微生物发酵中几类问题的建模、优化和最优控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,3—丙二醇是一种重要的化工原料。近几年,微生物发酵法生产1,3—丙二醇受到国内外学者的广泛关注。本文以克雷伯氏杆菌歧化甘油生产1,3—丙二醇为研究背景,研究了该发酵过程中几类问题的建模、优化和最优控制。该项研究,一方面可以丰富非线性动力系统、最优控制、双层规划以及优化理论与算法的研究:另一方面可以为1,3—丙二醇的大规模产业化生产提供理论参考。因此,该项研究具有一定的理论意义与应用价值。另外,该项研究得到国家自然科学基金项目、“973计划”及“863计划”项目的资助。本论文研究的内容与取得的主要结果可概括如下:
     1.针对间歇发酵中微生物的生长特点,以底物和多产物对微生物生长的综合抑制力作为控制函数,建立了含有控制和参数的非线性动力系统描述该过程,并证明了该系统的主要性质。以实验数据和计算值之间误差平方和最小为性能指标,以上述含控制和参数的非线性动力系统为约束条件,建立了系统辨识模型。该系统辨识模型为一个最优控制问题,它的直接求解很困难。根据微生物生长特点,我们采用离散化技术将其转化为一个参数辨识问题,并构造了改进的粒子群算法求得系统辨识模型的一个较满意的解。数值结果表明:该算法具有较好的收敛性,并且实验观测值和计算值之间的误差比已有文献降低了6到16个百分点。
     2.根据批式流加实际发酵过程,将甘油和碱的注入看作一个连续过程而不是脉冲形式,首次提出了一个非线性多阶段动力系统描述该过程。此外,为了确定系统中的参数值,建立了参数辨识模型,证明了参数的可辨识性,并构造改进的单纯形法求得最优参数。数值结果表明实验观测值和计算值之间的误差比已有文献降低了1.16到40.97个百分点,因而,辨识后的多阶段动力系统能更好地描述批式流加发酵过程。在批式流加发酵中,甘油和碱的合理注入速度是提高1,3—丙二醇生产强度的关键。因而,将流加速度看成一个随时间变化的控制函数,建立了含控制的非线性多阶段动力系统,并证明了该系统的一些主要性质。以终端时刻1,3—丙二醇的生产强度最大为性能指标,以上述含控制的多阶段动力系统和连续状态不等式约束为约束条件,建立了多阶段最优控制模型。最后利用不可微优化理论得到了最优控制问题的最优性条件,并证明了最优性条件和最优性函数零点的等价性。
     3.通量平衡分析是代谢网络分析中一个非常有效的工具,它能够预测细胞内的通量分布,然而准确的预测依赖于合理的目标函数。基于代谢网络,首次提出了一个非线性双层规划模型推断厌氧条件下克雷伯氏杆菌歧化甘油生产1,3—丙二醇的代谢目标函数,利用K-K-T最优性条件将上述双层规划模型转化成一个带有互补松弛条件的非线性规划,证明了该双层规划最优解的存在性,构造了有效的算法来求解并分析了算法的收敛性。由于观测实验数据会存在一定的误差,所以研究上述所得目标函数关于允许实验误差的鲁棒性是非常必要的。因此,提出一组非线性双层规划模型来判断目标函数的鲁棒性。数值结果表明所得目标函数具有较好的鲁棒性。
1,3-propanediol(1,3-PD) is an important chemical raw material.In recent years,the production of 1,3-PD by microbial fermentation has been widely investigated.The dissertation investigates the modeling,optimization and optimal control of several problems in glycerol bioconversion to 1,3-PD by Klebsiella pneumoniae(K.pneumoniae).The research not only can enrich the theory and the application of nonlinear dynamical systems, optimal control,bilevel programming and optimization theory and algorithm,but also can provide theoretical guide for the commercial production of 1,3-PD.Hence,this research is very interesting in both theory and practice.In addition,the research is supported by national natural science foundation,"973 program" and "863 program".The main contributions are summarized as follows:
     1.According to the characteristic of microbial growth in batch culture,we establish a controlled dynamical system with parameters to formulate this process by taking the total inhibitions of substrate and multiple products to the cell growth as the control function.Subsequently,some properties of the proposed system are proved. Taking the minimal error between the experimental data and calculated values as the performance index,and the above controlled dynamical system as the constraint, we present a system identification model,which is an optimal control problem.It is difficult to solve the system identification model directly.So,we transform it into a parameter identification problem by discretizing technique combining the characteristic of microbial growth.Finally,an improved particle swarm algorithm is constructed to obtain a satisfactory solution of the system identification problem. Numerical results show that the above algorithm is of good convergence and the errors are cut down by 6%-16%.
     2.In view of the actual fed-batch fermentation process,we firstly propose a nonlinear multistage dynamical system,taking the feeding of glycerol and alkali as a time-continuous process instead of an impulsive form,to formulate the process.To determine the parameters in the multistage system,we establish a parameter identification model and prove the identifiability of optimal parameters.Finally,an improved simplex method is constructed to solve the identification model.Numerical results show that the error is cut down greatly and the proposed system can formulate the fed-batch culture better.Since a proper feeding rate is required during the fed-batch process,we propose a controlled multistage dynamical system by taking the feeding rate as the control function.Some important properties of the system are also proved.To maximize the productivity of 1,3-PD at the terminal time,an optimal control model subject to our proposed controlled multistage system and continuous state inequality constraints is presented.Finally,we obtain an optimality condition for the optimal control problem by non-differentiable optimization theory,and prove the equivalence between the optimality condition and zeros of the optimality function.
     3.Flux balance analysis(FBA) is an effective tool in the analysis of metabolic network. It can predict the flux distribution of engineered cells,whereas the accurate prediction depends on the reasonable objective function.Basing on the metabolic network,we firstly propose a nonlinear bilevel programming model to infer the metabolic objective function of anaerobic glycerol metabolism by K.pneumoniae for 1,3-PD production.Making use of the K-K-T optimality condition of the lower level problem,the bilevel programming model is equivalently transcribed into a nonlinear programming with complementary and slackness conditions.We give the existence theorem of the optimal solution to the above model.An efficient algorithm is proposed to solve the model and its convergence is also simply analyzed.It is necessary to investigate the robustness of the obtained objective function because of the experimental errors.Hence,a series of nonlinear bilevel programming models is established to analyze the robustness.Numerical results show that the obtained objective function is of good robustness.
引文
[1]Loewen P D,Rockafellar R T.New necessary conditions for the generalized problem of Bolza.SIAM Journal on Control and Optimization,1996,34(5):1496-1551.
    [2]Loewen P D,Rockafellar R T.Bolza problems with general time constraints.SIAM Journal on Control and Optimization,1997,35(6):2050-2069.
    [3]Clarke F H,Ledyaev S,Stem R J.Nonsmooth Analysis and Control Theory.New York:Springe-Verlag,1998.
    [4]Hartl R F,Sathi S P,Vickson R G.A survey of the maximum principles for optimal control problem with state constraints,sIAM Review,1995,37(2):181-218.
    [5]Zeiden V.The riccati equation for optimal control problems with mixed state-control constraints:necessity and sufficiency.SIAM Journal on Control and Optimization,1994,32(5):1297-1321.
    [6]Polak E.Optimazation Algorithms and Consistent Approximation,Springer,New York,1997.
    [7]Dontchev A S,Hager W W,Poore A B.Optimality,stability and convergence in nonlinear control.Journal of Applied Mathematics and Optimization,1995,31(3):297-326.
    [8]Schwartz A,Polak E.Consistent approximations for optimal control problems based on Runge-Kutta integration.SIAM Journal on Control and Optimization,1996,34(4):1235-1269.
    [9]Wang G S,Wang L J.State-constrained optimal control governed by Nonwell-posed parabolic differential equations.SIAM Journal on Control and Optimizaition,2002,40(5):1517-1539.
    [10]Wang G S,Wang L J.The carlman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations.Journal of Optimization Theory and Applications,2003,118(2):429-461.
    [11]Lou H W.Maximum principle of optimal control for degenerate quasilinear elliptic equations.SIAM Journal on Control and Optimization,2003,42(1):1-23.
    [12]高夯.半线性抛物方程支配系统的最优性条件.数学学报,1991,42(4):705-714.
    [13]Li X J,Yong J M.Necessary conditions for optimal control of distributed parameter systems.SIAM Journal on Control and Optimization,1991,29(4):895-908.
    [14]Li X J,Yong J M.Optimal control theory for infinite dimensional systems.Boston:Birkhauser,1995.
    [15]李健全,陈任昭.时变种群系统最优生育率控制的非线性问题.应用数学学报,2002,25(4):626-641.
    [16]王康宁.最优控制的数学基础.北京:国防工业出版社,1995.
    [17]Yu W H.Identification of distributed parameter with pointwise constraints of the parameters.Journal of Mathematical Analysis and Applications,1988,136:497-520.
    [18]Yu W H.Necessary condition for optimiality in the identification of elliptic system with pointwise parameter contraints.Journal of Optimization Theory and Applications,1996,88:725-742.
    [19]李晓红,冯恩民,修志龙.微生物连续培养非线性动力系统的性质及最优性条件.工程数学学报,2006,23(1):7-12.
    [20]李晓红,冯恩民,修志龙.微生物间歇发酵非线性动力系统的性质及最优控制.运筹学学报,2005,9(4):89-96.
    [21]Wang H Y,Feng E M,Xiu Z L.Optimality condition of the nonlinear impulsive system in fed-batch fermentation.Nonlinear Analysis TMA,2008,68(1):12-23.
    [22]Li A,Feng E M,Wang L.Stochastic optimal control and algorithm of the trajectory of horizontal wells.Journal of Computational and Applied Mathematics,2008,212(2):419-430.
    [23]Li A,Feng E M,Impulsive optimal control model for the trajectory of horizontal wells.Journal of Computational and Applied Mathematics,2008,223(2):893-900.
    [24]江胜宗,冯恩民.侧钻水平井轨道三维优化模型及其应用.石油学报,2001,22(3):98-105.
    [25]Gong Z H,Liu C Y,Feng E M,Optimal control and properties of nonlinear multistage dynamical system for planning horizontal well paths,Applied Mathematical Modelling,2009,33(7):2992-3001.
    [26]Bryson A E,Ross S E.Optimum Rocket Trajectories with Aerodynamic Drag.Pasadena:Jet propulsion,1958.
    [27]Breakwell J V.The.Optimization of Trajectories.Journal of the Society for Industrial and Applied Mathematics,1959,7(2):215-247.
    [28]Miele A.Method of Particular Solutions for Linear Two-point Boundary-value Problems.Journal of Optimization Theory and Applications,1968,2(4):315-334.
    [29]Tsang T H,et al.Optimal Control via Collocation and Nonlinear Programming.International Journal of Control,1975,21(5):763-768.
    [30]Tanartkit P,Biegler L T,A Nested Simultaneous Approach for Dynamic Optimization Problems,Computers & Chemical Engineering 1996,20(6):735-741.
    [31]Candler W,Norton R.Multilevel programming,Technical report 20,World Bank Development Research Center,Washington D.C.1997.
    [32]Bracken J,McGill J.Mathematical programs with optimization problems in the constralnts,Operations Research,1973,21:37-44.
    [33]Stackelberg H.The theory of the market economy,New York,Oxford:Oxford University Press,1952.
    [34]Ishizuka Y.Optimality conditions for quasi-differentiable programs with application to two-level optimization,SIAM Journal of Control Optimization,1988,26(6):1388-1398.
    [35]Shimizu K,Ishizuka Y.Optimality conditions and algorithms for parmeter design problems with two-level structure.IEEE Transactions Automatic Control,1985,AC-30(10):986-993.
    [36]Tanion T,Ogawa T.An algorithm for solving two-level convex optimization problems.International Journal of Systems Science,1984,15(2):163-174.
    [37]王广民,万仲平,王先甲.二(双)层规划综述.数学进展,2007,36(5):513-529.
    [38]Jeroslow R G.The polynomial hierarchy and a simple model for competitive analysis.Mathematiacl Programming,1985,32(2):146-164.
    [39]Bard J F.Some properties of the bilevel porgramming problem.Journal of Optimization Theory and Applications,1991,68(2):371-378.
    [40]Hansen P,Jaumard B,Savard G.New branch and bound rules for linear bievel programming,SIAM Journal on Scientific and Statistical Computing,1992,13(5):1194-1217.
    [41]Vicente L N,Sward G,Judice J J.Descent approaches for quadratic bilevel programming.Journal of Optimization Theory and Applications,1994,81(2):379-399.
    [42]Ben-Ayed O,Blair C E.Computational difficulities of bilevel linear programming.Operations Research,1990,38(3):556-560.
    [43]Blair C E.The computational complexity of multi-level linear programs.Annals of Operations Research,1992,34(1-4):13-19.
    [44]王先甲,冯尚友.二层系统最优化理论,北京:科学出版社,1995.
    [45]Bard J F.Optimality condition for the bilevel programming problem.Naval Research Logistics Quarterly,1984,31(1):13-26.
    [46]Bard J F.Coordination of a multidivisional organization through two levels of managements.OMEGA,1983,11(5):457-468.
    [47]Bard J F.An efficient point algorithm for a linear two-stage optimization problem.Operations Research,1983,31(4):670-684.
    [48]Clarke P,Westerberg A.A note on the optimality condition for the bilevel programming problem.Naval Research Logistics,1988,35(5):418-423.
    [49]Haurie A,Savard G,White D J.A note on:an efficient point algorithm for a linear two-stage optimization problem.Operations Research,1990,38(3):553-555.
    [50]Outrata J.Necessary optimality conditions for stackelberg problems.Journal of Optimization Theory and Applications,1993,76:305-320.
    [51]Chen Y,Florian M.The nonlinear bilevel programming prbolem:formulations,regularity and optimality conditions.Optimization,1995,32:193-209.
    [52]Ye J J,Zhu D L,Zhu Q J.Exact penalization and necessary optimality conditions for generalized bilevel programming problems.SIAM Journal on Optimization,1997,7(2):481-507.
    [53]Ye J J,Ye X Y.Necessary optimality conditions for optimization problems with variational inequaltiy constraints.Mathematics of Operations Research,1997,22(4):977-997.
    [54]Ye J J.Optimal strategies for bilevel dynamic problems,SIAM Journal on Control and Optimization,1997,35(2):512-531.
    [55]刘国山,韩继业,汪寿阳.双层规划问题的信赖域算法.科学通报,1998,43(4):383-387.
    [56]Babahadda H,Gadhi N.Necessary optimality conditions for bilevel optimization problems using convexificators.Journal of Global Optimization,2006,34(4):535-549.
    [57]Ye J J.Constraint qualifications and K-K-T conditions for bilevel programming problems.Mathematics of Operations Research,2006,31(4):811-824.
    [58]Vicente L,Calamai P H.Geometry and local optimality conditions for bilevel programs with quadratic strictly convex lower levels,Minimax and Applications.Du D Z,Pardalos P M,Netherlands,Dordrencht:Kluwer Academic Publishers Group,1995,141-151.
    [59]Bialas W F,Karwan M H.Two-level linear programming.Management Science,1984,30(8):1004-1020.
    [60]Candler W,Townsely R.A linear two-level programming problem.Compuers and Operations Researh,1982,9(1):59-76.
    [61]Wen U P.The "K-Best" algorithm for mutilevel porgramming.Technical Reports,Deparment of Operations Research,Satte University of New York at Buffalo,1981.
    [62]刘红英,刘三阳,周永生.两层广义线性规划.系统工程学报,2000,15(2):131-135.
    [63]Fortully A J,McCarl B.A representation and economic interpretation of a two-level programming problem.Journal of Operational Research Society,1981,32(9):783-792.
    [64]Bard J F,Falk J E.An explicit solution to the multilevel programming problem.Computers and Operations Researh,1982,9:77-100.
    [65]Bard J,Moore J T.A branch and-bound algorithm for the bilevel programming problem.SIAM Journal of Scientific and Statistical Computing,1990,11:281-292.
    [66]Aiyoshi E,Shizu K.A solution method for the static consrtained Stackelberg problem via penalty method.IEEE Transactions on Automatic Conrtol,1984,29(12):1111-1114.
    [67]Shimiuz K,Lu M.A global optimization method for the Stackelberg porblem with convex functions via problem transformations and concave programming.IEEE Transactions Systems,Man,and Cyberneties,1995,25(12):1635-1640.
    [68]White D J,Anandalingam G.A penalty function approach for solving bilevel linear programmings,Journal of Global Optimization,1993,3(4):397-419.
    [69]Kolstad C D,Lasdon L S.Derivative evaluation and computation experience with large bilevel mathematical programs.Journal of Optimization Theory and Applications,1990,65(3):485-499.
    [70]Savard G,Gauvin J.The steepest descent direction for the nonlinear bilevel programming problem.Operations Research Letters,1994,15(5):275-282.
    [71]Judice J J,Faustino A M.A sequential LCP method for bilevel linear programming.Annals of Operations Research,1992,34(1-4):89-106.
    [72]Onal H.A modified simplex approach for solving bilevel linear programming problems.European Journal of Operation Research,1993,67(1):126-135.
    [73]Wen U P,Huang A D.Simple tabu search method to solve the mixed-integer linear bilevel programming problem.European Journal of Operation Research,1996,88(3):563-571.
    [74]Gendreau M,Marcotte P.Savard G.A hybrid tabu-ascent algorithm for the linear bilevel programming problem.Journal of Global Optimization,1996,8(3):217-233.
    [75]赵志刚,顾新一,李陶深.求解双层规划模型的粒子群优化算法.系统工程理论与实践,2007,27(8):92-98.
    [76]Lan K W,Wen U P,Shin H Set al.A hybrid neural network approach to bilevel programming problems.Applied Mathematics Letters,2007,20(8):880-884.
    [77]修志龙.1,3-丙二醇的微生物法生产分析.现代化工,1999,19(3):33-35.
    [78]Biebl H,Menzel K,Zeng A P et al.Microbial production of 1,3-propanediol.Applied Microbiology and Biotechnology,1999,52(3):289-297.
    [79]Zeng A P,Rose A,Biebl H,Tag C,Guenzel B,Deckwer W D.Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation.Biotechnology and Bioengeering,1994,44(8):902-911.
    [80]Zeng A P.A kinetic model for product fermation of microbial and mamalian cells.Biotechnology and Bioengeering,1995,46(4):314-324.
    [81]修志龙.微生物发酵法生产1,3-丙二醇的研究进展.微生物通报,2000,27(4):300-302.
    [82]修志龙,曾安平,安利佳.甘油生物转化为1,3-丙二醇过程的动力学数学模拟和多稳态研究.大连理工大学学报,2000,40(4):428-433.
    [83]Zeng A P,Deckwer W D.A kinetic model for substrate and energy consumption of microbia growth under substrate-sufficient conditions.Biotechnology Progress,1995,11(1):71-79.
    [84]高彩霞,冯恩民,王宗涛,修志龙.微生物间歇发酵生产1,3-丙二醇过程辨识与优化.大连理工大学学报,2006,46(5):771-774.
    [85]王宝光,刘铭,杜晨宇等.微生物法生产1,3-丙二醇过程的代谢工程研究进展.过程工程学报,2006,6(1):144-148.
    [86]Zeng A P,Deckwer W D.A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions.Biotechnology Progress,1995,11(1):71-79.
    [87]孙丽华,郭庆广,修志龙.一类具有时滞的生化模型的Hopf分叉研究.生物数学学报,2002,17(3):286-292.
    [88]修志龙,曾安平,安利佳.甘油生物连续歧化过程的过渡行为及其数学模拟.高校化学工程学报,2000,14(1):53-58.
    [89]马永峰.微生物连续培养模型中非线性行为的分析与模拟(博士学位论文).大连:大连理工大学,2004.
    [90]Gao C X,Feng E M,Wang Z T,et al,Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls.Journal of Industrial and Management Optiminization.2005,1(3):377-388.
    [91]Gao C X,Feng E M,Xiu Z L.Identification and optimization of the nonlinear impulsive system in microbial fed-batch fermentation.Dynamics of Continuous Discrete and Impulsive systems-series A-Mathmatical Analysis,2006,13:625-632.
    [92]Gao C X,Li K Z,Feng E M.Nonlinear impulsive system of fed-batch culture in fermentative production and its properties.Chaos,Solitons & Fractals.2006,28(1):271-277.
    [93]Gao C X,Lang Y H et al.Nonlinear impulsive system of microbial production in fed-batch culture and its optimal control.Journal of Appllied Mathematics and Computing,2005,19(1-2):203-214.
    [94]李晓红,冯恩民,修志龙.微生物连续发酵稳定模型的算法与收敛性.清华大学学报(自然科学版).2007,47(s2):1907-1909.
    [95]李晓红,冯恩民,修志龙.微生物连续培养过程平衡点的稳定分析.高校应用数学学报B辑.2005,20(4):377-383.
    [96]Wang G,Feng E M,Xiu Z L.Vector measure for explicit nonlinear impulsive system of glycerol bioconversion in fed-batch cultures and its parameter identification.Applied Mathematics and Computation,2007,188(2):1151-1160.
    [97]Wang G,Feng E M,Xiu Z L.Nonlinear hybrid kinetic system of microbial bioconversion in fed-batch culture.Nonlinear Analysis:Hybrid Systems,2008,2(1):65-73.
    [98]Wang G,Feng E M,Xiu Z L.Vector measure as controls for explicit nonlinear impulsive system of fed-batch culture.Journal of Mathematical Analysis and Applications,2009,351(1):120-127.
    [99]Wang G,Feng E M,Xiu Z L.Modelling and parameter identification of microbial biconversion in fed-batch cultures.Journal of Process Control,2008,18(5):458-464.
    [100]Liu C Y,Gong Z H,Feng E M,Yin H C.Optimal switching control for microbial fed-batch culture.Nonlinear Analysis:Hybrid Systems,2008,2(4):1168-1174.
    [101]Sun Y Q,Qi W T,Teng H et al.Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae:Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane.Biochemical Engineering Journal,2008,38(1):22-32.
    [102]Stephanopoulos G,Aristidou A,Nielsen J.Metabolic engineering:Priciples and Methodologies.Academic Press,San Diego,1998.
    [103]张青瑞.甘油生物转化为1,3-丙二醇过程的代谢通量分析与动态模拟(博士学位论文).大连:大连理工大学,2008.
    [104]马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2005.
    [105]Dempe S.Foundations of Bilevel Programming,Kluwer Academic Publishers,2002.
    [106]袁亚湘,孙文瑜,最优化理论与方法.科学出版社,2005.
    [107]Kennedy J,Eberhart R.Particle swarm optimization.In Proceedings of the IEEE International Conference on Neural Networks,Perth,Australia,1995,4:1942-1948.
    [108]Karakuzu C.Fuzzy controller training using particle swarm optimization for nonlinear system control.ISA Trans.2008,47(2):229-239.
    [109]Liu L,Liu W X,Cartes D A.Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors.Engineering Applications of Artificial Intelligence.2008,21(7):1092-1099.
    [110]Sha D Y,Hsu C Y.A new particle swarm optimization for the open shop scheduling problem.Computers & Operations Research,2008,35(10):3243-3261.
    [111]Reimann A,Biebl H.Production of 1,3-propanediol by clostridium butyricum DSM 5431and product tolerant mutants in fedbatch culture feeding strategy for glycerol and ammonium.Biotechnol.Lett.1996,18(7):827-832.
    [112]Xiu Z L,Song B H et al.Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one-and two-stage anaerobic cultures.Biochemical engineering journal,2004,19(3):189-197.
    [113]Splendley W,Hext G R,Himsworth F R.Sequential application of simplex designs in optimization and evolutionary operation.Technometrics,1962,4:441-461.
    [114]Nelder J A,Mead R A.simplex method for function minimization.Computer Journal,1965,7:308-313.
    [115]Zeng A P,Biebl H.Bulk-chemicals from biotechnology:the case of microbial production of 1,3-propanediol and the new trends.Advances of Biochemical Engineering Biotechnology.2002,74:239-259.
    [116]Maczek J,Junne S et al.Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae.Bioprocess and Biosystems Engineering,2006,29(4):241-252.
    [117]Ozkan P,Sariyar B et al.Metabolic flux analysis of recombinant protein overproduction in Escherichia coli.Biochemical Engineering Journal,2005,22(2):167-195.
    [118]Sanchez A M,Bennett G N et al.Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains.Metabolic Engineering,2006,8(3):209-226.
    [119]Shirai T,Nakato A et al.Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria.Metabolic Engineering,2005,7(2):59-69.
    [120]Beard D A,Liang S D,Qian H.Energy balance for analysis of complex metabolic networks.Biophysical Journal,2002,8(3):79-86.
    [121]Kauffman K J,Prakash P,Edwards J S.Advances in flux balance analysis.Current Opinion Journal,2003,14(5):491-496.
    [122]Lee J M,Gianchandani E P,Papin J A.Flux balance analysis in the era of metabolomics.Briefings in Bioinformatics,2006,7(2):140-150.
    [123]Burgard A P,Maranas C D.Optimization-based framework for inferring and testing hypothesized metabolic objective functions.Biotechnology and Bioengineering,2003,82(6),670-677.
    [124]Ahrens K,Menzel K et al.Kinetic,dynamic,and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅲ.Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation.Biotechnology and Bioengineering,1998,59(5):544-552.
    [125]Menzel K,Zeng A P,Deckwer W D.Kinetic,dynamic,and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅰ.The phenomena and characterization of oscillation and hysteresis.Biotechnology and Bioengineering,1996,52(5),549-56O.
    [126]张青瑞,修志龙,曾安平.克雷伯氏杆菌发酵生产1,3-丙二醇的代谢通量优化分析.化工学报,2006,57(6):1403-1409.
    [127]Zeng A P,Biebl H,Schlieker H,Deckwer W D.Pathway analysis of glycerol fermentation by Klebsiella pneumoniae:regulation of reducing equivalent balance and product formation.Enzyme and Microbial Technology,1993,15(9):770-779.
    [128]Chen X,Xiu Z L,Wang J F,Zhang D J,Xu P.Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions.Enzyme and Microbial Technology,2003,33(4):386-394.
    [129]Amouzegar M A.A global optimizaiton method for nonlinear bilevel programming problem.IEEE Xplore:Systems,Man,and Cybernetics,Part B:Cybernetics,1999,29(6):771-777.
    [130]Fliege J,Vicente L N.Multicriteria approach to bilevel optimization.Journal of Optimization Theory and Applications,2006,131(2),209-225.
    [131]G(?)m(?)s Z H,Floudas C A.Gloabal optimization of nonlinear bilevel programming problems.Journal of Global Optimization,2001,20(1):1-31.
    [132]Wang G M,Wang X J,Wan Z P,Lv Y B.A globally convergent algorithm for solving a class of bilevel nonlinear programming problem.Applied Mathematics and Computation,2007,188(1):166-172.
    [133]Lv Y B,Hu T S,Wang G M,Wan Z P.A penalty function method based on Kuhn-Tucker condition for solving linear bilevel programming.Applied Mathematics and Computation,2007,188(1):808-813.
    [134]Mathieu R,Pittard L,Anandalingam G.Genetic algorithm based approach to bi-level linear programming.Operations Research,1994,28:1-21.
    [135]Hejazi S R,Memariani A et al.Linear bilevel programming solution by genetic algorithm.Computers & Operations Research,2002,29(13):1913-1925.
    [136]Wang G M,Wan Z P et al.Genetic algorithm for solving quadratic bilevel programming problem.Wuhan University Journal of Natural Sciences,2007,12(3):421-425.
    [137]Liu B.Stackelberg-Nash equilibrium for multilevel programming with multiple follows using genetic algorithm.Computers & Mathematics with Application,1998,36(7):79-89.
    [138]Yin Y F.Genetic algorithms based approach for bilevel programming models.Journal of Transportation Engineering,ASCE,2000,126(2):115-120.
    [139]Oduguwa V,Roy R.Bi-level optimization using genetic algorithm.IEEE International Conference on Artificial Intelligence Systems,2002:322-327.
    [140]Wang Y P,Jiao Y C,Li H.An evolutionary algorithm for solving nonlinear bilevel programming based on a new constrait handling scheme.IEEE Transactions On Systems,Man,and Cybernetics-Part C:Applications and Reviews,2005,35(2):221-232.
    [141]王广民,万仲平,王先甲等.基于遗传算法的二层线性规划问题的求解算法.运筹与管理,2005,14(2):54-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700