具有加卤过氧化物酶活性含卟啉辅基的抗体酶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
游离酪氨和蛋白质中酪氨的碘化是由甲状腺匀浆液和亚细胞部分中存在的酶催化的。Alexander已经证明在动物甲状腺组织中有一种加碘过氧化物酶,并相信该酶对加碘反应起作用,它是通过形成一个氧化态的碘中间体而起作用。该酶是加氯过氧化物酶(CPO)(EC1.11.10)。它是一个相对分子量大约42000Da的血红蛋白,每个分子含有一个铁(Ⅲ)原卟啉Ⅸ。对Cl~-、Br~-、I~-和合适卤素受体之间碳-卤键的过氧化形成,该酶是使用过氧化氢作为氧化剂。
     甲状腺球蛋白或它的亚基中的酪氨残基的碘化是甲状腺素形成的基本步骤之一。在加氯过氧化物酶催化的碘化过程中,碘能很快地结合形成3-碘酪氨、3,5-二碘酪氨和甲状腺素。这样该酶在甲状腺素的代谢和生理功能上起重要作用。加氯过氧化物酶的缺乏会导致一些严重的甲状腺疾病。由于加氯过氧化物酶在甲状腺组织中含量低及在试剂中催化活性不稳定等原因,利用常规蛋白质化学技术分离和纯化加氯过氧化物酶,已经证明是非常困难的。由于这个原因,对该酶的生化性质和结构-功能的研究大大受阻。因此,制备具有加氯过氧化物酶活性的催化抗体用于机制研究和治疗应用是相当有意义的。另外,催化抗体的选择性卤化在有机合成等方面也有广阔的前景。
     用邻硝基苯甲醛和吡咯反应,生成了meso-四(邻-硝基苯)卟啉(H_2TNO_2PP),再还原生成了meso-四(邻-胺基苯)卟啉(H_2TamPP)。根据薄层色谱结果分离异构体,得到α,α,α,α-H_2NH_2PP。它与苯乙酰氯反应生成meso-四(α,α,α,α-o-苯乙酰胺苯)卟啉。对合成的抗原,经紫外可见光谱、核磁、红外、元素分析及质谱证明得到的meso-四(α,α,α,α-O-苯乙酰胺苯)卟啉就是所需要的抗原。
     meso-四(α,α,α,α-o-苯乙酰胺苯)卟啉的相对分子量Mr只有1147.3,仍可作为全抗原免疫Balb/c小鼠,通过细胞融合等技术筛选得到了杂交瘤细胞株1 F 2和3 E 4。经E L I S A法得到鼠血清抗体效价为1:320,细胞株1F2的腹水效价为1:3200,细胞株3E4的腹水效价为1:6400。通过HiTrap Protein A纯化得到了McAb 1F2和McAb 3E4纯品。利用高效液相色谱法证明纯化得到的McAb 1F2很纯,亚型为IgG2a。经MALDI/TOFMS测定,McAb 1F2的相对分子量为156678.8Da。卟啉与McAb 1F2形成复合物后,卟啉Sorer带最大吸收峰从408nm红移到416nm,并有增色效应,反映了卟啉一抗体刚性且紧密的结合。从CD和UV吸收强度在对pH6~12范围内基本不变,说明抗原与抗体结合很紧
    
    密,抗体酶稳定性很高,反映了抗原的苯乙酚苯基与抗体结合位点之间
    的强烈疏水相互作用是稳定的主要因素。
     通过对抗体酶的加卤过氧化物酶活性及过氧化物酶活性的测定,得
    到加卤过氧化物酶的几、Kc。t、Kc。丫K。分别是 1.50 X 10“、0.5185‘、
    3.45 X 10“M.S-’;过氧化物酶的 K。、Ke。t、Kc。;从分别是 20.29InM、
    396.82min-’、l.9557X10’。这是因为 meso一四(。,a,a,a-o一苯乙
    胺苯)叶琳有8个苯环,极大地增强了它的疏水性,因此也就增加了它
    的免疫原性,使机体产生了较强的免疫应答。Thomas在总结成功的半抗
    原设计方案后提出,半抗原结构中应含有芳香结构。实验表明,含有芳
    香结构的半抗原其免疫原性就较强,用其免疫可使机体产生了较强的免
    疫应答,从而增加了抗体酶筛选的概率。说明小分子物质只要设计合理,
    有一定的化学组成和较为复杂的结构,即使不连接载体,也可具有免疫
    凉性。因此,我们用小分于meso一四(a,a,a,a-0一苯乙苯)叶琳
    (Mr=11 47.3)作为全抗原,诱导产生了具有一定加卤过氧化物酶及过氧化
    物酶活力的抗体酶。
     随着叶咐/抗体比率的增加,紫外可见差八 A。。。n。越来越大,有较显著
    的增色效应,反映了叶琳与抗体刚性且紧密的结合,抗体的抗原结合部
    位有芳香簇氨基存在。荧光光谱法通过荧光淬灭测定叶琳与抗体的相
    I[作用,得到叶琳与抗体的结合比为1:1,离解常数为
    了 084土0.246X 10-“moVL,可见叶琳与 McAb IF2有很高的亲合力。亲
    合力高,抗体酶催化活性也高,因此说明了小分子meso一四
    (。,a;a,a-0一苯乙苯)叶琳为什么能诱导出具有较高催化活性的
    抗体酶。用同步荧光光谱法结合荧光淬灭,选择西人二20urn时,得到结
    合位点及附近有酪氨,但大部分处于结合位点较远的位置上。选择八
    入。80n。时,得到结合位点及附近有较多色氨存在,但NBS仅能淬灭抗
    体r 分子表面及次表面的色氨残基荧光。说明了IF2分子中大部分
    色氨残基处于疏水性很强的内核环境中。
Preparation and Properties of A Chloroperoxidase-like Catalytic
    Antibody Doctor Candidate: Qi Chao
    Advisor: Prof. Zhang Yu-jing
    lodination of free tyrosine and tyrosine in protein is mediated by an enzyme present in thyroid homogenates and subcellular fractions. Alexander has demonstrated an iodide poroxidase in animal thyroid tissue and believes this enzyme is responsible for the iodination reactions through formation of an oxidized iodinating intermediate. This enzyme is chloroperoxidase(CPO)(EC1. 11. 10). It is a heme protein of Mr -42000Da containing one ferriprotoporphyrin IX per molecule. The enzyme uses hydrogen peroxide as the oxidant for the peroxidative formation of a carbon-halogen bond between Cl, Br-, Y and a suitable halogen acceptor. But it is unable to utilize F for this reaction.
    lodination of tyrosine residues in thyroglobulin, or in its subunits, is one of the essential steps in the formation of thyroxine in the thyroid gland. Iodide can be rapidly bound as 3-iodotyrisine, 3, 5-diiodotyrosine, and thyroxine during the chloroperoxidase-catalyzed iodination. Thus, theenzyme plays an important role in the metabolism and physiological function of thyroxine. Deficiency of chloropeeroxidase will result in some serious thyroid diseases.
    Because of the low abundance of chloroperoxidase in thyroid tissue and the instability of the catalytic activity in detergent, etc, attempts to isolate and purify chloroperoxidase by conventional techniques of protein chemistry, have been difficult. For this reason, the studies of biochemical properties and structure-function of the enzyme have been impeded. Therefore, it will be of considerable interest to prepare a catalytic antibody with chloroperoxidase activity for mechanistic studies and therapeutic application. In addition, the antibody-catalyzed selective halogenation also will have broad prospects for organic synthesis, etc.
    In short, condensation of o-nitrobenzaldehyde and pyrrole
    
    
    followed by reduction of the meso-tetra(o-nitrophenyl)porphyrin led to a satisfactory yield of meso-tetra(o-aminophenyl) porphyrin, H2TamPP. Thin-layer chromatography on silica gel gave excellent separation of four components which, in ratio 1:2:4:1, were presumed to be the four atropisomers in statistical abundance. With Rf values based on their expected polarity and considering the relative amounts of the individual atropisomers these are provisionally assigned as , with the most polar tetra- a -atropisomer, moving most slowly. Isolation of a, a , a , a -H2TamPP by silica gel '.column chromatography afforted gram quantities of product. The mixture containing the remaining three atropiaomers was reequilibrated in boiling tobuene followed by chromatography to isolate more of the a , a , a , a -atropisomer. Repetition of these steps leads to ultimate conversion of nearly all of the H2TamPP into the desired a , a , a , a - H2TamPP. The four amino atropisomers are rather stable in solution at 25?C. The amino groups of H2TamPP are also more reactive. The a , a , a , a -atropisomer of H2TamPP could be further modified and the configurational energy barrier raised through reaction with phenylacetyl chloride forming amide. Phenylacetyl chloride gave 72% yield of meso-tetra( a , a , a , a -o- phenylacetylamide phenyl)porphyrin. McAb was raised against meso-Tetra( a , a , a , a -o-phenylacetylamide phenyl)porphyrin through hybridoma methology.
    Small molecule meso-Tetra (a , a-, a, a -0-phenylacetylamide phenyl)porphyrin'could be used as complete antigen to immunize Balb/c mice and induce McAb 1F2. The purity of McAb 1F2 was indicated very high by MALDI/TOF MS and SDS-PAGE. The subtype of McAb 1F2 is IgG2a. A relative molecular weight of McAb 1F2 was determined to be 156678.8Da by MALDI/TOF MS. The intensities of UV and CD spectra over a pH range between 6 and 12 almost remain constant, which reveals that the tight binding of Fe porphyrin and McAb 1F2 and the high stability of abzyme. The chloroperoxidase activity of McAb lF2-Fe porphyrin complex appears thermostable until 60C
引文
1. Kirdy A. J.. The potential of catalytic antibodies. Acta Chem. Scand., 1996, 50:203-210.
    2. Driggers E. M., Schultz P. G.. Catalytic antibodies. Adv. Protein Chem., 1996, 49:261-287.
    3. Wentworth P., Janda K. D.. Catalytic antibodies. Curr. Opin. Chem. Biol., 1998, 2:138-144.
    4. Schultz P. G., Lerner R. A.. From molecular diversity to catalysis lessons from the immune systems. Science, 1995, 269:1835-1842.
    5. Shokat K. M., Schultz P. G.. Catalytic antibodies. Annul. Rev. Immunol., 1990, 8:335-363.
    6. Honjo T., Habn S.. Origin of immune diversity : genetic variation and selection. Annul. Rev. Biochem., 1985, 54:803-830.
    7. Kohler G. and Milstein G.. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (London), 1975, 256:495-497
    8. Benkovic S. J.. Catalytic antibodies. Annul. Rev. Biochem., 1992, 61:29-54.
    9. Lerner R. A., Benkovic S. J. and Schultz P. G.. At the crossroads of chemistry and immunology: catalytic antibodies. Science, 1991, 252:659-667.
    10. Schultz P. G.. Catalytic antibodies. Angew. Chem. Int. Ed. Engl., 1989, 28:1283-1295.
    11. Lerner R. A., Benkovic S. J.. Principles of antibody catalysis. Bioessays, 1988, 9:107-112.
    12. Lerner R. A., Benkovic S. J.. Observations in the interface between immunology and chemistry . J. Chemtracts-Org. Chem.,
    
    1990, 3:1-36.
    13. Leatherbarrow R. J.. Catalytic antibodies on to the second generation. Nature, 1990, 348:482-489.
    14. Schultz P. G.. The interplay between chemistry and biology in the design of enzymatic catalysis. Science, 1988, 240:426-433.
    15. Jacobs J. W.. Catalytic antibodies. Biotechnology, 1991, 9:258-262.
    16. Scandon T. and Schultz P. G.. Recent advances in catalytic antibodies. Phil. Trans. R. Soc. Land. B. 1991, 332:157-164.
    17. Blackburn G. M. arid Wentworth P.. Chemistry and Industry, 1994, 2 May, 338.
    18. Stewart J. D. and Benkovic S. J.. Catalytic antibodies : mechanistic and practical considerations. Chemical Society Reviews, 1993, 213-219.
    19. Tramontane A. and Schloeder D.. Design of catalytic antibodies. Methods In Enzyraology, 1989, 178:531-550.
    20. Pollack S. J., Nakayaka G. R. and Schultz P. G.. Methods In Enzyraology, 1989, 178:551-568.
    21. 王润华,沈倍奋。单链抗体的制备。国外医学分册,1993,3:128-131。
    22. 朱平,冯书章。抗体实验技术,长春:长春出版社。1994。
    23. Pol jack R. J., Amzel L. M., Phizackerhey R. P.. Prog. Biophys. MoL Biol., 1976, 31:67-93.
    24. Pressman D., Grossberg A.. The structure bases of antibody specificity, Benjamin, Ed, New York, 1968
    25. Goodman J. W.. The Antigen, Sela, M. Ed. Academic Press, New York, 1985, Vol.3.
    26. Davies D. R., Padlan E. A., Sheriff S.. Antibody-antigen complexes. Annul. Rev. Biochem., 1990,59:439-473.
    27. Pauling L.. The electronic structure of excited states of simple molecules. Z. Naturforsch, 1948, 3a:438~447.
    28. Menger F. M.. Analysis of ground-state and transition-state effects in enzyme catalysis. Biochemistry, 1992, 31:5368-5373.
    29. Jencks W. P.. Catalysis in chemistry and enzymology, New York:McGraw-Hill, 1969.
    30. PollackS. J., Jacobs J. W., Schultz P. G. Selective chemical catalysis by an antibody. Science, 1986, 234:1570-1573.
    31. Tramontano A., Janda K. D., Lerner R. A.. Catalytic antibodies. Science, 1986, 234:1566-1569.
    32. Wentworth P., Janda K. D.. Catalytic antibodies. Curr. Opin.
    
    Chem. Biol., 1998, 2:138-144.
    33. Bartlett P. A., Marlowe C. K.. Phosphonamidates as transition-state analogue inhibitors of thermolysin. Biochemistry, 1993, 22:4618-4624.
    34. Patten P. A., Gray N. S., Yang P. L., Marks C. B., Wedemayer G. J., Boniface J. J., Stevens R. C., Schultz P. G.. The immunological evolution of catalysis. Science, 1996, 271:1086-1091.
    35. Guo J. C., Huang W., Scanlan T. S.. Kinetic and mechanistic characterization of an efficient hydrolytic antibody: evidence for the formation of an acyl intermediate. J. Am. Chem. Soc., 1994, 116:6062-6069.
    36. Lesley S. A., Patten P. A., Schultz P. G.. A genetic approach to the generation of antibodies with enhanced catalytic activities. Proc. Natl. Acad. Sci. U. S. A., 1993, 90:1160-1165.
    37. Teraishi K., Saito M., Fujii I., Nakamura H.. J. Mol. Graphics, 1994, 12:282-285.
    38. Tawfik D. S., Linker A. B., Chao R., Eshhar Z., Green B. S.. Efficient and selective p-nitrophenyl-ester-hydrolyzing antibodies elicited by a p-nitrophenyl phosphanate hapten. Eur. Biochem., 1997, 244:619-626.
    39. Pollack S. J., Hsiun P., Schultz P. G.. Stereospecific hydrolysis of alkylesters by antibodies. J. Am. Chem. Soc., 1989, 111:5961-5962.
    40. Janda K. D., Benkovic S. J., Lerner R. A.. Catalytic antibodies with lipase activity and Ror S substrate selectivity. Science, 1989, 244, 437-440.
    41. Baldwin E., Schultz P. G.. Generation of a catalytic antibody by site-directed mutagenesis. Science, 1989, 245:1104-1107.
    42. Li T., Hilton S., Janda K. D.. The potential application of catalytic antibodies to protecting group removal: catalytic antibodies with broad substrate tolerance. J. Am. Chem. Soc. ,1995, 117:2123-2127.
    43. Stahl M., Goldie B., Bourne S. P., Thomas N. R.. Catalytic antibodies in organic synthesis: asymmetric synthesis of (-)-a-multistriatin. J. Am. Chem. Soc., 1995, 117:3653-3654.
    44. Wentworth P., Datta A., Blakely D., Boyle T., Partridge L. J., Blackburn G. M.. Toward antibody-directed "abzyme" prodrug
    
    therapy, ADAPT: carbomate prodrug activation by a catalytic antibody and its in vitro application to human tumor cell killing. Proc. Natl. Acad. Sci. USA, 1996, 93:799-803.
    45. Tanaka F., Kinoshita K., Tanimura R., Fujii I.. Relaxing substrate specificity in antibody-catalyzed reactions: enantioselective hydrolysis of N~Cb2-amino acid esters. J. Am. Chem. Soc.,1996, 118:2332-2339.
    46. Yang G., Chun J., Arakawa-Uramoto H., Wang X., Gawinowicz M. A., Zhao K., Landry D. W.. Anti-cocaine catalytic antibodies: a synthetic approach to improved antibody diversity. J. Am. Chem. Soc., 1996, 118:5881-5890.
    47. Suga H., Ersoy 0. , Williams S. F., Tsumuraya T., Margolies M. N., Sinskey A. J.. Catalytic antibodies generated via heterologous immunization. J. Am. Chem. Soc., 1994, 116:6025-6026.
    48. Zhou G. W., Guo J., Huang W., Fletterick R. J., Scanlan T. S.. Crystal structure of a catalytic antibody with a serine protease active site. Science, 1994, 265:1059-1064.
    49. Golinel1i-Pimpaneau B., Gigant B., Bizebard T., Navaza J., Saludjian P., Zemel R., Tawfic D. S., Eshhar Z., Green B. S., Knosssow M.. Antibodies and T cell receptors: the specific immuno-recognition molecules. Structure, 1994, 2:175-183.
    50. Page M. I., Jencks W. P.. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc. Natl. Acad. Sci. USA, 1971, 68:1678-1683.
    51. Hilvert D., Nared K. D.. Stereospecific claisen rearrangement catalyzed by an antibody. J. Am. Chem. Soc., 1988, 110:5593-5594.
    52. Jackson D. Y., Jacob J. W., Sugasawasa R., Reich S. H., Bartlett P. A., Schultz P. G.. An antibody-catalyzed rearrangement. J. Am. Chem. Soc., 1988, 110:4841-4842.
    53. Gouverneur V. E., Houk K. N., De Pascual-Teresa B., Beno B., Janda K. D., Lerner R. A.. Control of the exo and endo pathways of the Diels~Alder reaction by antibody catalysis. Science, 1993, 262:204-208.
    54. Braisted A., Lerner R. A.. An antibody-catalyzed bimolecular Diels-Alder reaction. J. Am. Chem. Soc., 1990, 112:7430-7431.
    55. Hilvert D. H., Hill K. W., Wared K. D.. Antibody catalysis of a Diels-Alder reaction. J. Am. Chem. Soc., 1989, 111:9261-9262.
    
    
    56. Yli-Kauhaluoma J. T., Ashley J. A., Lo C. L., Coakley J., Wirsching P., Janda K. D.. Catalytic antibodies with peptidyl-prolyl cis-trans isomerase activity. J. Am. Chem. Soc., 1996, 118:5496-5497.
    57. Li T., Janda K. D., Ashley J. A., Lerner R. A.. Neuronol plasticity that underlies improvement in perceptual performance. Science, 1994, 263:1289-1293.
    58. Li T., Lerner R. A., Janda K. D.. Antibody-catalyzed cationic reactions: rerouting of chemical transformations via antibody catalysis. Accounts Chem. Res., 1997, 30:115-121.
    59. Hasserodt J., Janda K. D., Janda K. D.. Formation of bridge-methylated decalins by antibody-catalyzed tandem cationic cyclization. J. Am. Chem. Soc., 1997, 119:5993-5998.
    60. Yoon S. S., Oei Y., Sweet E., Schultz P. G.. An antibody-catalyzed[2,3] -elimination reaction. J. Am. Chem. Soc., 1996, 118:11686-11687.
    61. Zhou Z. S., Jiang N. H., Hilvert D.. An antibody-catalyzed selenoxide elimination. J. Am. Chem. Soc., 1997, 119:3623-3624.
    62. Wentworth P., Datta J. A., Smith S., Marshall A., Partridge L. J., Blackburn G. M.. Antibody catalysis of BAC2 aryl carbomate ester hydrolysis: a highly disfavoured chemical process. J. Am. Chem. Soc., 1997, 119:2315-2316.
    63. Flanagan M. E., Jacobsen J. R., Sweet E., Schultz P. G.. Antibody-catalyzed retro-aldol reaction. J. Am. Chem. Soc., 1996, 118:6078-6079.
    64. Shokat K. M., Leumann C. J., Sugasawasa R., Schultz P. G.. A new strategy for generation of catalytic antibodies. Nature, 1989, 338:269-271.
    65. Miller G. P., Posner B. A., Benkovic S. J.. Expanding the 43C9 class of catalytic antibodies using a chain-shuffling approach. Bioorg. Med. Chem., 1997, 5:581-590.
    66. Smiley J. A., Benkovic S. J.. Selection of catalytic antibodies for a biosynthetic reaction from a combinatorial cDNA library by complementation of an auxotrophic Escherichia coli: antibodies for orotate carboxylation. Proc. Natl. Acad. Sci. USA, 1994, 91:8319-8323.
    67. Baca M., Scanlan T. S., Stephenson R. C., Wells J. A.. Polyomavirus middle-sized tumor antibody modulates c-jun
    
    phosphorylation and transcriptional activity. Proc. Natl. Acad. Sci. USA, 1997, 94:10064-10068.
    68. Arkin M. R., Wells J. A.. Probing the importance of second sphere residues in an esterolytic antibody bu phage display. J. Mol. Biol., 1998, 284:1083-1094.
    69. Romesberg F. E., Schultz P. G.. A mutational study of a Diels-Alderase catalytic antibody. Bioorg. Med. Chem. Lett., 1999, 9:1741-1744.
    70. Iverson B. L., Lerner R. A.. Sequence-specific peptide cleavage catalyzed by an antibody. Science, 1989, 243:1184-1188.
    71. Hsieh L. C., Stephans J. C., Schultz P. G.. An efficient antibody-catalyzed oxygenation reaction. J. Am. Chem. Soc., 1994, 116:2167-2168.
    72. Nakayaka G. R., Schultz P. G.. Stereospecific antibody-catalyzed reduction of an a-keto amide. J. Am. Chem. Soc., 1992, 114:780-781.
    73. Hsieh L. C., Yonkovich S., Kochersperger L., Schultz P. G.. Controlling chemical reactivity with antibodies. Science, 1993, 260:337^339.
    74. I. Light D. R., Waxman D. J., Walsh C.. Studies on the chirality of sulfoxidation catalyzed by bacterial flavoenzyme cyclohexanone monooxygenase and hog liver flavin adenine dinucleotide containing monooxygenase. Biochemistry, 1982, 21: 2490-2498.
    75. PollackS. J., Nakayaka G. R., Schultz P. G.. Introduction of nucleophiles and spectroscopic probes into antibody combining sites. Science, 1988, 242:1038-1040.
    76. Pollack S. J., Schultz P. G.. A semisynthetic catalytic antibody. J. Am. Chem. Soc., 1989, 111:1929-1931.
    77. Iverson B. L., Iverson S. A., Roberts V. A., Getzoff E. D. , Tainer J. A., Benkovic S. J., Lerner R. A.. Metalloantibodies. Science, 1990, 249:659-662.
    78. Wirsching P., Ashley J. A., Lo C-H. L., Janda K. D., Lerner R. A.. Reactive immunization. Science, 1995, 270:1775-1782.
    79. SinhaS. C., Sun J., Miller G., Barbas C. F., Lerner R. A.. Sets of aldolase antibodies with antipodal reactivities: synthesis of epothilone E by resolution of thiazole aldols. Org. Lett., 1999, 1:1623-1626.
    80. Bjornestedt R., Zhong G., Lerner R. A., Barbas C. F.. Copying
    
    nature' s mechanism for the decarboxylation of P-keto acids into catalytic antibodies by reactive immunization. J. Am. Chem. Soc., 1996, 118:11720-11724.
    81. Wagner J., Lerner R. A., Barbas C. F.. Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science, 1995, 270:1797-1800.
    82. Zhong G., Hoffmann t., Lerner R. A., Danishefsky S., Barbas C. F.. Antibody-catalyzed enantioselective Robinson annulation. J. Am. Chem. Soc., 1997, 119:8131-8132.
    83. Janda K. D., Lo C. H., Li T., Barbas C. F. 3rd, Wirsching P., Lerner R. A.. Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc. Natl. Acad. Sci. USA, 1994, 91:2532-2536.
    84. Joron L., Izadyar L., Friboulet A., Remy M. H., Pancino G., Roseto A., Thomas D.. Antiidiotypic antibodies exhibiting an acetylcholinesterase abzyme activity. Ann. NY Acad. Sci., 1992, 672:216-223.
    85. Du M., Guo Z., Jin S.. Synthesis of taxoids 5. Bioorg. Med. Chem. Lett., 1999, 9:2587-2592.
    86. Chen Y. C. J., Danon T., Sastry L.. Catalytic antibodies from combinatorial libraries.!. Am. Chem. Soc., 1993, 115:357-362.
    87. Tawfic D. S., Green D. S., Chap R., SelaM., Eshhar Z.. catELISA: a facile general route to catalytic antibodies. Proc. Natl. Acad. Sci. USA, 1993, 90:373-377.
    88. Napper A. D., Benkovic S. J.. A stereospecific cyclization catalyzed by an antibody. Science, 1987, 237:1041-1043.
    89. Rokita S. E.. Flavin and 5-deazaflavin photosensitized cleavage of thymine dimmer: a model of in vivo light-requiring DNA repair. J. Am. Chem. Soc., 1984, 106:4589-4595.
    90. Cochran A., Sugasawara R., Schultz P. G.. Photosensitized cleavage of a thymine dimmer by an antibody. J. Am. Chem. Soc., 1988, 110:7888-7890.
    91. 丁兰,赵大庆,刘子,罗贵民,倪嘉缵。抗体酶设计新思想~疏水 腔修饰法。中国科学(C),1998,28:108-114。
    92. 祁超,丁兰,刘立岩,耿昊,张玉静,赵大庆,倪嘉缵。人工模 拟加卤酶I半抗原合成、表征和生物活性测定。应用化学,2000, 17(5) :533-535。
    93. 祁超,刘立岩,张玉静,杜丽,赵大庆,刘子。抗meso-四 (α,α,α,α-0-苯乙酰苯)卟啉的单克隆抗体制备。细胞与分子免疫
    
     学,2000,16(6) :290-291。
    94. 祁超,刘子,丁兰,张玉静,赵大庆。人工模拟加卤酶Ⅱ酶学 性质。应用化学,2001,18(7) :275-278。
    95. Paul S., Mei S., Mody B., Eklund S. H., Beach C. M., Massey R. J., Hamel F.. Cleavage of vasoactive intestinal peptide by human autoantibody. J. Biol. Chem., 1991, 266:16128-16134.
    96. Paul S., Voile D. J., Beach C. M., Johnson D. R., Dowell M. J., Massey R. J.. Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody. Science, 1989, 244:1158-1162.
    97. Tyatyulkova S., Gao Q. S., Thompson A., Rennard S., Paul S.. Biochim. Biophys. Acta, 1996, 1316:217-223.
    98. Shuster A. M., Goldobov G. V., Kvashuk 0. A., Bogomolova A. E., Smirnov I. V., Gabibov A. G.. DNA hydrolyzing autoantobodies. Science, 1992, 256:665-667.
    99. Goldobov G. V., Chernova E. A., Schourov D. D., Smirnov I. V., Kudelina I. A., Gabibov A. G.. Cleavage of supercoiled plasmid DNA by autoantobody Fab fragment: application of the flow linear dichroism technique. Proc. Natl. Acad. Sci. USA, 1995, 92:254-257.
    100. Lerner R. A., Benkovic S. J,, Schultz P. G.. At the crossroads of chemistry and immunology: catalytic antibodies. Science, 1991,252:659-667.
    101. 吕年青,常文保,慈云祥。催化抗体的进展。化学学报,1993, (4) : 13-16。
    102. Hilvert D.. Antibody catalysis of carbon-carbon bond formation and cleavage. Ace. Chem. Res., 1993, 26:552-558.
    103. Schultz P. G.. Antibody catalysis of difficult chemical transformations. Ace. Chem. Res., 1993, 26:391-397.
    104. Thomas N. R.. Hapten design. Appl. Biochem. Biotech., 1994, 47(2-3) : 345-372.
    105. Iverson B. L., Lerner R. A.. Sequence-specific peptide cleavage catalyzed by an antibody. Science, 1989, 243:1184-1188
    106. Shen R., Piebe C., Patel C., Rubo L.. An approach for the generation of secondary structure specific abzymes. Tetrahedron Lett., 1992, 33:3417-3422.
    107. Reymond J. L., Reber J. L., Lerner R. A.. Enantioselective, multigram-scale synthesis with a catalytic antibody. Angew. Chem. Int. Ed. Engl., 1994, 33:475-477.
    
    
    108. Jacobsen J. R., Prudent J. R., Kochersperger L.. An efficient antibody-catalyzed aminoacylation reaction. Science, 1992, 256:365-367.
    109. Janda K. D., Shelvin C. G., Lerner R. A.. Antibody catalysis of a disfavoured chemical transformation. Science, 1993, 259:490-493.
    110. Shelvin C. G. .Hilton S., Janda K. D.. Twisted a-Reto amides as transition-state analogues for acyl-transfer reaction: synthesis of the immunoconjugates. Bioorg. Med. Chem. Lett., 1994, 4: 297-304.
    111. Lewis C., Kramer T., Robinson S., Hi 1 vert D.. Medium effects in antibody-catalyzed reactions. Science, 1991, 253:1019-24.
    112. Hilvert D., Nared K. D., Auditor M. T. M.. Antibody catalysis of a Diels-Alder reaction. J. Am. Chem. Soc., 1989, 111:9261-9262.
    113. Hilvert D., Carpenter S. H., Nared K. D.. Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism. Proc. Natl. Acad. Sci. USA, 2001, 98: 9032-9037.
    114. Jackson D. Y., Jacobs J. W., Sugasawara R., Reich S. H., Bartlett P. A., Schultz P. G.. An antibody-catalyzed claisen rrearrangement. J. Am. Chem. Soc., 1988, 110:4841-4842.
    115. Cochran A. G., Sugasawara R., Schultz P. G.. Photosensitized cleavage of a thymine dimmer by an antibody. J. Am. Chem. Soc., 1988, 110:7888-7890.
    116. Li T., Janda K. D., Ashley J. A.. Antibody catalyzed cationic cyclization. Science, 1994, 264:1289-1292.
    117. Koch A., Reymond J. L., Lerner R. A.. Antibody-catalyzed activation of unfunctionalized olefins for highly enantioselective asymmetric epoxidation. J. Am. Chem. Soc., 1994, 116:803-804.
    118. Hsieh L. C., Stephans J. C., Schultz P. G.. An efficient antibody-catalyzed oxygenation reaction. J. Am. Chem. Soc., 1994, 116:2167-2168.
    119. Hsieh L. C., Yonkovich S., Kocherspeerger L., Schultz P. G.. Controlling chemical reactivity with antibodies. Science, 260:337-339.
    120. Cravatt B. F., Ashley J. A., Janda K. M., Boger D. L., Lerner R. A. . Crossing extreme mechanistic barriers by antibody
    
    catalysis: syn elimination to a cis olefin. J. Am. Chem. Soc., 1994, 116:6013-6018.
    121. Kemp D. S.. How to promote protein transfer? Nature, 1995, 373:196-201.
    122. Thorn S. N., Daniels R. G., Auditor M. T. M., HilvertD.. Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature, 1995, 373:228-230.
    123. Napper A. D., Benkovic S. J., Tramontane A., Lerner R. A.. A stereospecific cyclization catalyzed by an antibody. Science, 1987, 237:1041-1043.
    124. Sinha S. C., Sun J., Miller G., Barbas C. F., Lerner R. A.. Sets of aldolase antibodies with antipodal reactivities: Formal synthesis of epothilone E by large-scale antibody-catalyzed resolution of thiazole aldol. Org. Lett., 1999, 1:1623-1626.
    125. Durfor C. N., Bolin R. J., Sugasawara R. J., Massey R. J.. Antibody catalysis in reverse micelles. J. Am. Chem. Soc., 1988, 110:8713-8714.
    126. Janda K. D.. Immobilized catalytic antibodies in aqueous and organic solvents. J. Am. Chem. Soc., 1990, 112:8886-8889.
    127. Landry D. W., Zhao K., Yang G. X., Glickman M., Georgiadis T. M.. Antibody-catalyzed degradation of cocaine. Science, 1993, 259:1899-1901.
    128. Landry D. W., Yang G. X.. J. Addict. Dis., 1997, 16:1-17.
    129. Mets B., Wingner G., Cabrera C., Seo S., Jamdar S., Yang G. X., Zhao K., Briscoe R. J., Almonte R., Woods J. H., Landry D. W. . A catalytic antibody against cocaine prevents cocaine' s reinforcing and toxic effects in rats. Proc. Natl. Acad. Sci. USA, 1998, 95:10176-10181.
    130. Cashman J. R., Berkman C. E., Underiner G. E.. Catalytic Antibodies that Hydrolyze (-)-Cocaine Obtained by a High-Throughput Procedure. J. Pharmacol. Exp. Ther., 2000, 293:952-961.
    131. Brimfield A. A., Lenz D. E., Maxwell D. M.. Expression of biologically active human butyrylcholinesterase in the cabbage looper (Trichoplusia ni). Chem. Biol. Interactions, 1993, 87:95-98.
    132. Moriarty R. M., Hiratake J., Liu K.. Isolation and characterization of stereoisomers of pentacoordinated
    
    phosphorus. Hydrolysis of unsyrometrically substituted chiral monocylic oxyphosphoranes. J. Am. Chem. Soc., 1991, 113:9374-9376.
    133. Wentworth P., Datta A., Blakey D., Boyle T., Partridge L. T., Blackburn G. M.. Toward antibody-directed "abzyme" prodrug therapy, ADAPT: carbomate prodrug activation by a catalytic antibody and its in vitro application to human tumor cell killing. Proc. Natl. Acad. Sci. USA, 1996, 93:799-
    134. Rader C., List B.. Catalytic antibodies as magic bullets. Chem. Eur. J., 2000, 6:2091-2095.
    135. Bagshawe K. D., Shama S. K., Burke P. J., Melton R. G., Knox R. J.. Curr. Opin. Immunol., 1999, 11:579-583.
    136. Campbell D. A., Gong B., Kochersperger L. M., Yonkovich S., Gallop M. A., Schultz P. G.. Antibody-catalyzed prodrug activation. J. Am. Chem. Soc., 1994, 116:2165-2166.
    137. Shabat D., Rader C., List B., Lerner R. A., BarbasIII C. F.. Multiple event activation of a generic prodrug trigger by antibody catalysis. Proc. Natl. Acad. Sci. USA, 1999, 96:6925-6930.
    138. 罗贵民。人工模拟酶研究的新动向。生物化学与生物物理进展, 1994,21(4) :290-294.
    139. Izadyar L., Friboulet A., Remy M. H., Roseto A., Thomas D.. Monoclonal anti-idiotypic antibodies as functional internal images of enzyme active sites: production of a catalytic antibody with a cholinesterase activity. Proc. Natl. Acad. Sci. USA, 1993, 90:8876-8890.
    140. Luo G. M., Ding L., Zhao D. Q., Liu Z., Ni J. Z.. A New Strategy for Generating Selenium-containing Abzyme. Ann. N. Y. Acad. Sci., 1998, 864:136-141.
    141. Menger F. M.. Analysis of ground-state and transition-state effects in enzyme catalysis. Biochemistry, 1992, 31(23) :5368-5373.
    142. Cogh A.. A sexual revolution when genes "breed" in the lab, a surprising number of their offspring are supergenes. New Scientist, 1998, 160(2161) :4
    143. Huse W. D., Sastry L., Iverson S. A.. Catalytic antibodies. Science, 1989, 246:1175-1182.
    144. Posner B., Smiley J., Leet J.. Catalytic antibodies: Perusing combinatorial libraries. TIBS, 1994, 19:145-150.
    
    
    145. Suga H., Tsumuraya K., Sinsky A. J.. Catalytic antibodies generated via heterologous immunization. J. Am. Chem. Soc., 1994, 116:6025-6026.
    146. Steward J. D., Roberts V. A., Thomas N. R.. Site-directed mutagenesis of a catalytic antibody: an arginine and a histidine residue play key roles. Biochemistry, 1994, 33:1994-2003.
    147. Stahl M., Goldie B., Bourne S. P., Thomas N. R.. Catalytic antibodies generated by in vitro immunization. J. Am. Chem. Soc., 1995, 117:5164-5165. 36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700