-styrene) compolymer in high-density polyethylene/polystyrene blends. J Polym Sci Part B: Polym Phys. 1981; 19: 1269.
    62. Schwarz M C, Barlow J W, Paul D R. Mechanical properties of HDPE/(PEC/PS)/SEBS blends. J Appl Polym Sci. 1988; 35: 2053.
    63. Hlavata D, Horak Z, Hromadkova J, Lednicky F, Pleska A. Compatabilization of PS/PP blends by styrene-butadiene block copolymers with differing PS block lengths. J Polym Sci Part B: Polym Phys. 1999; 37: 1647.
    64. Hlavata D, Horak Z, Lednicky F, Hromadkova J, Pleska A, Zanevskii Y V. Compatibilization efficiency of styrene-butadiene multiblock copolymers in PS/PP blends. J Polym Sci Part B: Polym Phys. 2001; 39: 931.
    65. Radonjic G; Musil V, Smit I. Compatibilization of PP/PS blends with poly(styrene-b-butadiend-b-styrene) block copolymer. JAppl Polym Sci. 1998; 69: 2625.
    66. Ajji A. In: Utracki L A, editor. Polymer blends handbook. Dordrecht: Kluwer Academic; 2002[chapter 4].
    67. Brown S B. In Utracki L A, editor. Polymer blends handbook. Dordrecht: Kluwer Academic; 2002[chapter 5].
    68. Baker W E, Saleem W E. Polystyrene-polyethylene melt blends obtained through reactive mixing process. Polym Eng Sci. 1987; 27:1634.
    69. Zhu SM, Liu Y, Rafailovich M, Sokolou J, Gersappe D, Winesett D A. Abstr Pap ACS. 1999; 218: 109.
    70. Ferreiro V, Douglas JF, Amis EJ, Karim A. Phase ordering in blend films of semi-crystalline and amorphous polymers. Macromol Symp. 2001; 167: 73.
    71. Hrnjak-Murgic Z, Jelcic Z, Kovacevic V, Milna-Misak M. J Mater Eng. 2002; 6: 84.
    72. Wang Y, Zhang Q, Fu Q. Compatibilization of immiscible polypropylene/polystyrene blends using clay. Macromol Rap Commun. 2003; 24: 231.
    73. Del Pio C, Ojeda M C, Acosta J L. Carbon black effect on the microstructure of incompatible polymer blends. Eur Polym J. 2000; 36: 1687.
    74. Voulgads D, Petridis D. Emulsifying effect of dimethyldio tadecylammonium-hectorite in polystyrene/poly(ethyl methacrylate) blends. Polymer. 2002; 43:2213.
    75. Kim S W, Jo W H, Lee S M, Ko M B, Jho J Y. Preparation of clay-dispersed poly(styrene-co-acrylonitrile) nanocomposites using poly(ε-caprolactone) as a compatibilizer. Polymer. 2001; 42: 9837.
    76. Gelfer M Y, Song H H, Liu L, Hsiao B S, Chu B, Rafailovich M. Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly(methyl methacrylate) blends, J Polym Sci Part B: Polym Phys. 2003; 41: 44.
    77. Lipatov Y S. Polymer reinforcement. Toronto, Canada: ChemTec Publishing; 1995.
    78. Zhang Q, Yang Q, Fu Q. Effect of chemical compositional distribution on solid-state structures and properties of poly (3-hydroxybutyrate-co-3- hydroxyvalerate). Polymer.2004; 45: 1913.
    79. Vermant J, Cioccolo G; Golapan Nalr K, Moldenaers P. Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles. Rheol Acta. 2004; 43: 529.
    80. Cesta S, Arfighetti S, Chirico A, Brancaccio A. Synthesis and Properties of new Toughened Resins based on Ethylene-Propylene Copolymers. Plenum Press, New York and London, 1980.
    81. Traugott T D, Mark H F, Bikales N M, Overbergerl C G, Menges G.Encyclopedia of Polymer Science and Engineering. John Wiley and Sons, New York 1987.
    82. Lee M S, Lodge T P, Macosko C W. Blend encapsulation by random copolys: C/B/A-ran-B and C/D/A-ran-B systems. Macromol Chem Phys. 1998; 199: 1555.
    83. Zlata H M, Zelimir J, Vera K, Marica M M, Jasenka J. Molecular and morphological characterization of immiscible SAN/EPDM blends filled by nano-filler. Macromol. Mater Eng. 2002; 287: 684.
    84. Chiantore L, Trossarelli M, Lazzari. Compatibilization effects in the thermal degradation of blends containing SAN and EPDM polymers. Polymer. 1988; 39: 2777.
    85. Varghese H, Bhagawan S B, Thomas S. Effects of blend ratio, crosslinking systems and fillers on the morphology, curing behavior, mechanical properties, and failure mode of acrylonitrile butadiene rubber and poly(ethylene-co-vinyl acetate) blends. J Appl Polym Sci. 1989; 71: 2335.
    86. Faulkner D L. Toughened mica-filled polypropylene systems. J Appl Polym Sci. 1988; 36:467.
    
    87. Hess W M, Swor R A, Vegvair P C. Kautsch. Guntmi. Kunstst. 1985; 38:1114.
    
    88. Hess W M, Vegvair P C, Swor R A. Carbon black in NR/BR blends for truck tires. Rubber Chem. Technol. 1985; 58: 350.
    
    89. Kolarik J, Lednicky F, Jancar J, Pukanszky B. Phase structure of terrary composites consisting of polypropylene/elastomer/filler: effect of functionalized components. Polym. Commun. 1990; 31:201
    
    90. Kolarik J, Lednicky F, Jancar J, Pukanszky B. "Proceedings of the 6~(th) International Conference on Composite Materials", Vol. 1, F L Matthews, N C R Buskell, J M Hodgkinson, J Mortom, Eds. Elsevier, London 1987.
    
    91. ScherbakoffN, Ishida H. Makromol. Chem., Macromol. Symp. 1993; 70: 459.
    
    92. Bolz M, Hess W, Veeman S. Macromol. Symp. 1999; 148:103.
    
    93. Ya Kiselev V, Agayants I M, Evreinov V, Savalev A V. Int. Polym. Sci. Technol. 1991; 18:23.
    
    94. Stamhuis J E. Mechanical properties and morphology of polypropylene composites. III short glass fiber reinforced elastomer modified polypropylene. Polym Compos. 1988; 9: 280.
    
    95. Brandrup J, Immergut E H. Polymer Handbook. John Wiley and Sons, New York 1989
    
    96. Guerrica-echevarria G, Eguiazabal J I, Nazabal J. Morphology and physical properties of injection-molded, mineral-filled polyamide 6/poly(hydroxy ether of bisphenol A) blends. J Appl Polym Sci. 1999; 73: 1805.
    
    97. Jeanette G, Carmen A, Miren I, Berenice D. Effects of coupling agents on mechanical and morphological behavior of the PP/HDPE blend with different CaCO_3. Eur Polym J. 2002; 38: 2465.
    
    98. Osman G. Nihan N. Effect of inorganic filler phase on mechanical and morphological properties of binary immiscible polymer blends. Polymer Bulletin. 2003; 49:465.
    
    99. Urtacki L A. Clay-containing polymeric nanocomposites. Shawbury, shewsbury UK: PAPRA; 2004.
    100. Fukui O, Tsutsui K, Akagawa T, Sakai I, Nomura T, Nishio T, Yokoi T, Kawamura N. Thermoplastic resin composition. US Pat., 5,091,462,25.02.1992, to Ube Industries Ltd.
    101. Chen T K, Tien Y I, Wei K H. Synthesis and characterization of novel segmented polyurethane/clay nanocomposite via poly(ε-caprolactone)/clay. J polym Sci Part A: Polym Chem. 1999; 37: 2225.
    102. Tabtiang A, Lumlong S, Venables RA. Polym Plast Technol Eng. 2000; 39: 293.
    103. Hasegawa N, Okamoto H, Kawasumi M, Usuki A, Okada A. Resin composite. US Pat., 6,117,932, 12.09.2000, Appl. 17.09.1998, to Kabushiki Kaisha Toyota Chuo Kenkyusho
    104. Alexandre M, Dubois P. Mater Sci Eng. 2000; 28: 1.
    105. Giannelis E P, Krishnamoorti R, Manias E. Polymer-silicate nanocomposites: model systems for confined polymers and polymer blends. Adv Polym Sci. 1999; 138: 107.
    106. Zhu S M, Liu Y, Rafailovich M, Sokolov J, Gersappe D, Winesett D A, Ade H. Abstr Pap ACS. 1999; 218: 109.
    107. Li X, Park H M, Lee J O, Ha C S. Effect of blending sequence on the microstructure and properties of PBT/EVA-g-MAH/organoclay ternary nanocomposites. Polym Eng Sci. 2002; 42: 2156.
    108. Yangjin L, Hiroshi S. Novel morphologies of poly(phenylene oxide) (PPO)/polyamide 6 (PA6) blend nanocomposites. Polymer. 2004; 45: 7381.
    109. Dedecker K, Groeninckx G. Reactive compatibilization of the polyamide 6/poly(phenylene oxide) blend by means of styrene-maleic anhydride copolymer. J Appl Polym Sci. 1999; 73: 889.
    110. Jo W H, Kim H C. Morphology, rheological and mechanical properties of poly(phenylene ether) and polyamide-6 blends with a compatibilizer. Polym Bull. 1992; 27: 465.
    111. Marechal P H, Legras R, Deconinck J M. Postcondensation and oxidation processes in molten polyamide 6. J. Polym Sci, Polym Chem. 1993; 31: 2057.
    112. Wang S, Hu Y, Song L, Liu J, Chen Z, Fan W. Study on the dynamic self-organization of montmorillonite in two phases. J Appl Polym Sci. 2004; 91: 1457.
    113. Feng M, Gong F, Zhao C G, Chen G M, Zhang S M, and Yang M S. Study on the dynamic self-organization of montmorillonite in two phases. Polym Int, 2004; 53: 1529.
    114. Khatua B B, Dong J L, Hwang Y K, Jin K K. Effect of Organoclay Platelets on Morphology of Nylon-6 and Poly(ethylene-ran-propylene) Rubber Blends. Macromolecules. 2004; 37: 2454.
    115. Nesterov A E, Lipatov Y S, Horichko V V and Ignatova T D. Effect of filler on kinetics and energy of activation of phase separation in poly(methyl methacrylate)/poly(vinyl acetate) blend. Macromol Chem Phys, 1998; 199: 2609.
    116. Zhang L, Tam K C, Gan L H, Yue C Y, Lam Y C, Hu X. Effect of nano-silica filler on the rheological and morphological properties of polypropylene/liquid-crystalline polymer blends. J Appl Polym Sci. 2003; 87: 1484.
    117. Schmidt D, Shah D, Giannelis E P. Curr Opin Solid State Mater Sci, 2002; 6:205
    118. 马继盛,漆宗能,张树范,王新,陈士娟,胡友良.插层聚合制备聚丙烯/蒙脱土纳米复合材料及其结构性能表征.高等学校化学学报.2001;22(10):1767.
    119. Fox T G, Flory P J. J Phys Chem. 1951; 55: 211.
    120. 李桂芝,叶美玲,施良和.轻度交联PMMA的结构转变及自由体积特性.高分子材料科学与工程 1997;13(4):73.
    121. Damment R M, Maunn S L, Neelov I M. Free volume and tacticity in polystyrenes. Macromolecules. 1999; 32(6): 1930.
    122. Hasao O A, Boyce M C, Li X S. An investigation of the yield and postyield behavior and corresponding structure of poly(methyl methacrylate). J Polym Sci: Part B: Polym Phys. 1993; 31: 185.
    123. Jean Y C. Microchem J. 1990; 42: 72.
    124. Vaia R A, Jandt K D, Kramer E J. Microstructural ecolution of melt intercalated polymer-organically modified layered silicates nanocomposites. Chem. Mater, 1996; 8: 2628.
    125. Fang Z, Hu Q. Angew Makromol Chem. 1999; 265: 1.
    126. Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O. Mater Res Soc Proc. 1990; 171: 45.
    127. Kawasumi M, Kohzki M, Kojima Y, Okada A, kamigaito O. US Patent No. 4810734 1999 [assigned to Toyota Motor Co. Japan].
    128. Usuki A, Kojima Y, Kawasumi M, Okada A, Dukushima Y, Kurauch T. Systhesis of nylon 6-clay hybrid. J Mater Res. 1993; 8:1179.
    129. Okada A, Usudi A. Mater Sci Eng. 1995; 3:109.
    130. Yano K, Usuki A, Okada A. Synthesis and properties of polyimide-clay hybrid films. J Polym Sci Part A: Polym Chem. 1997; 35: 2289.
    131. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T. Gas permeabilities in rubber-clay hybrid, dMater Sci Lett. 1993; 12: 889.
    132. Kojima Y, Fukumori K, Usuld A, Okada A, Kurauch T. Mechanical properties of nylon 6-clay hybrid, dMater Res. 1993; 49:1185.
    133. Kojima Y, Usuld A, Kawasumi M, Okada A, Kurauch T, kamigaito O. Sorption of water in nylon 6-clay hybrid. J Appl Polym Sci. 1993; 49:1259.
    134. Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Kurauch T. Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. J Appl Polym Sci. 1995; 55: 119.
    135. Kojima Y, Matsuoka T, Takahashi H, Kurauchi T. Crystallization of nylon 6-clay hybrid by annealing under elevated pressure, J Appl Polym Sci. 1994; 51: 683.
    136. Mathias L J, Davis R D, Jarrett W L. Observation of α and γ crystal forms and amorphous regions of nylon 6-clay nanocomposites using solid-state ~(15)N nuclear magnetic resonance. Macromolecules. 1999; 32: 7958.
    137. Liu X H, Wu Q J. Non-isothermal crystallization behavior of polyamide 6/clay nanocomposites. Eur Polym J. 2002; 38:1383.
    138. Fornes T D, Paul D R.Crystallization behavior of nylon 6 nanocomposites. Polymer. 2003, 44: 3945.
    139. Incarnato L, Scarfato P, Scatteia L, Acierno D. Rheological behavior of new melt compounded copolyamide nanocomposites. Polymer. 2004; 45: 3487.
    140. Boucard S, Duchet J, Gerard F, Prele P, Gonzalez S. Processing of polypropylene - clay hybrids. Macromol Syrup. 2003; 194:241.
    141. Li J, Zhou C, Wang G; Yu W, Tao Y, Liu Q. Preparation and linear rheological behavior of polypropylene/MMT nanocomposite. Polym compos. 2003; 24: 323.
    142. Hoffmann K J, Stoppelmann F C, Kim G M. Colloid Polym Sci. 2000; 278: 629.
    143. Lipatov Y S, Nesterov A E, Ignatova T D, and Nesterov D A. Effect of polymer-filler surface interactions on the phase separation in polymer blends. Polymer. 2002; 43: 875.
    144. Karim A, Douglas J F, Nisato G, Liu D W, Amis E J. Transient target patterns in phase separating filled polymer blends. Macromolecules. 1999; 32:5917.
    145. Rameshwaram J K, Yang Y S, Jeon H S. Structure—property relationships of nanocomposite-like polymer blends with ultrahigh viscosity ratios. Polymer, 2005; 46: 5569.
    146. Mehrabzadeh M, Can M R, Kamal. J Chem Eng. 2002; 80: 1083.
    147. Han C D. Rheology in polymer processing, Academic press, New York, 1976.
    148. Han C D. Multiphase flow in polymer processing, Academic press, New York, 1981.
    149. 李爱英,李保卫,惠雪梅.HDPE/NBR共混物流变性能研究.中国塑料.2001:15:27.
    150. 刘长生,王琪,夏和生.PP-g-HMA增容尼龙6/聚丙烯共混物结构与性能研究.塑料工业.2001;29:9.
    151. 冼远芳,程凤梅,王宇明.HDPE/NBR共混物熔体流变特性.吉林工学院学报.2002;23:20.
    152. 李新法,苗荣正.PA1010/CSM/EPR共混物的流变性能(Ⅱ).塑料工业.1996;24:84.
    153. 李小梅,王磊,武德珍.增容剂EAA对PA6/POE共混体系的相态及性能的影响.中国塑料.2001:15:21.
    154. Wu S H. Entanglement, friction, and free volume between dissimiliar chains in compatible polymer blends, J Polym Sci, Part B: Polym Phys. 1987; 25:2511.
    155. Giannelis E P. Polymer Layered Silicate Nanocomposites. Adv Mater. 1996; 8: 29.
    156. LeBaron P C, Wang Z, Pinnavaia T. J Appl Clay Sci. 1999; 15:11.
    157. Wang Y Q, Wu Y P, Zhang H F, zhang L Q, Wang B, Wang Z F. Free volume of montmorillonite/styrene-butadiene rubber nanocomposites estimated by positron annihilation lifetime spectroscopy. Macro Rap Commun.. 2004; 25: 1973.
    158. Zhang M, Zhang P F, Zhang S P, Wang B, Wang S J. Study of structural characteristics of HDPE/CaCO_3 nanocomposites by positrons. Radiat Phys Chem.. 2003; 68: 565.
    159. Jia S J, Zhang Z C, Fan Y M, Weng H M, Zhang X F, Hang R D. Study of the size and numerical concentration of the free-volume of carbon filled HDPE composites by the position annihilation method. Eur Polym. J. 2002; 38: 2433.
    160. Wang J Y, Quarles C A. Temperature dependence of the lifetime spectrum of rubber-carbon black composites. Radiat Phys Chem. 2003; 68: 527.
    161. Abdel-Hady E E, Abo-Hashem A, El-Sayed A M, Mohsen M, Ghani A A. Microstructure analysis of the effect of SRF carbon black on butyl rubber (ⅡR) by positron annihilation lifetime spectroscopy. Polym Degrad. Stab. 1993; 42: 65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700