非线性切换动力系统的最优控制及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以微生物批式流加发酵甘油生产1,3-丙二醇为背景,研究了该发酵过程的非线性动力系统及其最优控制.该项研究,不仅可推动非线性动力系统、最优控制理论以及优化算法的研究,还可提高目标产物产量,为1,3-丙二醇的大规模产业化生产提供参考.因此,该项研究具有一定的理论意义与应用价值.另外,该项研究得到国家自然科学基金项目、“973计划”及“863计划”的资助.本论文研究的内容与取得的主要结果可概括如下:
     1.将甘油和碱的流加看作一个连续过程并且以甘油的流加速度作为控制函数,本文建立了非线性多阶段动力系统描述微生物批式流加发酵甘油生产1,3-丙二醇过程.对于该动力系统,研究了其解的存在唯一性、关于控制函数的Lipschitz连续性和一致有界性等性质.以终端时刻1,3-丙二醇的浓度最大化为性能指标,建立了多阶段最优控制模型.利用有界变差理论,证明了多阶段最优控制问题最优控制的存在性.进一步,基于控制参数化方法和改进的粒子群算法提出了一种求解多阶段最优控制问题的全局优化算法.数值结果表明:应用所得的最优甘油流加策略,终端时刻1,3-丙二醇的浓度比实验数据提高了16.04%.
     2.在微生物批式流加发酵甘油生产1,3-丙二醇过程中,恰当的甘油流加开始和结束时刻对于提高1,3-丙二醇的产量具有重要的意义.因此,以甘油的流加开始和结束时刻作为控制函数,本文提出了自治切换系统来描述该过程.以终端时刻1,3-丙二醇的浓度最大化为性能指标,建立了受连续状态约束的最优控制模型.利用约束转化方法和光滑近似技术处理最优控制问题中的连续状态不等式约束.基于罚函数法和性能指标的一阶、二阶梯度信息,构造了一种求解该最优控制模型的计算方法.数值结果表明:终端时刻1,3-丙二醇的浓度比以往所得结果有显著提高.
     3.在微生物发酵甘油生产1,3-丙二醇过程中,甘油对细胞生长既提供营养又产生底物抑制作用.因此,将发酵罐内甘油浓度维持在一定的范围内对提高1,3-丙二醇的产量非常重要.以甘油浓度作为切换规则并且以甘油流加速度作为控制函数,本文建立了状态依赖的切换动力系统描述微生物批式流加发酵过程.研究了该系统解的存在唯一性、一致有界性、一致Lipschitz连续性和正则性等性质.以终端时刻1,3-丙二醇的浓度最大化为性能指标,建立了最优切换控制模型.讨论了该最优切换控制问题最优控制的存在性.由于在最优切换控制问题中切换次数事先未知,将最优切换控制问题转化为一个等价的双层优化问题.最后,基于启发式算法和控制参数化方法构造了一种求解双层优化问题的计算方法.数值结果表明:终端时刻1,3-丙二醇的浓度比实验数据有显著提高并且大大地减少了切换次数.这为实际批式流加发酵提供了一定的指导作用.
This dissertation investigates the nonlinear dynamical systems and their optimal control problems in fed-batch fermentation of glycerol bioconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae. The research can not only develop nonlinear dy-namical system, optimal control theory and optimization algorithm, but also increase the productivity of product and provide certain reference for commercial process of 1,3-PD by fermentation. Therefore, it is very interesting both in theory and in practice. In addition, the research is supported by the National Natural Science Foundation of China, the Major State Basic Research Development Program of China and the National High Technology Research and Development Program of China. The main contributions obtained in this dissertation are summarized as follows.
     1. Taking the feeding of glycerol and alkali as a time-continuous process, we propose a nonlinear multistage dynamical system, in which the feeding rate of glycerol is the control function, to describe the microbial fed-batch fermentation of glycerol to 1,3-PD. Some properties, i.e., the existence and uniqueness, Lipschitzian conti-nuity in control function and uniform boundedness of solutions to the system, are proved. To maximize the concentration of 1,3-PD at the terminal time, a multistage optimal control model is presented. The existence of optimal control is established using theory of bounded variation. Based on the discretization method and an im-proved Particle Swarm Optimization algorithm, a global optimization algorithm is constructed to seek the optimal solution. Numerical results show that, by employing the optimal control policy, the concentration of 1,3-PD at the terminal time can be increased by 16.04% compared with the experimental data.
     2. It is decisive for improving the productivity of 1,3-PD to optimize the switching instants between the feeding and batch processes in microbial fed-batch fermen- tation. Thus, an autonomous switched system with variable switching instants is proposed to formulate the fermentation process. To maximize the concentration of 1,3-PD at the terminal time, we present an optimal control model involving the autonomous switched system and subject to continuous state constraints. A con-straint transcription approach and a local smoothing technique are introduced to deal with the continuous state inequality constraints. On the basis of a penalty function and the first and second gradients of the cost function, a gradient-based algorithm is developed to solve the optimal control model. Numerical results show that the concentration of 1,3-PD at the terminal time can be increased considerably compared with previous results.
     3. The feeding of glycerol should be kept in a given range such that it can not only provide sufficient nutrition for cells growth but also effectively avoid the inhibitory effect of excessive glycerol on the cells growth. A switched system with state depen-dent switching, in which the feeding rate of glycerol is taken as the control function, to describe the microbial fed-batch fermentation process. Some properties such as the existence and uniqueness, uniform boundedness, uniformly Lipschitzian conti-nuity and regularity of solutions, are discussed. To maximize the concentration of 1,3-PD at the terminal time, an optimal switching control model is presented. The existence of optimal control is also ascertained. Since the number of switchings is not known a prior. The optimal switching control model is equivalently transcribed into a two-level optimization problem. Finally, a solution method is developed on the basis of a heuristic approach and the control parametrization method. Numerical results show that, by employing the obtained optimal strategy,1,3-PD concentration at the terminal time can be increased considerably and the number of switchings is also decreased greatly. This provides guidance to the actual industrial production of 1,3-PD which is beneficial to optimize the biochemical engineer.
引文
[1]Sun Z, Ge S S. Analysis and synthesis of switched linear control systems, Automatica, 2005,41(5):181-195.
    [2]程代展,郭宇骞.切换系统进展,控制理论与应用,2005,(6)22:954-960.
    [3]Antsaklis P J, Nerode A. Hybrid contrl systems:an introductory discussion to special issue. IEEE Transactions on Automatic Control.1998,43(4):457-460.
    [4]莫以聪,萧德云.混合动态系统及其应用综述.控制理论与应用,2002,19(1):1-18.
    [5]Liberzon D. Swithing in Systems and Control. Birkhauser, Boston, MA,2003.
    [6]Koutsoukos X D, Antsaklis P J. Hybrid systems:review and recent progress. Software-Enabled Control:Information Technologies for Dynamical Systems, Wiley-IEEE Press, 2003.
    [7]Engell S, Kowalewski S, Schulz C, Stursberg O. Continuous-discrete interactions in chem-ical processing plants. Proceedings of IEEE,2000,88(7):1050-1068.
    [8]Balluchi A, Benedetto M Di, Pinello C, Rossi C, Sangiovanni-Vincentelli A. Cut-off in engine control:a hybrid system approach. Proceedings of the 36th IEEE Conference on Decision and Control.1997,5:4720-4725
    [9]Yamaguchi T, Numasato H, Hirai H. A mode-switching control for motion control and its application to disk drives:design of optimal mode-switching conditions. IEEE/ASME Transactions on Mechatronics,1998,3(3):202-209.
    [10]Bishop B E, Spong M W. Control of Redundant Manipulators Using Logic-Based Switch-ing. Proceedings of the 36th IEEE Conference on Decision and Control,1998,2:16-18.
    [11]Pepyne D L, Cassandras C G. Optimal control of hybrid systems in manufacturing. Pro-ceedings of IEEE,2000,88(7):1108-1123.
    [12]Cassandras C G, Pepyne D L, Wardi Y Optimal control of a class of hybrid systems. IEEE Transactions on Automatic Control,2001,46(3):398-415.
    [13]Zhang W, Branicky M S, Phillips S M. Stability of networked control systems. IEEE Control Systems Magazine.2001,21(1):84-99.
    [14]Hespanha J P, Liberion D, Morse A S. Control using Logic and Switching. IEEE Confer-ence on Decision and Control,2001.
    [15]Li Z G, Soh Y C, Wen C Y. Switched and Impulsive systems:Analysis, Design, and Applications. Springer Berlin Heidelberg, New York,2005.
    [16]Liberzon D, Morse A S. Basic problems in stability and design of switched systems. IEEE Control Systems Magazine,1999,19(5):59-70.
    [17]Cheng D Z. Stabilization of planar switching systems. Systems and Control Letters,2004, 51(2):79-88.
    [18]Zhao J,Spong M W. Hybrid Control for global stabilization of the cart-pendulum systems. Automatica,2001,37(12):1941-1951.
    [19]Hespanha J P. Uniform stability of switched linear systems:Extensions of Lasell's invari-ance principle. IEEE Transactions on Automatic Control,2004,49(4):470-482.
    [20]Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control,1998,43(4):475-482.
    [21]Caines P E,Zhang J. On the adaptive control of jump parameter systems via nonlinear filtering. SIAM Journal on Control and Optimization,1995,33(6):1758-1777.
    [22]Cheng D Z, Guo L, Lin Y,et al. Stabilization of switched linear systems. IEEE Transactions on Automatic Control,2005,50(8):1224-1228.
    [23]Cohen N, Lewkowicz I, Rodman L. Exponential stability of triangular differential inclusion systems. Systems and Control Letters,1997,30(4):159-164.
    [24]Li Z G, Wen Z Y, Soh Y C. Observer-based stabilization of switched linear systems. Automatica,2003,39(3):517-524.
    [25]王仁明,关治洪,刘新芝.一类非线性切换系统的稳定性分析.系统工程和电子技术,2004,26(1):68-71.
    [26]张霄力,刘玉忠,赵军.一类离散切换系统的渐进稳定.控制理论与应用,2002,19(5):774-776.
    [27]刘玉忠,赵军.一类非线性开关系统二次稳定性的充分必要条件.自动化学报,2002,28(4):596-600.
    [28]孙文安,赵军.凸锥型不确定线性切换系统的二次镇定.控制理论与应用,2005,22(5):790-793.
    [29]谢广明,郑大钟.线性切换系统基于范数的系统镇定条件及算法.自动化学报,2001,27(1):115-119.
    [30]Sun Y G,Wang L, Xie G M. Necessary and sufficient conditions for stabilization of discrete-time planar switched systems.Nonlinear Analysis,2006,65(5):1039-1049.
    [31]朱礼营,王玉振.切换耗散Hamilton系统的稳定性研究.中国科学E辑信息科学,2006,36(6):617-630.
    [32]Ezzine J, Haddad A H. Controllability and observability of hybrid systems. International Journal of Control,1989,49(6):2045-2055.
    [33]Soh C B. Controllability and observability of periodic hybrid interval systems. Interna-tional Journal of Systems Science,2000,31(12):1563-1571.
    [34]谢广明,郑大钟.一类混合动态系统的能控性和能观性研究.控制理论与应用,2002,19(1):139-142.
    [35]Xie G M,Wang L. Controllability and stabilizability of switched linear systems. Systems and Control Letters,2003,48(2):135-155.
    [36]Xie G M, Wang L. Necessary and sufficient conditions for controllability and observability of switched impulsive control systems.IEEE Transactions on Automatic Control,2004, 49(6):960-966.
    [37]Ge S S, Sun Z D,Lee T H. Reachability and controllability of switched linear discrete-time systems.IEEE Transactions on Automatic Control,2001,46(9):1437-1441.
    [38]Goldstine H H. A History of Calculus of Variations from the 17th to the 19th Century. Springer, New York,1981.
    [39]Boltyanskii V G. Mathematical Methods of Optimal Control. Izd. Nauka,1969.
    [40]Pontryagin L S,Boltyanski V G, Gamkrelidze V, Mischenko E E. The Mathematical The-ory of Optimal Control Process. Fizmatigiz,1961.
    [41]Bellman R. Dynamic Programming. Izd. Inostr. Litri,1960.
    [42]Bellman R, Dreyfus S. Applied Dynamic Programming. Izd, Nauka,1965.
    [43]Kalman R E. Contributions to the Theory of Optimal Control, Boletin de la Sociedad Matematica Mexiccana,1960,5:102-119.
    [44]Kalman R E. When is a linear system optimal?. Transacitons of the ASME, Journal of Basic Engineering-Series D,1961,86:1-10.
    [45]Krasovskii N N. On the theory of optimal control. Avtomat. i Telemeh.,1957,18:960-970 (Russian). English translation in Automation and Remote Control,195718:1005-1016.
    [46]Dunford N, Schwartz J T. Linear Operators, Part I, Interscience Publishers, New York, 1958.
    [47]Filippov A F. On certain questions in the theory of optimal control. Vestnik Moskov. Univ. Ser. I Mat. Meh.,1959,2:25-32 (Russian).
    [48]Lee E B, Markus L. Optimal control for nonlinear processes. Archieve for Rational Mech-nics and Analysis,1961,8:36-58.
    [49]Roxin E. The existence of optimal controls. Michigan Mathematical Journal,1962,9: 109-119.
    [50]Pontryagin L S, Boltyanskii V G, Gamkrelidze R V, Mishchenko E. F. The Mathematical Theory of Optimal Processes (English translation), Inter science Publishers, New York, 1962.
    [51]Neustadt L W. The existence of optimal controls in the absence of convexity conditions. Journal of Mathematical Analysis and Applications,1963,7:110-117.
    [52]Cesari L. Un teorema di esistenza in problemi di controlli ottimi. Annali della Scuola Normale Superiore di Pisa,1965,19:35-78.
    [53]Cesari L. An existence theorem in problems of optimal control. SIAM Journal on Control, 1965,3:7-22.
    [54]Cesari L. Existence theorems for optimal solutions in Pontryagin and Lagrange problems. SIAM Journal on Control,1966,3:475-498.
    [55]Stoddart A W J. Existence of optimal controls. Pacific Journal of Mathematics,1967, 1(20):167-177.
    [56]Loewen P D. Rockafellar R T. New necessary conditions for the generalized problem of Bolza. SIAM Journal on Control and Optimization,1996,34(5):1496-1551.
    [57]Loewen P D, Rockafellar R T. Bolza problems with general time constraints. SIAM Journal on Control and Optimization,1997,35(6):2050-2069.
    [58]Clarke F H, Ledyaev S, Stern R J. Nonsmooth Analysis and Control Theory. New York: Springe-Verlag,1998.
    [59]Hartl R F, Sathi S P, Vickson R G. A survey of the maximum principles for optimal control problem with state constraints. SIAM Review,1995,37(2):181-218.
    [60]Zeiden V. The riccati equation for optimal control problems with mixed state-control constraints:necessity and sufficiency. SIAM Journal on Control and Optimization,1994, 32(5):1297-1321.
    [61]Polak E. Optimazation Algorithms and Consistent Approximation, Springer, New York, 1997.
    [62]Dontchev A S, Hager W W, Poore A B. Optimality, stability and convergence in nonlinear control. Journal of Applied Mathematics and Optimization,1995,31(3):297-326.
    [63]Schwartz A, Polak E. Consistent approximations for optimal control problems based on Runge-Kutta integration. SIAM Journal on Control and Optimization,1996,34(4):1235-1269.
    [64]Li X J, Yong J M. Necessary conditions for optimal control of distributed parameter systems. SIAM Journal on Control and Optimization,1991,29(4):895-908.
    [65]Li X J, Yong J M. Optimal control theory for infinite dimensional systems. Boston: Birkhauser,1995.
    [66]高夯.半线性抛物方程支配系统的最优性条件.数学学报,1991,42(4):705-714.
    [67]Wang G S, Wang L J. State-constrained optimal control governed by Nonwell-posed parabolic differential equations. SIAM Journal on Control and Optimizaition,2002,40(5): 1517-1539.
    [68]Wang G S, Wang L J. The carlman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations. Journal of Optimization Theory and Applications,2003,118(2):429-461.
    [69]Lou H W. Maximum principle of optimal control for degenerate quasilinear elliptic equa-tions. SIAM Journal on Control and Optimization,2003,42(1):1-23.
    [70]李健全,陈任昭.时变种群系统最优生育率控制的非线性问题.应用数学学报,2002,25(4):626-641.
    [71]Yu W H. Identification of distributed parameter with pointwise constraints of the param-eters. Journal of Mathematical Analysis and Applications,1988,136:497-520.
    [72]Yu W H. Necessary condition for optimiality in the identification of elliptic system with pointwise parameter contraints. Journal of Optimization Theory and Applications,1996, 88:725-742.
    [73]王康宁.最优控制的数学基础.北京:国防工业出版社,1995.
    [74]李晓红,冯恩民,修志龙.微生物连续培养非线性动力系统的性质及最优性条件.工程数学学报,2006,23(1):7-12.
    [75]李晓红,冯恩民,修志龙.微生物间歇发酵非线性动力系统的性质及最优控制.运筹学学报,2005,9(4):89-96.
    [76]Wang H Y, Feng E M, Xiu Z L. Optimality condition of the nonlinear impulsive system in fed-batch fermentation. Nonlinear Analysis:Theory, Methods & Applications,2008, 68(1):12-23.
    [77]宫召华,冯恩民.微生物批式流加发酵多阶段最优控制的最优性条件.运筹学学报,2009,12(4):121-131.
    [78]Li A, Feng E M, Wang L. Stochastic optimal control and algorithm of the trajectory of horizontal wells. Journal of Computational and Applied Mathematics,2008,212(2): 419-430.
    [79]Li A, Feng E M, Impulsive optimal control model for the trajectory of horizontal wells. Journal of Computational and Applied Mathematics,2008,223(2):893-900.
    [80]江胜宗,、冯恩民.侧钻水平井轨道三维优化模型及其应用.石油学报,2001,22(3):98-105.
    [81]Gong Z H, Liu C Y, Feng E M, Optimal control and properties of nonlinear multistage dynamical system for planning horizontal well paths, Applied Mathematical Modelling, 2009,33(7):2992-3001.
    [82]Bryson A E, Ross S E. Optimum Rocket Trajectories with Aerodynamic Drag. Pasadena: Jet propulsion,1958.
    [83]Breakwell J V. The optimization of trajectories. Journal of the Society for Industrial and Applied Mathematics,1959,7(2):215-247.
    [84]Miele A. Method of particular solutions for linear two-point boundary-value problems. Journal of Optimization Theory and Applications,1968,2(4):315-334.
    [85]Tsang T H, et al. Optimal control via collocation and nonlinear programming. Interna-tional Journal of Control,1975,21(5):763-768.
    [86]Stryk von O. User's Guide for DIRCOL(Version 2.1):a direct collocation method for the numerical solution of optimal control problems. Fachgebiet Simulation und Systemopti-miertmg(SlM), Technische Universit Darmstadt,2000.
    [87]Schwartz A. Theory and Implementation of Numerical Methods Based on Runge-Kutta Integration for Solving Optimal Control Problems. PhD thesis, U. C. Berkeley,1996.
    [88]Schwartz A, Polak E. Consistent approximations for optimal control problems based on Runge-Kutta integration. SIAM Journal on Control and Optimization,1996,34:99-131.
    [89]Polak E. On the use of consistent approximations in the solution of semi-infinite optimiza-tion and optimal control problems. Mathematical Programming,1993,62:385-415.
    [90]Teo K L, Goh C J,. Wong K H. A Unified Computational Approach to Optimal Control Problems. Longman Scientific Technical, Essex, England,1991.
    [91]Teo K L, Jennings L S. Nonlinear optimal control problems with continuous state inequal-ity constraints. Journal of Optimization Theory and Applications,1989,63:1-22.
    [92]Jennings L S, Teo K L. Computational algorithm for functional inequality constrained optimization problems. Automatica,1991,26:371-376.
    [93]Jennings L S, Fisher M E, Teo K L, Goh C J. MISER3.3 Optimal Control Soft-ware:Theory and User Manual. Department of Mathematics, The University of Westera Australia, Western Australia, Australia,1997.
    [94]Wu C Z, Teo K L, Zhao Y, Yan W Y. Solving an identification problem as an impulsive optimal parameter selection problem. Computers and Mathematics with Applications, 2005,50:217-229.
    [95]Wong K H, Jennings L S, Benyah E. The control parametrization enhancing transform for constrained time-delayed optimal control problems. ANZIAM Journal; 2002,43E:E154-E185.
    [96]Lee H W J, Teo K L, Rehbock V,Jennings L S. Control parametrization enhancing tech-nique for optimal discrete-valued control problems. Automatica,1999,35:1401-1407.
    [97]Lee H W J, Cai X Q, Teo K L. An optimal control approach to manpower planning problem. Mathematical Problems in Engineering,2001,7:55-175.
    [98]Rehbock V, Teo K L, Jennings L S, Lee H J W. A survey of the control parametrization and control parametrization enhancing methods for constrained optimal control problems, Progress in Optimization:Contributions from Australasia. Kluwer Academic Press,1999.
    [99]Sussmann H J. A maximum principle for hybrid optimal control problems. Proceedings of the 38th IEEE Conference on Decision and Control,1999:425-430.
    [100]Bengea S C, Decarlo R A. Optimal control of switching systems. Automatica,2005,41(1): 11-27
    [101]Bengea S C, Decarlo R A. Optimal and suboptimal control of switched systems. Proceed-ings of the 42th IEEE Conference on Decision and Control, Maui, HI,2003,5:5295-5300
    [102]Bengea S C, Decarlo R A. Optimal Control of two-switched linear systems. Control En-gineering and Applied Informatics,2003,5:11-16.
    [103]Yong J. Systems governed by ordinary differential equations with continuous, switching and impulse controls. Applied Mathematics and Optimization,1989,20:223-235.
    [104]Dolcetta J C, vans L C. Optimal switching for ordinary differential equations. SIAM Journal on Control and Optimization,1984,22:143-161.
    [105]Seidman T I. Optimal control of switching systems. In Proceedings of the 21st Annual Conference on Information Sciences and Systems, The Johns Hopkins University, Balti-more, Maryland,1987.
    [106]Giua A, Seatze C, Van Der Mee C. Optimal control of autonomous linear systems switched with a preassigned finite sequence, Proceedings of 2001 IEEE International Symposium on Intelligent Control, Mexico City, Mexico,2001.
    [107]Giua A, Seatze C,Van Der Mee C. Optimal control of autonomous linear systems, Pro-ceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, 2001.
    [108]Xu X, Antsaklis P J. Optimal control of switched autonomous systems, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA,2002.
    [109]Egerstedt M, Wardi Y, Delmotte F. Optimal control of switching times in switched dy-namical systems, Proc. of the 42nd IEEE CDC, Maui, Hawaii USA,2003.
    [110]Xu X, Antsaklis P J. Optimal control of switched systems via nonlinear optimization based on direct differentiations of value functions. International Journal of Control,2002, 75:1406-1426.
    [111]Xu X, Antsaklis P J. Optimal control of switched systems based on parametrization of the switching instants. IEEE Transactions on Automatic Control,2004,49:2-16.
    [112]Shaikh M S, Caines P E. On the optimal control of hybrid systems:optimization of trajectories, switching times, and location schedules. Hybrid Systems:Computation and Control, Proceedings of the 6th International HSCC Workshop,2003:466-481.
    [113]Shaikh M S. Optimal Control of Hybrid Systems:Theory and Algorithms. PhD thesis, McGill University Montreal, Canada,2004.
    [114]Alamir M, Attia A. Discussion on the paper "An optimal control approach for hybrid systems". European Journal of Control,2003,9(5):459-460
    [115]Alamir M, Attia A. On solving optimal control problems for switched hybrid nonlinear systems by strong variations algorithms. Proceedings of the 6th IFAC Symposium on Nonlinear Control Systems, Stuttgart, Germany,2004,1-7.
    [116]Rantzer A, Johansson M. Piecewise linear quadratic optimal control. IEEE Transactions on Automatic Control,2000,45(4):629-637.
    [117]Bemporad A, Morari M. Control of systems integrating logic, dynamics, and constraints. Automatica,1999,35(3):407-427.
    [118]Morari M, Baotic M, Borrelli F. Hybrid systems modeling and control. European Journal of Control,2003,9(2-3):177-189.
    [119]Bemporad A, Maurice W P, Heemels H, De Schutter B. On Hybrid systems and closed-Loop MPC systems. IEEE Transactions on Automatic Control,2002,47(5):863-869.
    [120]费树岷,王泽宁,冯纯伯.一类开关系统的开关控制策略优化设计.自动化学报,2001,27(2):247-251.
    [121]Lincoln B, Bernhardsson B. LQR optimization of linear system switching. IEEE Transac-tions on Automatic Control,2002,47(10):1701-1705.
    [122]Hedlund S, Rantzer A. Convex dynamic programming for hybrid systems. IEEE Trans-actions on Automatic Control,2002,47(9):1536-1540.
    [123]修志龙.1,3-丙二醇的微生物法生产分析.现代化工,1999,19(3):33-35.
    [124]Freund A. Uber die Bildung and Darstellung von Trimethylenalkohol aus Glycerin. Monat-shefte fur Chemie,1881,2:636-641.
    [125]Biebl H, Menzel K, Zeng A P, Deckwer W D. Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology,1999,52(3):289-297.
    [126]Deckwer W D. Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiology Reviews,1995,16:143-149.
    [127]Zeng A P, Rose A, Biebl H, Tag C, Guenzel B, Deckwer W D. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnology and Bioengeering,1994,44(8):902-911.
    [128]Zeng A P. A kinetic model for product fermation of microbial and mamalian cells. Biotech-nology and Bioengeering,1995,46(4):314-324.
    [129]修志龙.微生物发酵法生产1,3-丙二醇的研究进展.微生物通报,2000,27(4):300-302.
    [130]修志龙,曾安平,安利佳.甘油生物转化为1,3-丙二醇过程的动力学数学模拟和多稳态研究.大连理工大学学报,2000,40(4):428-433.
    [131]Zeng A P, Deckwer W D. A kinetic model for substrate and energy consumption of mi-crobia growth under substrate-sufficient conditions. Biotechnology Progress,1995,11(1): 71-79.
    [132]高彩霞,冯恩民,王宗涛,修志龙.微生物间歇发酵生产1,3-丙二醇过程辨识与优化.大连理工大学学报,2006,46(5):771-774.
    [133]王宝光,刘铭,杜晨宇等.微生物法生产1,3-丙二醇过程的代谢工程研究进展.过程工程学报,2006,6(1):144-148.
    [134]Reimann A, Biebl H. Production of 1,3-propanediol by ClostrldzUm butyrzcum DSM5431 and product tolerant mutants in fedbatch culture. Biotechnology Letters,1996,18:823-832.
    [135]Colin T, Bories A, Moulin G. Inhibition of Clostridium butyricun by 1,3-propanediol and diols during glycerol fermentation. Microbiol Biotechnology,2000,54:201-205.
    [136]Cheng K K, Liu H J, Liu D H. Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnology Letters,2005,27:19-22.
    [137]张延平,刘铭,杜晨宇等.代谢副产物对Klebsiella pneumoniae生长及合成1,3-丙二醇的影响.过程工程学报,2006,6(5):804-808.
    [138]Chen X, Zhang D J, Qi W T et al. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions, Microbiol Biotechnology,2003, 63:143-146.
    [139]Zeng A P, Deckwer W D. A kinetic model for substrate and energy consumption of mi-crobial growth under substrate-sufficient conditions. Biotechnology Progress,1995,11(1): 71-79.
    [140]修志龙,曾安平,安利佳.甘油生物连续歧化过程的过渡行为及其数学模拟.高校化学工程学报,2000,14(1):53-58.
    [141]Sun Y Q, Qi W T, Teng H et al. Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae:Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochemical Engineering Journal, 2008,38(1):22-32.
    [142]孙丽华,郭庆广,修志龙.一类具有时滞的生化模型的Hopf分叉研究.生物数学学报,2002,17(3):286-292.
    [143]马永峰.微生物连续培养模型中非线性行为的分析与模拟(博士学位论文).大连:大连理工大学,2004.
    [144]Gao C X, Feng E M, Wang Z T, et al, Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls. Journal of Industrial and Man-agement Optiminization.2005,1(3):377-388.
    [145]Gao C X, Li K Z, Feng E M. Nonlinear impulsive system of fed-batch culture in fermen-tative production and its properties. Chaos, Solitons & Fractals.2006,28(1):271-277.
    [146]Gao C X, Feng E M, Xiu Z L. Identification and optimization of the nonlinear impul-sive system in microbial fed-batch fermentation. Dynamics of Continuous Discrete and Impulsive systems-series A-Mathmatical Analysis,2006,13:625-632.
    [147]Gao C X, Lang Y H et al. Nonlinear impulsive system of microbial production in fed-batch culture and its optimal control. Journal of Appllied Mathematics and Computing,2005, 19(1-2):203-214.
    [148]Wang G, Feng E M, Xiu Z L. Vector measure for explicit nonlinear impulsive system of glycerol bioconversion in fed-batch cultures and its parameter identification. Applied Mathematics and Computation,2007,188(2):1151-1160.
    [149]Wang G, Feng E M, Xiu Z L. Nonlinear hybrid kinetic system of microbial bioconversion in fed-batch culture. Nonlinear Analysis:Hybrid Systems,2008,2(1):65-73.
    [150]Wang G, Feng E M, Xiu Z L. Vector measure as controls for explicit nonlinear impulsive system of fed-batch culture. Journal of Mathematical Analysis and Applications,2009, 351(1):120-127.
    [151]Wang G, Feng E M, Xiu Z L. Modelling and parameter identification of microbial bicon-version in fed-batch cultures. Journal of Process Control,2008,18(5):458-464.
    [152]李晓红,冯恩民,修志龙.微生物连续发酵稳定模型的算法与收敛性.清华大学学报(自然科学版).2007,47(s2):190-1909.
    [153]李晓红,冯恩民,修志龙.微生物连续培养过程平衡点的稳定分析.高校应用数学学报B辑.2005,20(4):37-383.
    [154]Gong Z H, Liu C Y, Feng E M, Zhang Q R. Computational method for inferring objective function of glycerol metabolism in Klebsiella pneumoniae. Computational Biology and Chemistry,2009,33(1):1-6.
    [155]Wang L, Ye J X, Feng E M, Xiu Z L. An improved model for multistage simulation of glycerol fermentation in batch culture and its parameter identification. Nonlinear Analysis: Hybrid Systems,2009,3:455-462.
    [156]马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2005.
    [157]Arrowsmith D K, Place C M. Ordinary Differential Equations. Chapman and Hall, Lon-don,1982.
    [158]Xu X, Antsaklis P J. Results and perspectives on computational methods for optimal control of switched systems, in:Hybrid Systems:Computation and Control 2003, Lecture Notes in Computer Science, vol.2623, Springer,2003,540-555.
    [159]Cesari L. Optimization Theory and Applications. Springer-Verla, New York,1983.
    [160]Bryson A, Ho Y C. Applied Optimal Control. Halsted Press, New York,1975.
    [161]Caccetta L, Loosen I, Rehbock V. Computational aspects of the optimal transit path problem. Journal of Industrial and Management Optimization,2008,4:95-105.
    [162]Luus R. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization,2008,4:1-15.
    [163]Pearce C E M,Piantadosi J,Howlett P G. On an optimal control policy for stormwater management in two connected dams. Journal of Industrial and Management Optimization, 2007,3:313-320.
    [164]Polak E. An historical survey of computational methods in optimal control. SIAM Review, 1973,15:553-584.
    [165]Rehbock V, Livk I. Optimal control of a batch crystallization process. Journal of Industrial and Management Optimization,2007,3:585-596.
    [166]Teo K L, Jennings L S. Optimal control with a cost on changing control. Journal of Optimization Theory and Applications,1991,68:335-357.
    [167]Wu C Z, Teo K L. Global impulsive optimal control computation. Journal of Industrial and Management Optimization,2006,2:435-450.
    [168]Luus R. Piecewise linear continuous optimal control by iterative dynamic programing. Industrial & Engineering Chemistry Research,1993,32:856-865.
    [169]Oberle H J, Sothmann B. Numerical computation of optimal feed rates for a fed-batch fermentation model. Journal of Optimization Theory and Applications,1999,100:1-13.
    [170]Sarkar D, Modak J M. Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Computers & Chemical Engineering,2004,28:789-798.
    [171]Kennedy J, Eberhart R C. Particle swarm optimization. in Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia,1995,1942-1948.
    [172]Hayashi Y, Matsuki J, Kanai G. Application of improved PSO to power flow control by TCSC for maximum acceptance of requested wheeled power. Translated from Denki Gakkai Ronbunshi,2003,10:1133-1141.
    [173]Li H Q, Li L, Kim T H, Xie S L. An improved PSO-based of harmony search for com-plicated optimization problems. International Journal of Hybrid Information Technology, 2008,1:57-64.
    [174]Yu J B, Xi L F, Wang S J. An improved particle swarm optimization for evolving feed-forward artificial neural networks. Neural Processing Letters,2007,26:217-231.
    [175]Spinelli W,Bolzern P, Colaneri P. A note on optimal control of autonomous switched systems on a finite time interval. Proceedings of the 2006 American Control Conference, Minneapolis, Mna USA,2006.
    [176]Zhang L,Chen Y, Cui P. Stabilization for a class of second-order switched systems. Non-linear Analysis,2005,62:1527-1535.
    [177]Gill P E, Murray W. Newton-type methods for unconstrained and linearly constrained optimization, Mathematical Programming,1974,7:311-350.
    [178]McNeil B, Harvey L M. Fermentation, A Practical Approach. IRL Press, Tokyo,1990.
    [179]Meszaros A, Bales V. A contribution to optimal control of fed-batch biochemical processes. Bioprocess and Biosystems Engineering,1992,7:363-367.
    [180]Shin H S, Lim H C. Maximization of metabolite in fed-batch cultures sufficient conditions for singular arc and optimal feed rate profiles. Biochemical Engineering Journal,2007,37: 62-74.
    [181]Korytowski A, Szymkat M, Maurer H, Vossen G. Optimal control of a fedbatch fermen-tation process:numerical methods, sufficient conditions and sensitivity analysis. Pro-ceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico,2008, 1551-1556.
    [182]Ashoori A, Moshiri B, Khaki-Sedigh A, Bakhtiari M R. Optimal control of a nonlinear fed-batch fermentation process using model predictive approach. Journal of Process Control, 2009,19:1162-1173.
    [183]Seidman T I. Switching systems:thermostats and periodicity. Math. Research Report 83-07, UMBC, Baltimore,1983.
    [184]Wang L Y, Beydoun A, Cook J, Sun J, Kolmanovsky I. Optimal hybrid control with appli-cations to automotive powertrain systems. In:Lecture Notes in Control and Information Sciences,222, Springer,190-200,1997.
    [185]Lenhart S M, Seidman T I, Yong J M. Optimal control of a bioreactor with modal switch-ing. Mathematical Models and Methods in Applied Sciences,2001,6:933-949.
    [186]Branicky M S, Borkar V S, Mitter S K. A unified framework for hybrid control:model and optimal control theory. IEEE Transactions on Automatic Control,1998,43(1):31-45.
    [187]Luus R, Chen Y Q. Optimal switching control via direct search optimization. Asian Jour-nal of Control,2004,6:302-306.
    [188]Jennings L S, Teo K L, Goh C J. MISER3.3, Optimal control software:theory and user manual, Department of Mathematics, The University of Western Australia, Australia, 2000.
    [189]Teo K L, Jennings L S, Lee H W J, Rehbock V. The control parameterizaton enhancing transform for constrained optimal control problems. Journal of the Australian Mathemat-ical Society-Series B,1999,40:314-335.
    [190]Li R, Teo K L, Wong K H, Duan G R. Control paramterization enhancing transform for optimal control of switched systems. Mathematical and Computer Modelling,2006, 43:1393-1403.
    [191]Li R, Feng Z G, Teo K L, Duan G R. Optimal piecewise state feedback control for impulsive switched systems. Mathematical and Computer Modelling,2008,48:468-479.
    [192]Loxton R C, Teo K L, Rehbock V. Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica,2008,44:2923-2929.
    [193]Farhadinia B, Teo K L, Loxton R C. A computational method for a class of non-standard time optimal control problems involving multiple time horizons. Mathematical and Com-puter Modelling,2009,49:1682-1691.
    [194]Loxton R C, Teo K L, Rehbock V, Ling W K. Optimal switching instants for a switched capacitor DC/DC power converter. Automatica,2009,45:973-980.
    [195]Loxton R C, Teo K L, Rehbock V, Yiu K F C. Optimal control problems with a continous inequality constraint on the state and the control. Automatica,2009,45(10):2250-2257.
    [196]Aubin J P, Cellina A. Differential Inclusions. Springer-Verlag, Berlin Heidelberg,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700