双频带与宽带功率分配器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的快速发展,作为系统重要器件的功率分配器(简称功分器)的相关技术也得到了广泛而深入的研究。功分器用来功率分配和功率组合,主要应用于平衡功率放大器、平衡混频器和天线阵列等射频电路中。传统的Wilkinson功分器只能工作在单一频点和其奇次谐波处,已经不能满足无线通信技术中双频段、多频段或者宽带技术的要求。本文提出了几种能够很好地克服这些缺点的双频功分器和宽带功分器,从而满足现代无线通信系统的要求。
     首先,本文给出了Wilkinson功分器的基本特性和工作原理。详细地分析了两节双频变换器的工作原理,进而将两节双频变换器引入到传统Wilkinson功分器中,给出各个传输线的计算公式,并设计了两种三路不等分双频功分器。加工实物并测量,性能良好。
     其次,采用宽边耦合结构设计了一款双层宽带功分器,在理论分析的基础上给出了各个参数设计公式,仿真和测量效果良好,证明了该设计方法的有效性和合理性。
     最后,介绍了两种超宽带功分器,一种为多层超宽带同相功分器,采用多层微带-槽线的耦合结构,利用奇偶模方法计算出各个设计参数。另外一种为小型化的UWB反相功分器。该功分器采用宽带的微带-槽线过渡结构,通过在槽线的两侧引入一对旁路开环谐振器(Split-Ring Resonator, SRR)的缺陷地结构(Defected Ground Structure, DGS),实现了该功分器的陷波功能。文章详细地介绍了这两个功分器的设计方法和设计过程,制作实物并进行了测设,获得了良好的性能。
With the rapid progress in modern wireless communication technology, themicrowave power dividers, as one of the most important components, are widely anddeeply researched. Power dividers can divide and combine the power of signals. Inmany microwave circuits, the power dividers have been applied to amplifier, balancemixer, antenna array, and so on. The conventional Wilkinson power divider operatesonly at single frequency and its odd harmonics. It is not suitable for dual-bandmulti-band and wideband applications. In this article, two three-way dual-band powerdividers and three novel wide band dividers are proposed, all of which can satisfy thedemand of dual-band or wideband in modern wireless communication systems.
     Firstly, the basic characteristic and operation principal of the Wilkinson powerdivider are introduced. The impedance transformer of two-section is analyzed in thisarticle. Then, two dual-band three-way unequal power dividers are designed byintroducing impedance transformer and the formulas used to determine the designparameters are given. Dividers are fabricated and measured, and the measured resultsshow they have good performances.
     Secondly, a multi-layer broadband power divider is realized by adopting broadsidecoupling structure. A set of formulas used to determine the design parameters are alsogiven based on the theory analysis. The measured results proved the utility andpracticability of the proposed design methods.
     Finally, two types of Ultra-Wide band power dividers are presented. One type ismultilayer Ultra-Wide band (UWB) in-phase power divider which is constructed byintroducing multilayer microstrip-slotline coupling structure. The design parameters ofthe power divider are computed by applying even-odd mode method. Besides, acompact out-of-phase power divider for UWB application is also proposed, whichutilizes the broadband transition of slot-microstrip lines. A frequency notch is generatedby embedding a couple of SRR DGS in two sides of the slot line. The design methodsand design process of these two power dividers are discussed in details. The goodagreements between measured and simulated results prove the practicability of theproposed methods.
引文
[1] Shynu, S. V., G. Augustin, C. K. Aanandan, P. , et al. Design of compact reconfigurable dual frequency microstrip antennas using varactor diodes. Progress In Electromagnetics Research. 2006, PIER 60:197–205
    [2] Zainud-Deen, S. H., S. M. Gaber, et al. Built-in dual frequency antenna with an embedded camera and a vertical ground plane. Progress In Electromagnetics Research Letters. 2008, 3: 51–60
    [3] He, Z., Wang X.-L., Han S., et al. The synthesis and design for new classic dual-band waveguide band-stop filters. Journal of Electromagnetic Waves and Applications. 2008, 22:119–130
    [4] Srisathit, S., M. Chongcheawchamnan, and A. Worapishet, Design and realisation of dual-band 3 dB power divider based on two-section transmission-line topology. Electronics Letters. 2003, 39(9): 723–724
    [5] Wu, L., Z. Sun, H. Yilmaz, et al. A dual-frequency Wilkinson power divider. IEEE Transactions on Microwave Theory and Techniques. 2006, Jan., 54(1): 278–284
    [6] Kawai, T., Y. Nakashima, Y. Kokubo, et al. Dual-band Wilkinson power dividers using a series RLC circuit. IEICE Transactions on Electronics. 2008, E91-C, (11): 1793–1797
    [7] Cheng, K.-K. M. and C. Law, A novel approach to the design and implementation of dual-band power divider. IEEE Transactions on Microwave Theory and Techniques. 2008, 56(2): 487–492
    [8] Wu, Y., Y. Liu, and S. Li. A new dual-frequency Wilkinson power divider. Journal of Electromagnetic Waves and Applications, 2009, 23: 483–492
    [9] Wu, Y., Y. Liu, and S. Li, A compact Pi-structure dual band transformer. Progress In Electromagnetics Research, 2008, PIER 88: 121–134
    [10] Wu, Y., Y. Liu, Y. Zhang, et al. A dual band unequal wilkinson power divider without reactive components, IEEE Transactions on Microwave Theory and Techniques. 2009, 57(1): 216–222
    [11] Feng, C., Zhao, G., Liu, X.-F., et al. Planar three-way dual frequency power divider, Electronics Letters. 2008,44 (2):133–134
    [12] Wang Xinhuai, Chen Dongzhou, Shi Xiaowei, et al. A compact three-way dual frequency power divider. Microwave and Optical Technology Letters. 2009, April, 51(4):913-915
    [13] Ruiz-Cruz, J. A., J. R. Montejo-Garai, et al. Compact full Ku-band triplexer with improved Eplane power divider. Progress In Electromagnetics Research. 2008, PIER 86: 39–51
    [14] Park, M.-J. and B. Lee. A dual-band Wilkinson power divider. IEEE Transactions on Microwave Theory and Techniques. 2008, 18(2): 85–87
    [15] Wang Xin-Huai, Chen Xiaoqun, Shi Xiao-Wei, et al. A novel planar three-way triband power divider. Microwave and Optical Technology Letters. 2010, January, 52(1): 182-184
    [16] D.M.Pozar.“Microwave Engineering,”Third Edition.北京:电子工业出版社,2006
    [17] lin, M. Vincentis, C.Caloz et al. Arbitrary dual-band components using composite right/left-hand transmission lines. IEEE Transactions on Microwave Theory and Techniques.2004, 52(4): 1142-1149
    [18] S. Avrillon, I. Pele, A. Chousseaud, et al. Dual-band power divider based on semiloop stepped-impedance resonators. IEEE Transactions on Microwave Theory and Techniques. 2003, April, 51(4):1269-1273
    [19] S.Srisathit, S.VLmnphun, K.Bandudej, et al. A dual-band 3-dB three port power divider based on a two section transmission line transformer. IEEE MTT-S International Microwave Symposium Digest. 2003, 1(03CH37411):35-38
    [20] Nagai, N, Maekawa, E. and Ono, K. New n-Way Hybrid Powe Dividers. Microwave Symposium Digest, 1977 IEEE Mtt-S International. 1977, 503-505
    [21] Monzon, C.. A small dual frequency transformer in two sections. IEEE Transactions on Microwave Theory and Techniques. 2003, 51 (4), 1157–1161
    [22]程敏锋,刘学观,“微带型Wilkinson功分器设计与实现”,现代电子技术, 2006, 25-26
    [23] S.W.Lee, C. S Kim, K. S. Choi, et al. A general design formula of multisection power divider based on singly terminated filter design theory. IEEE Microwave Symposium Digest. 2001, 2, 1297-1300
    [24] M. Kishihara, k. Yamane, and T. Kawai. A design of multi-stage, multi-way microstrip power dividers with broadband properties. IEEE Microwave Wireless Compon. Lett. 2004, 1: 69-72
    [25] Chiu L.,Yum T. Y., Xue Q. et al. A wideband compact parallel-strip 180oWilkinson power divider for push-pull circuitries. IEEE Microwave and Wireless Components Letters. 2006, 16(1): 49-51
    [26] Ban-leong., Palei W., Leong M.S. Broad-banding technique for in-phase hybrid ring equal power divider. IEEE Transactions on Microwave Theory and Techniques 2002, 50(7): 790–1794
    [27] P. C. Goodman. A wideband stripline matched power divider. IEEE MTT-S International Microwave Symposium Digest. 1968, 16-19
    [28] Y. Tahara, H. Oh-hashi, A. Ohno, et al. A broadband asymmetric tapered-line power divider with several strip resistors. Proc. 34th Eur. Microwave Conf., Amsterdam, 2004, 2: 601-604
    [29] A.M.Abbosh. Broadband multilayer inphase power divider for C-band applications. Electronics Letters, 2008, January, 44(2): 120–121
    [30] Sai Wai Wong. Ultra-wideband power divider with good in-band splitting and isolation performances. IEEE Microwave and Wireless Components Letters. 2008, Aug., 18(8): 518– 520
    [31] Song K, Fan Y and Zhou X. X- band broadband substrate integrated rectangular waveguide power divdier. Electronics Letters. 2008, 44(3): 211–213
    [32] A.M. Abbosh. Ultra wideband inphase power divider for multilayer technology. IET Microwaves, Antennas and Propagation. 2009, Feb., 3(1):148–153
    [33] Jones E., Bolljahn J. Coupled-strip transmission line filters and directional couplers. IEEE Transactions on Microwave Theory and Techniques. 1956, 4: 75–81
    [34] Mongia R., Bahl I., Bhartia P. RF and microwave coupledline circuits. (Artech House Inc., 1999)
    [35] Chiu Jui-chieh, Lin Jhi-Ming, Wang Yeong-Her. A novel planar three-way power divider. IEEE Microwave and Wireless Components Letters, 2006, August, 16 (8): 449-451
    [36] Cristal E. Coupled-transmission line directional couplers with coupled lines of unequal characteristic impedances. IEEE Transactions on Microwave Theory and Techniques. 1966, 14 (7): 337–346
    [37] Wong, M.F., Fouad Hanna,V, Picon,O., et al. Analysis and design of slot-coupled directional couplers between double-sided substrate microstrip lines. IEEE Transactions on Microwave Theory and Techniques. 1991, Dec., 39 (12): 2123–2129
    [38] Abbosh, A.M. Design of ultra wideband three-way arbitrary power dividers.IEEE Transactions on Microwave Theory and Techniques. 2008, Jan, 56 (1): 194–201
    [39] Collin R. Foundations for microwave engineering (IEEE Press, 2001, 2nd edn.)
    [40] Federal Communications Commission . Revision of Part 1 5 of the Commission’S Rules Regarding Ultra-Wideband Transmission Systems.First Report and Order.FCC.2002
    [41] Kaijun Song and Quan Xue. Novel Ultra-Wideband (UWB) Multilayer Slotline Power Divider With Bandpass Response. IEEE Microwave and Wireless Components Letters. 2010, 20(1): 13–15
    [42] L. Chiu, T. Yum, Q. Xue, et al. A wideband compact parallelstrip 180°Wilkinson power divider for push-pull circuitries. Novel Ultra-Wideband (UWB) Multilayer Slotline Power Divider With Bandpass Response. 2006, Jan., 16(1): 49–51
    [43] Bialkowski, M.E. and Abbosh, A. M.. Design of a Compact UWB Out-of-Phase Power Divider. IEEE Microwave and Wireless Components Letters. 2007, 17(4):289–291
    [44] J. Knorr. Slot-line transitions. IEEE Transactions on Microwave Theory and Techniques.1974, May, MTT-22(5): 548–554
    [45]翁丽鸿.微带DGS滤波器研究与设计[D].西安:西安电子科技大学硕士论文, 2009
    [46]刘海文,李征帆,孙小玮.缺陷接地结构在RF和微波电路中的最新应用.电子科学技术革命,2005:19–24
    [47] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques. 1999, Nov, 47(11):2075–2084

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700