基于不确定度的新一代GPS产品测量认证方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测量认证对保证几何产品的质量非常重要。根据新一代GPS的要求,产品的测量认证结果是通过对偶性原理,在设计与认证之间形成一个物像对应关系,并通过不确定度的传递,把二者进行联系和比较而得到的。实现了设计规范与计量认证集成于一体,从而消除了由于标准与计量不统一而引起的产品合格性认证纠纷问题。本文主要做了以下几个方面的工作:
     在传统GUM测量不确定度评定的基础上,研究了基于模糊集合理论和基于蒙特卡罗仿真的新一代GPS测量不确定度评定方法。针对测量数据样本少、分布难以确定的情况,提出基于模糊集合理论的测量不确定度评定方法;针对间接测量其不确定度分量间相关性复杂的情况,提出基于蒙特卡罗仿真的测量不确定度评定方法。
     建立了基于测量不确定度的新一代GPS产品测量认证流程。根据建立的流程,采用两种不同的测量过程对外螺纹工件的中径进行测量,并对其测量结果进行了合格性的认证。
     建立了基于依从不确定度的新一代GPS产品测量认证流程。在上述测量不确定度的基础上,分析了规范不确定度产生的原因,提出了依从不确定度的评定模型。根据上述产品的测量认证流程,对平板平面度的三坐标测量认证,进行了实例验证研究。
     研究了新一代GPS知识库的应用前景,开发了基于不确定度的新一代GPS产品测量认证的应用平台原型,并以外螺纹的中径测量为例进行了实验验证。
     本文对新一代GPS不确定度理论的应用研究,将为规范几何产品的测量认证及新一代GPS在工程实际中的应用和推广提供参考。本文得到广西自然科学基金(0640166)”新一代GPS标准体系的计算模型和方法研究”的资助。
Measurement certification is very important to ensure the quality of geometri-cal product. According to the requirement of improved GPS (geometrical productspecification), the result of product’s measurement certification is implemented by us-ing uncertainty principle to related design and verification process. In this process,design and certification form an object-image correspondence system to ensure theconsistency between the two stages. It consolidate design standard and metrology cer-tification, which resolves the dispute between certification and design of product. Themain contents of this paper are as follows:
     On the basis of conventional uncertainty of GUM, method of evaluation of im-proved GPS measurement uncertainty based on fuzzy set theory and Monte Carlosimulation is studied. In view of fewer data sample and unknown distribution, themethod of measuring uncertainty based on fuzzy set theory is put forward. Evaluationmethod of measuring uncertainty based on Monte Carlo Simulation is also put forwardbecause of the complexity of uncertainty between related uncertainty components forindirect measurement.
     The process for the improved GPS product measurement certification based onmeasurement uncertainty is established. According to this process, two di?erent mea-suring processes to measure the work piece of intermediate diameter of external threadare carried out. And the qualification of the measuring results is also testified.
     The process for the improved GPS product measurement certification based onthe compliance uncertainty is established. On the basis of measurement uncertaintymentioned above, the causes to result in specification uncertainty are investigated. Thecalculation model for the compliance uncertainty is proposed. Based on the proposedprocess, experiment study is given through ?atness measurement and verification ofwork piece plane using CMM.
     The prospect of application of improved GPS knowledge library is investigated.The prototype of application platform of measurement certification is developed basedon the improved GPS. The intermediate diameter of external thread is used as anexample to validate the proposed platform.
     In this paper, application research of improved GPS uncertainty theory will specifythe geometrical product’s measurement certification, and provide references for theapplication and popularization of improved GPS in engineering practice.
     This thesis is financially supported by National Science Foundation of Guangxi,named“Research on Calculation Model and Method for the improved GPS”(No.0640166).
引文
[1] ISO/TR 14638: Geometrical product specification (GPS)-Masterplan,1995.
    [2] X. Q. Jiang. An Integrated Overview of Next Generation GPS. Proceedings of theSecond International Symposium on Instrumentation Science and Technology. Jinan,China. 2002: 259-264.
    [3] Z. Humienny, P.H.Osanna, et al.Geometrical Product Specifications.Warszawa: War-saw University of Technology Printing House,2001.
    [4] International Organization for Standardization, Guide to the Expression of Uncertaintyin Measurement (GUM). BIPM, IEC, IFCC, ISO, IUPAU, IUPAP, OIML, 2edition,1995.
    [5] 李柱, 徐振高, 蒋向前. 互换性与测量技术[M]. 北京: 高等教育出版社, 2004: 381-412.
    [6] N. M. Durakbasa, PH. Osanna, A. Afjehi-Sadat. A general approach to workpiececharacterization in the frame of GPS (Geometrical Product Specification and Verifica-tion)[J]. International Journal of Machine Tools and Manufacture, 2001, 41: 2147-2151.
    [7] 马利民. 新一代产品几何量技术规范(GPS)理论框架体系及关键技术研究[D]. 武汉: 华中科技大学, 2006.
    [8] 王金星. 新一代产品几何规范(GPS)不确定度理论及应用研究[D]. 武汉:华中科技大学,2006.
    [9] Johan Dovmark. Uncertainty management - A tool in risk managementIn. ACMCAnnual General Meeting in Ottawa,Canada, June 2000.
    [10] ISO/TS 14253-1: Geometrical product specification (GPS) - Inspection by measure-ment of workpieces and measuring equipment - Part 1: Decision rules for provingconformance or non-conformance with specifications, 1998.
    [11] 蒋向前, 李柱, 徐振高. 现代产品几何规范(GPS)技术标准研究与制订子课题研究报告(初稿).2004年4月, 在“现代产品几何规范(GPS)技术标准研究与企业应用”研讨会上的报告.
    [12] ISO/TS 14253-2: Geometrical product specification (GPS) - Inspection by measure-ment of workpieces and measuring equipment - Part 2: Guide to the estimation ofuncertainty in GPS measurement, in calibration of measuring equipment and in prod-uct verification, 1999.
    [13] I.J.Anderson, J.C.Mason and D.A.Turner. An e?cient algorithm for template match-ing[J]. Advanced Mathematical and Computational Tools in Metrology Ⅳ, World sci-entific, Singapore, 2000: 1-10.
    [14] ISO/TS 14253-3: Geometrical product specification (GPS) - Inspection by measure-ment of workpieces and measuring equipment - Part 3: Guidelines for achieving agree-ments on measurement uncertainty statements, 2002 [30] J. Allgair, C.Archie, etc.Towards a Unified Advanced CDSEM Specification for Sub-0. 18um Technology. Proc.SPIE 3332, 1998: 138-150.
    [15] H.Amick, B.Sennewald, N.C.Pardue, E.C.Teague. Vibration of a Room-SizedAirspring-Supported Slab. Noise Control Eng. J., 1998, 64(2): 39-47.
    [16] C.Archie, J.Lowney, M.T.Postek. Modeling and Experimental Aspects of ApparentBeam Width as an Edge Resolution Measure. Proc. SPIE 3677, 1999: 669-687.
    [17] J.Bennett, J.A.Dagata. TOF-SIMS Imaging of STM-Modified Semiconductor Surface.Secondary Ion Mass Spectrometry SIMS IX, A. Benninghoven et al., eds., John Wileyand Sons, Chichester, 1994: 34-74.
    [18] M.W.Cresswell, R.A.Allen, L.W. Linholm, etc. New Test Structure for Nanometer-Level Overlay and Feature-Placement Metrology[J]. IEEE Transactions on Semicon-ductor Manuf., 1994, 7(3): 266-271.
    [19] J.Fu, V.W.Tsai, R.Koning, R.G.Dixson, T.V.Vorburger. Algorithms for CalculatingSingle-Atom Step Heighs. Nano-technology, 1999, 10: 438-433.
    [20] M.G.Cox. A discussion of approaches for determining a reference value in the analysis ofkey-comparison data[J]. 4th Workshop on Advanced Mathematical and ComputationalTools in Metrology,Oxford, England, 1999: 45-65.
    [21] M.G.Cox, A.B.Forbes, P.M.Herris, G.N.Peggs. Experimental design in determining theparametric errors of CMMS[J]. 4th International Conference on LaserMetrology andMachine Performance, Univ. Northumbria, Newcastle, England, 1999: 13-22.
    [22] D.A.Turner, I.J.Anderson, J.C.Mason, M.G.Cox and A.B.Forbes. An e?cientseparation-of-variables approach to parametric orthogonal distance regression[J]. Ad-vanced Mathematical and Computational Tools in Metrology Ⅳ, World scientific, Sin-gapore, 2000: 246-255.
    [23] C.Ross, I.J.Anderson, J.C.Mason and D.A.Turner. Approximating coordinate data thathas outliers[J]. Advanced Mathematical and Computational Tools in Metrology Ⅳ,World scientific, Singapore, 2000: 210-219.
    [24] 卢济深. 测量不确定度在不同过程中的估算[J]. 工业计量, 2005(2): 44-46.
    [25] JJF1059-1999: 测量不确定度评定与表示.
    [26] J.X.Wang, X.Jiang, et al. Decision rules for workpieces based on total uncer-tainty[J]. The International Journal of Advanced Manufacturing and Technology, DOI:10.1007/s00170-004-2477-9.
    [27] Dovmark J. New interesting concepts from ISO/TC 213. In: ACMC annual generalmeeting in Ottawa, Canada, December 3, 2001.
    [28] Dr.Henrik, S.Nielsen. Specifications, operators and uncertainties.http://isotc213.ds.dk/.
    [29] 葛乐矣, 基于蒙特卡罗方法的虚拟仪器测量不确定度评估[D]. 合肥工业大学, 2006.
    [30] 张亚, 孙永厚, 黄美发等. 基于不确定度评定白箱模型的平面度认证[J]. 仪器仪表学报, 2006, 27(6), 110-112.
    [31] 李慎安. 测量不确定度表达百问[M]. 北京:中国计量出版社, 2001.
    [32] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML. Guide to the Expression of Uncer-tainty in Measurement[M]. Switzerland:ISO. 1995.
    [33] 贺仲雄.模糊数学及其应用[M]. 天津: 天津科学技术出版社, 1983.
    [34] 王中宇等. 测量不确定度的非统计理论[M]. 国防工业出版社, 2000: 50-57.
    [35] 金明, 张莲花, 刘波等. MATLAB工具箱应用[M]. 北京: 电子工业出版社, 2004:216-218.
    [36] 夏新涛. 最大模范数最小法在圆度误差评价中的应用[J]. 数理统计与管理,1993(1): 19-23.
    [37] 刘智敏. 用MC仿真计算不确定度[J]. 中国计量学院学报, 2005, 16(1):2-4.
    [38] Christos E, Papadopoulos, Hio Yeung. Uncertainty Estimation and Monte Carlo Sim-ulation Method[J]. Flow Measurement and Instrumentation, 2001. 291-298.
    [39] 尹增谦, 管景峰, 张晓宏. 蒙特卡罗方法及应用[J]. 物理与工程, 2002, 12(3): 45-49.
    [40] 黄瑞, 张琳娜, 赵凤霞. 新一代GPS测量不确定度管理程序及应用. 专题探讨, 28-30.
    [41] M.G.Cox, P.M.Harris. Uncertainty Evaluation Center for Mathematic and ScientificComputing[J]. March 2004, 66-82.
    [42] 陈晓怀. 基于蒙特卡罗方法的测量不确定度的合成[J]. 仪器仪表学报, 2005,26(8):760-761.
    [43] 全国计量标准, 计量检定人员考核委员会组编.测量不确定度评定与表示实例[M].北京: 中国计量出版社, 1998: 68-79.
    [44] 上海市计量测试技术研究院编. 常用测量不确定度评定方法及应用实例[M]. 北京:中国计量出版社, 2000: 49-53.
    [45] 张玉文等.几何量仪检定/校准技术[M]. 北京: 中国计量出版社, 2003: 40-60.
    [46] 刘志民, 智传锁, 张建宇. 万能工具显微镜长度测量不确定度评定与分析[J]. 仪器仪表标准化与计量, 2005(4): 36-37.
    [47] 张琳娜, 赵凤霞, 李晓沛. 现代产品几何技术规范(GPS)体系的理论基础及关键技术研究[J]. 机械强度, 2004, 26(5): 547-551.
    [48] Wang Jinxing,Jiang Xiangqian,, Ma Limin, Xu Zhengao and Li Zhu. A calculationmethod for compliance uncertainty of GPS standard-chain. Proceedings of 2nd Inter-national Symposium on Precision Mechanical Measurements. Beijing:P.R.China, 2004:156-157, 166.
    [49] 王金星, 蒋向前, 马利民, 徐振高, 李柱. 平面度坐标测量的不确定度计算[J]. 中国机械工程, 2005, 16(19);1701-1703.
    [50] 黄艳华. 产品几何规范(GPS)知识库的研究[D]. 武汉: 华中科技大学硕士论文. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700