混杂系统建模与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业控制对象的规模日益复杂以及对控制精度的要求日益提高,工业控制过程中的连续过程动态系统(CVDS)和离散事件动态系统(DEDS)的耦合关系越来越明显,着眼于连续和离散过程之间的耦合作用及其所表现出来的特殊动力学特性,混杂系统(Hybrid System)理论的研究引起了国际控制界的广泛关注。
     所谓混杂系统,是指系统内存在相互作用的连续时间动态子系统和离散事件动态子系统,其中离散部分在控制中常以调度程序或监控管理者的形式出现,譬如ON/OFF切换开关、阀门、传动装置、限幅器或者选择器,而连续部分则随着时间的发展不断演化,二者相互作用,使系统的运动轨迹在整体上呈现出离散位置的迁移,局部上呈现连续状态的渐进演化。混杂系统狭义上是指一个既包含离散变量,又包含连续变量的系统;广义上是指一个包括相互作用的连续过程和离散过程的系统。
     本文围绕混杂系统的建模和控制器优化设计展开研究,从混杂系统本身的特点出发,以混杂系统分类模型的建立和相应模型控制方法的实现为研究目标,综合运用自动机、Petri网、并行投影结构(Projection Construct)等离散事件系统分析方法以及广义预测控制算法(GPC)、多模型控制、模糊监督等连续时间系统分析方法,从系统模型的建立、控制器的优化设计和简化方面进行了深入探讨和分析,在混杂系统的离散建模方面、混合逻辑动态(MLD)模型的控制、切换模型混杂系统控制、混杂系统控制方法的推广方面提出了一些新的思路和方法。
     1.针对一类从整体上更能体现出离散事件系统特点的混杂系统,以混杂系统自动机建模理论为基础,结合一种特殊的并行投影结构,提出了针对这类混杂系统的推广自动机模型。该模型着眼于连续状态空间的划分。并行投影结构有效的处理了离散事件动态子系统和连续变量动态子系统之间的接口问题。该方法获得的混杂系统模型用图形的方式表示,简单直观,容易理解。并借助于Matlab环境中的Stateflow,给出了该类模型的仿真方法。
     2.针对混合逻辑动态模型的特点,将经典广义预测控制算法的被控对象进行了扩展,引入了代表离散事件行为的开关量,用混合整数二次规划算法对该控制方法进行求解,并且在此基础上,对于带约束条件的混杂系统的控制问题也进行了研究。
     3.根据混杂系统的切换系统模型,提出了应用多模型控制的方法实现混杂系统控制的思想,借助于基于隶属度加权的模糊监督控制思想,设计了适用于混杂系统的监督控制器,在该监督器的作用下,实现了控制系统中局部控制器之间的切换,并且使扰动达到最小,之后采用Lyapunov稳定性定理及推论,求解矩阵不等式组,对其全局稳定性提出了判定方法。
     4.将前面提到的MLD模型和GPC相结合的控制方法,应用到多模型系统的控制当中,将多模型控制系统等效为混杂系统的切换模型,根据工况点引入相应的逻辑量,用带有线性不等式约束的统一表达式代替多模型系统中的典型工况点模型。这样做的最大好处是降低了模型切换时的扰动,减少了控制器的数量。通过对典型多模型对象的仿真验证了该方法控制效果很好。
     5.结合风力发电系统中风力机的特点,针对其混杂特性,将前面提到的控制方法应用到风力机的全工况控制当中。
While the industrial objects become more complex and the precision control becomes higher and higher, the coupled relation between the continuous variables dynamic systems (CVDS) and the discrete event dynamic systems(DEDS) which are in the process of industrial control is increasing obviously. Focusing on the coupled relation and the exceptive dynamics, the research of hybrid system attracted the attention of the international control sector.
     The hybrid system means that the system contains both continuous subsystem and discrete subsystem. The discrete part often acts as the scheduler or monitor managers in the control system, such as the ON/OFF switches, valves, gearings, limiters or selectors, and the continuous part is evolved with the elapse of time. The interaction of the two parts makes the trajectory of the system presents a transition of discrete position on the whole and a gradual evolution of continuous states in local. The hybrid system, narrowly, refers to a system which contains both discrete variables and continuous variables; while broadly it means a system which contains two interactional processes, continuous process and discrete process.
     Around of the modeling of the hybrid system and the design of optimization controller, from the characteristics of the hybrid system, some new methods from discrete modeling and continuous control on the traditional system are shown in this article. Many methods for discrete event system like as Automata, Petri net, Projection Construct and many methods for continuous time system like as Generalized Predictive Control algorithm (GPC), Multi-Model Control and Fuzzy Supervisory are discussed and analyzed deeply from the construct of a system model and designing of optimal controller.
     1. Aimed at the hybrid system which can incarnate the characters of the discrete event system and based on the automata modeling theory, an extended automata model for the hybrid system is developed. The projection construct is used to solve the interface problem between the discrete event dynamic subsystems and the continuous variable dynamic subsystems. The model obtained by this way is described by graphs, so it is easy to understand. And the modeling process is illustrated by two examples and the stateflow toolbox in matlab is introduced for simulation. The simulation results show the extended automata model is good at solving the synchronous problem between the two subsystems of hybrid systems.
     2. Aiming at the object’s properties of the hybrid system, digital variables which represents the discrete event is imported to enlarge the classical GPC’s object. Using mixed integer quadratic programming algorithm to solve this control system, and on this basis, the solution of control the hybrid systems which contain constrained conditions is studied.
     3. Based on switching system model of hybrid system, the idea of hybrid system control by using Multi-Model Control is developed. In virtue of the design rule of the fuzzy monitor in the fuzzy supervisory control, a monitor which can be used in the hybrid system control has been designed, and on the function of the monitor, the transitions of local controllers and the minimum disturbance have been achieved. And then using the Lyapunov stability theory and its reasoning to solve the matrix inequalities and developed the decision method of its global stability.
     4. The control method which combined with MLD model and GPC is applied in the multi-model control systems. In this theoretic, multi-model control systems are equivalent to switch model in the hybrid system, importing corresponding logic variable, using a uniform expression with a linear inequality which contains constraints to replace models in representative conditions. In this way, we can get the biggest advantage that the disturbance which is produced in switching models is debased and the amount of controllers is reduced too. It shows that the effect of this control method is very good through the simulation.
     5. Combined with the characteristic of wind turbine, aiming at its characteristic of hybrid, the control methods are shown above are used in the control of the wind turbine in all condition.
引文
[1] M. Athams. Command and Control(C2) Theory: A Challenge to Control Science[J]. IEEE Trans on Automatic Control, 1987, 32(4): 286-293.
    [2] 吴锋,刘文煌,郑应平. 混杂系统方法及其在过程控制中的应用[J]. 清华大学学报(自然科学版),1997,37(11):77-81.
    [3] M. L. Borgne,A. Benveniste,P. L. Guernic. Polynomial Ideal Theory Methods in Discrete Event and Hybrid Dynamical Systems[C]. Proc. of the 27th CDC, 1988, 2659-2700.
    [4] A. Benveniste, P. L. Guernic. Hybrid Dynamical Systems Theory and Nonliear Dynamical Systems over Finite Fields[C]. Proc. of the 27th CDC, 1988, 209-213.
    [5] P. Peleties, R. Decarlo. Modeling of Interacting Contiunous Time and Discrete Event Systems: An Example[C]. Proc. of the 26th Allerton Conf.Communication, Control and Computing, 1988, 1150-1159.
    [6] 李晓山,周巢尘. 时段演算综述[J]. 计算机学报,1994,17(11): 842-851.
    [7] H. S. Witsenhausen. A class of hybrid-state conitnuous-time dynamic systems [J]. IEEE Trans. On Automatic Control, 1966, 11(6): 665-683.
    [8] F. E. Cellier. Combined continuous/discrete system simulation by use of digital computer: Techniques and tools[D]. Zurich, Switzerland, Swiss Federal Institute of Technology, 1979.
    [9] Ilya Kolmanovsky, Elmer G. Gilbert. Multimode regulators for systems with state & control constraints and disturbance inputs[C]. Control Using Logic Based Switching, Lecture Notes in Control and Information Sciences. Berlin: Springer-Verlag, 1996, 105-117.
    [10] Albert Bemporad, A M Morari.Control of systems intergrating logic, Dynamics,and Constraint[J].Automatic,1999,35(3):407-427.
    [11] A. Vander Schaft, H. Schumacher. An Introduction to Hybrid Dynamical Systems[M]. Berlin: Springer-Verlag, 2000.
    [12] R. Alur, T. A. Henzinger, E. D. Sontag. Hybrid Systems Ⅲ : Verification and Control-Lecture Notes in Computer Science[M]. Berlin: Springer-Verlag, 1996.
    [13] M. D. Lemmon, P. J. Antsaklis. Inductively inferring valid logical models of continuous-state dynamical systems[J]. Theoretical Computer Science, 1995, 138(1): 201-210.
    [14] R. Alur, C. Courcoubetis, T. A. Henzinger and P.H.Ho. Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems[C]. Lecture Notes in Computer Science. LNCS 736, Springer-Verlag,1993, 209-229.
    [15] P. J. Antsaklis. Scanning the Issue on hybrid system: Theory and Applicati- ons[J]. Proceeding of the IEEE 80(7): 879-886.
    [16] M. Lemmon and K. X. He. Modeling hybrid systems using programming petri nets[J]. European J. Automation, 1999, 32(9):1187-1208.
    [17] G. Goos, J. Hartmanis, Van Leeuwen J. Hybrid Systems: Computation and Control-Lecture Notes in Computer Science[M]. Berlin: Springer-Verlag,2000.
    [18] 郑刚,谭民,宋永华. 混杂系统的研究进展[J]. 控制与决策,2004,19(1): 7-11.
    [19] 李秀改,岳红,高东杰. 复杂工业过程新型控制方法——混杂系统控制理论的研究[J]. 化工自动化及仪表,2001,28(5):1-8.
    [20] 张佐,谢东,吴秋峰,韩曾晋. 混合型企业生产调度的混合动态特征及描述[C]. 第三届中国 CIMS 学术会议论文集,1994,3:30-38.
    [21] 王岩. 混杂系统建模及其在采矿系统中的应用[J]. 中科院自动化所复杂系统控制开放实验室简报, 1994.
    [22] 赵洪山,米增强,田建设,杨奇逊. 混杂系统理论及其在电力系统的应用前景[J].华北电力大学学报.2002,29(2):6-12.
    [23] 莫以为,萧德云. 混合动态系统及其应用综述[J]. 控制理论与应用,2002, 19(1): 1-8.
    [24] P. J. Antsaklis,J. A. Stiver and M. D. Lemmon.Hybrid system modeling and autonomous control systems[M]. In Grossman R L, et al(Eds). Hybrid Systems, New York, USA: Springer-Verlag, 1993, 366-392.
    [25] M. D. Lemmon and P. J. Antsaklis.Event identification and intelligent hybrid control[M]. In Grossman R L, et al(Eds). Hybrid Systems, New York, USA: Springer-Verlag, 1993, 268-296.
    [26] J. A. Stiver and P. J. Antsaklis.Modeling and analysis of hybrid control systems[C]. In Proc. of 31st IEEE Conference on Decision and Control, Tucson, Arizona,USA,1992,3748-3751.
    [27] R. Alur, C. Courcoubetis, T. A. Henzinger and P.H.Ho. Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems[C]. Lecture Notes in Computer Science. LNCS 736, Springer-Verlag, 1993, 209-229.
    [28] A. D. Febbraro, A. Giua, G. Menga. Special issue on hybrid Petri nets[J]. Discrete Event Dynamical Systems: Theory and Applications,2001,11(1/2):5-8.
    [29] Bail J. Le, H. Alla, R. David. Hybrid Petri nets[C]. Proc 1st Int European Control Conf. Grenoble,1991. 1472-1477.
    [30] David L.Pepyne. Charistos Cassanndas Modeling Analysis and Optimal Controlof a Class of Hybrid Systems[J]. Discrete Event Dynamic System: Theory and Application. 1998 ,8 : 175-201.
    [31] M. S. Branicky. General hybrid dynamical systems: modeling, analysis and control[M]. In Alur R, et al(Eds). Hybrid Systems, Ver and Control. New York, USA: Springer-Verlag, 1996, 186-200.
    [32] Bengt Lennartson, Michael Tittus, Bo Egardt, Stefan Pettersson. Hybrid Systems in Process Control[J]. IEEE Control Systems Magazine, 1996, 16(5): 45-56.
    [33] P. Peleties and R. DeCarlo. Modeling of interacting continuous-time and discrete systems[C]. In Proc. Of the 28th IEEE Conference on Decision and Control. Tampa, Florida, USA, 1989, 1308-1313.
    [34] M. S. Branicky, V. Borkar, S. Mitter. A unified framework for hybrid control: Model and optimal control theory[J]. IEEE Trans on Automatic Control, 1998, 43(1): 31-45.
    [35] P. J. Antsaklis, A. Nerode. Special issue on hybrid contrrol system[J]. IEEE Trans on Automatic Control, 1998, 43(4): 457-579.
    [36] L. Hou, A. N.Michel, H.Ye. Stability analysis of switched systems[C]. Proc.35th Conf on Decision and Control, Kobe, Japan, 1996, 1208-1214.
    [37] M. Johansson, A. Rantzer. Computation of piecewise quadratic Lyapunov functions for hybrid systems[J]. IEEE Trans on Automatic Control, 1998, 43(4): 555-559.
    [38] A. Deshpande, P. Varaiya. Viable control of hybrid systems[C]. Proc 35th CDC, Kobe, 1996. 1196-1201.
    [39] R. Alur, C. Courcoubetis, N. Halbwachs, et al. The algorithm analysis of hybrid systems[J]. Theoretical Computer Science, 1995, 138:3-34.
    [40] J. A. Stiver, P. J. Antsaklis, M. D. Lemmon. A logical DES approach to the design of hybrid control systems[J]. Mathl Comput Modelling, 1996,23 (11-12):55-76.
    [41] A. Nerode, W. Kohn. Multiple agent hybrid control architecture[C]. Grossman R L. Hybrid Systems. LNCS, 1993: 736-742.
    [42] 王泽宁,费树岷,冯纯伯. 一类开关混杂系统的优化控制设计[J]. 东南大学学报(自然科学版), 2002,32(3):495-499.
    [43] 尹增山,李平,高春华. 切换系统优化控制方法研究[J]. 浙江大学学报(工学版),2002,36(2):114-118.
    [44] 翟海峰,苏宏业,董利达,王肖,褚健. 一类分段线性混杂系统的最优控制策略研究[J]. 控制与决策,2002,17(6):863-866,875.
    [45] 宗广灯,武玉强,杨洪勇. 一类离散时间切换混杂系统鲁棒控制[J]. 控制理论与应用,2005,22(5):495-499.
    [46] 张霄力,刘玉忠,赵军. 一类切换系统的鲁棒控制[J]. 东北大学学报(自然科学版),2000,21(5):498-500.
    [47] 王宇红,黄德先,高东杰,金以慧. 预测控制可行性与约束优先级的混杂处理[J]. 控制与决策,2004,19(8):847-851.
    [48] 赵晓华,陈阳舟. 基于混杂系统理论的单交叉口信号灯控制[J]. 北京工业大学学报,2004,30(4):412-416.
    [49] 梁艳,陈文楷,焦洪峰,祁鸿科. 供暖系统的混杂自动机建模与模糊控制[J].电工技术杂志,2004,4:74-77.
    [50] P. J. Ramadge, W. M. Wonham. The control of discrete event systems[C]. Proc of the IEEE, Sperid Issne on Dgnamics of Discrete Event Systems, 1989,17(1): 81-98.
    [51] M. Tittus, B. Egardt. Control design for integrator hybrid system[J]. IEEE Trans on Automatic Control, 1998, 43(4): 491-500.
    [52] 张成现. 一类混杂系统 Petri 网控制器的设计[J]. 西北纺织工学院学报, 1997,11(3):248-251.
    [53] 曹锐,李宏光,李昊阳. 一类混杂系统 Petri 网模型的优化算法的研究[J]. 微计算机信息,2005,21(1):27-28.
    [54] 张佐,谢东,吴秋峰,韩曾晋. 混合型企业生产调度的混合动态特征及描述[C]. 第三届中国 CIMS 学术会议论文集,1994,3:30-38.
    [55] 王岩. 混杂系统建模及其在采矿系统中的应用[J]. 中科院自动化所复杂系统控制开放实验室简报,1994.
    [56] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, C. Jard. Fault detection and diagnosis in distributed systems: an approach by partially stochastic Petri Nets. [J]. Discrete Event Dynamical Systems: Theory and Applications, 1998, 8(2): 203-231.
    [57] L. Tromp, A. Benveniste and M. Basseville. Fault detection and isolation in hybrid systems: a Petri-net approach[C]. Proc.14th IFAC World Congress, Beijing, 1999: 79-84.
    [58] P. J. Mosterman. Hybrid dynamic systems: a hybrid bond graph modeling paradigm and its application in diagnosis[D]. Nashville, Tennessee, USA: Vanderbilt University, 1999.
    [59] A. Bemporad, D. Mignone and M. Morari. Moving horizon estimation for hybrid systems and fault detection[C]. In Proceedings of ACC’99, San Diego, CA, USA, 1999, 2471-2475.
    [60] 仝庆贻,颜钢锋. 混杂系统及其在电力系统中的应用[J]. 电力系统及其自动化学报,2003,15(2):14-18.
    [61] Duan Zhenhua. Modelling and Analysis of Hybrid Systems[M]. Beijing: Science Press, 2004.
    [62] 秦世引,宋永华. 混杂控制系统的结构体系分析[J]. 电力系统自动化, 2000,24(11):5-9.
    [63] 翟长连,何苇,吴智铭. 一类有约束混合系统的模型及设计[J]. 控制与决策,2001,16(2):222-225.
    [64] 舒迪前.预测控制系统及其应用[M].北京:机械工业出版社,1996:176-241.
    [65] 卢勇,徐向东. 基于神经网络模型的锅炉广义预测控制[J]. 热能动力工程,2001,16(1):55-58,69.
    [66] 臧传德,赵国良. 基于神经模糊模型的船舶航行广义预测控制[J]. 自动化技术与应用,2003,22(1):14-15,22.
    [67] 杨春节. 造纸机广义预测控制器设计与实施[J]. 中国造纸学报,2001(16): 115-118.
    [68] D. W. Clarke, C. Mohtadi, P. S. Tuffs. Generalized Predictive Control, Part 1: the basic algorithm, Part 2: extensions and interpretations[J]. Automatica, 1987, 23(2):137-160.
    [69] 胡耀华,贾欣乐.广义预测控制综述[J].信息与控制,2000,29(3):248-256.
    [70] A. L. Elshafei, G. Dumont, A. Elnaggar. Stability and Convergence Analysis of an Adaptive GPC Based on State-space Modeling[J]. Int.J.Control,1995, 61(1): 193- 210.
    [71] 席 裕 庚 , 厉 隽 怿 . 广 义 预 测 控 制 系 统 的 闭 环 分 析 [J].控 制 理 论 与 应用,1991,8(4):419-424.
    [72] 徐立鸿,冯纯伯. 论广义预测控制[J]. 控制与决策,1992,7(4):241-246.
    [73] 席裕庚.预测控制[M].北京:国防出版社,1993.
    [74] 赵洪山,米增强,牛东晓,杨奇逊. 利用混杂系统理论进行电力系统建模的研究[J].中国电机工程学报.2003,23(1):20-25.
    [75] 李秀改,高东杰,王宇红. 基于混合逻辑动态模型的混杂系统预测控制[J]. 控制与决策,2002,17(3):315-319.
    [76] 张聚,李平,王万良.基于 Branch&Bound 方法 MIQP 问题的求解及应用[J].系统仿真学报,2003,15(4):488-491.
    [77] 王伟,李晓理.多模型自适应控制[M]. 北京:科学出版社,2001:101- 103.
    [78] 陈彦桥,刘吉臻,谭文,曾德良.模糊多模型控制及其对 500MW 单元机组协调控制系统的仿真研究[J]. 中国电机工程学报,2003,23(10):199-203.
    [79] Kazuo Tanaka, Michio Sugeno. Stability analysis and design of fuzzy control systems[J]. Fuzzy Sets and Systems, 1992,45: 135-156.
    [80] D. G. Lainiotis. Optimal adaptive estimation structure and parameter adaptation [J]. IEEE Trans.Automat.Contr.,1971,16(2):160-170.
    [81] D. G. Lainiotis, J. G. Deshpande and T. N. Upadhyay. Optimal adaptive control: a non-linear seperation theorem[J]. Int.J.Control,1972, 15(5):877-888.
    [82] J. G. Deshpande, T. N. Upadhyay and D. G. Lainiotis. Adaptive control of stochastic systems[J]. Automatica,1973,9(1):107-115.
    [83] D. G. Lainiotis. Partitioning a unifying framework for adaptive system, I: estimation[C]. Proceeding of IEEE, 1976, 64: 1126-1143.
    [84] 王东风,翟永杰.多模型自适应广义预测控制及其在电厂汽温系统中的应用仿真[J].工业仪表与自动化装置,2001,1:34-36,39.
    [85] Y. Miyazawa. Robust flight control system design with multiple model approach[J]. Journal of Gudi. Cont. and Dyn, 1992, 15(3):785-788.
    [86] K. S. Narendra, J. Balakrishnan and M. K. Ciliz. Adaptation and learning using multiple models, switching and tuning[J]. IEEE Control Systems Magazine, 1995, 15(3):37-51.
    [87] C. Yu, R. J. Roy, H. Kaufman and B. W. Bequette. Multiple-model adaptive predictive control of mean arterial pressure and cardiac output[J]. IEEE Trans. Biomed. Eng. 1992,39:765~778.
    [88] J. F. Martin, A. M. Schneider and N. T. Smith. Multiple-model adaptive control of blood pressure using sodium nitroprusside[J]. IEEE Trans. Biomed. Eng. 1987, 34: 603~611.
    [89] M. Pottmann, H. Unbehauen and D. E. Seborg. Application of a general multi-model approach for identification of highly nonliear processes-a case study[J]. Int. J. Control, 1993, 57(1): 97-120.
    [90] K. B. Konstaintinov and T. Yoshida. A knowledge-based pattern recognition approach for real-time diagnosis and control of fermentation processes as variable structure plants[J]. IEEE Trans. on SMC, 24(4): 908-914.
    [91] 胡国龙,孙优贤. 多模型控制方法的研究进展及其应用现状[J].信息与控制,2004,33(1):72-76.
    [92] 王卓,李平,郭烁. 基于多模型的非线性系统广义预测控制[J]. 微计算机信息,2004,20(8):33-34.
    [93] 弓岱伟,孙德敏,郝卫东,胡志宏. 基于多模型切换阶梯式广义预测控制的电 站 锅 炉 主 汽 温 控 制 [J]. 中 国 科 学 技 术 大 学 学 报 ,2007,37(12): 1488-1493.
    [94] 栾秀春,李士勇. 基于局部神经网络模型的过热汽温多模型预测控制的研究[J]. 中国电机过程学报,2004,24(8):190-195.
    [95] 杨锡运,徐大平,柳亦兵,韩晓娟. 过热汽温多模型预测函数控制策略的研究[J]. 动力工程,2005,25(4):537-540.
    [96] 陈晓东,王子才. 锅炉过热器系统的动态仿真模型[J]. 热能动力工程, 2000,15(3):276-277,297.
    [97] 范永胜,徐治皋,陈来九. 基于动态特性机理分析的锅炉过热汽温自适应模糊控制系统研究[J]. 中国电机工程学报,1997,17(1):23-28.
    [98] 韩璞,王东风,王国玉,董泽. 多模型预测函数控制及其应用研究[J]. 控制与决策,2003,18(3):375-377,381.
    [99] 谢莹. 基于 Petri 网和 Stateflow 的柔性制造系统仿真[D]. 西南交通大学研究生学位论文, 2003.
    [100] 张新房,徐大平,吕跃刚,柳亦兵. 风力发电技术的发展及若干问题[J]. 现代电力,2003,20(5):29-34.
    [101] 徐 大 平 , 张 新 房 , 柳 亦 兵 . 风 力 发 电 控 制 问 题 综 述 [J]. 中 国 电力,2005,38(4):70-74.
    [102] 叶杭冶. 风力发电机组的控制技术[M]. 北京:机械工业出版社,2002.
    [103] 黄科元,贺益康,卞松江. 矩阵式变换器交流励磁的变速恒频风力发电系统研究[J]. 中国电机工程学报,2002,22(11):100-105.
    [104] 杨俊华,吴捷. 风力发电系统中控制技术的最新发展[J]. 中国电力,2003, 36(8):65-67.
    [105] 杨俊华,吴捷. 风力发电机组的非线性控制—变结构控制与鲁棒控制[J]. 动力工程,2003,23(6):2803-2809.
    [106] Y. D. Song, B. Dhinakaran. Nonlinear Variable Speed Control of Wind Turbines[C]. IEEE International Conference on Control Applications. 1999, Hawai’I, USA, 814-819.
    [107] Y. D. Song, B. Dhinakaran, X.Bao. Control of Wind Turbines Using Nonlinear Adaptive Field Excitation Algorithms[C]. American Control Conferences, 2000, Chicago, 1551-1555.
    [108] H. D. Battista, R. J. Mantz. Sliding Mode Control of Torque Ripple in Wind Energy Conversion Systems with Slip Power Recovery[C]. Proc. Of the 24th Annual Conf. Of IEEE, IECON’98, 1998(2): 651~656.
    [109] P Ruben, S Daniel. Integer Variable Structure Controllers for Small Wind Energy Systems[C]. Proc. Of the 1999 IEEE Canadian Conf. on Electrial and Computer Engineering, 1999, 1067~1072.
    [110] P. M. M. Bongers, E. Gregor, Van Baars. Load reducation in a wind conversion system using an H∞ controller[C]. Second IEEE Conference on Control Application, 1993, 965-970.
    [111] H. De Battisa, R. J. Mantz, C. F. Christiansen. Dynamical sliding mode power control of wind driven induction generators[J]. IEEE Trans on Energy Conversion, 2000,5(4):451-457.
    [112] D. J. Leith, W. E. Leithead. Performance enhancement of wind turbine power regulation by switched linear control[J]. International Journal of Control,1996, 65(4):555-572.
    [113] Ilya Kraan, M. Peter, M.Bongers. Control of a wind turbine using several linear robust controllers[C]. Proceedings of the 32nd Conference on Decision andControl, Texas, 1993, 1928-1929.
    [114] R. M. Hilloowala, A. M. Sharaf. A Rule-Based Fuzzy Logic Controller for a PWM Inverter in a Stand Alone Wind Energy Conversion Scheme[J]. IEEE Trans Industry Applications, 1996, 32(1):57-65.
    [115] B. Simoes, K. Bose. Fuzzy Logic based intelligent control of a variable speed cage machine wind generation system[J]. IEEE Trans on Power Electronics, 1997, 12(1):234-239.
    [116] Y. F. Tang, L. Y. Xu. Adaptive Fuzzy Control of a Variable Speed Power Generating System with Doubly Excited Reluctance Machine[C]. IEEE 25th Annual Power Electronics Specialists Conference, 1994,1:377 – 384.
    [117] M.Perales, J. Perez, et al. Fuzzy logic control of a variable speed variable pitch wind turbine[J]. The 25th Annual Conference of the IEEE, 1999, 2:614-618.
    [118] 张新房,徐大平. 风力发电机组的变论域自适应模糊控制[J]. 控制工程, 2003,10(4):342-345.
    [119] Zhang X F, XU D P. Adaptive Fuzzy Control for Variable Speed Variable Pitch Wind Turbines[C]. IFAC Symposium on Power Plants & Power Systems Control 2003 Pre-prints, September 15-19, Korea, 545-550.
    [120] M. A. M. Prats, J. M. Carrasco, et al. Improving transition between power optimization and power limitation of variable speed, variable pitch wind turbines using Fuzzy control[C]. 26th Annual Conference of the IEEE, 2000,3: 1497-1502.
    [121] M. A. M. Prats, J. M. Carrasc, et al. A new fuzzy logic controller to improve the captured wind energy in a real 800kW variable speed-variable pitch wind turbine[J]. IEEE 33rd Annual Power Electronics Specialists Conference, 2002, 1:101 – 105.
    [122] 高春华,王慧,李平. 混合系统建模、分析与综合:研究进展与展望[J]. 系统工程理论与实践,2002,11:15-20.
    [123] 马皓,毛兴云,徐德鸿. 基于混杂系统模型的 DC/DC 电力电子电路参数辨识[J].中国电机工程学报,2005,25(10):50-54.
    [124] 薛乐,廖沫,魏晨,陈宗基. 混合系统及其建模[J]. 系统仿真学报,2004, 16(3):375-380.
    [125] 张学军,谢剑英. 混合系统在 Matlab 环境下的建模、仿真和自动验证[J].系统仿真学报,2001,13(2):195-198.
    [126] 冯瑞冬. 混合逻辑动态系统的预测控制器设计[J]. 控制工程,2004,11(4): 371-374.
    [127] 李秀改,高东杰.混杂系统滚动时域状态反馈预测控制研究与实现[J]. 自动化学报,2004,30(4):567-571.
    [128] 吴锋,刘文煌,郑应平. 混杂系统研究综述[J]. 系统工程,1997,15(2):1-8.
    [129] 尹增山,高春华,李平. 混杂系统优化控制的动态规划方法研究[J]. 控制理论与应用,2002,19(1):29-33.
    [130] 彭昭,王文辉,周东华. 混杂系统元件故障的半定性辨识[J]. 清华大学学报(自然科学版),2005,45(1):111-114,118.
    [131] 李秀改,高东杰. 基于 Matlab 与 VC++混编技术的混杂系统预测控制及仿真[J]. 系统仿真学报,2003,15(5):637-639.
    [132] 江金龙,周献中,孙勇成,徐延勇. 基于 UML 和 Petri 网的层次建模分析方法[J]. 系统仿真学报,2006,18(2):290-293,300.
    [133] 赵晓华,陈阳舟. 基于 Matlab 状态流的混杂系统仿真设计[J]. 计算机仿真, 2005,22(7):206-210.
    [134] 吴亚丽,曾建湖,孙国基. 基于广义微分 Petri 网的混合系统仿真方法[J]. 系统仿真学报,2003,15(2):164-166.
    [135] 翟长连,吴智铭. 基于混合随机 Petri 网的一类混合系统的模型及稳定性[J]. 控制理论与应用,2000,17(5):763-766.
    [136] 汤道宇,王少萍. 基于事件调度的随机 Petri 网仿真[J]. 系统仿真学报, 2004,16(3):551-554,559.
    [137] 胡红革,黄大贵,赵强. 基于一阶混和 Petri 网的混合系统结构分析[J]. 电子测量与仪器学报,2004,18(4):6-9.
    [138] 程曙,张浩. 基于混合逻辑动态的制造系统建模方法研究[J]. 计算机工程与应用,2005,32:193-195,209.
    [139] 徐心和,李政国,李彦平. 一类混杂系统的广义 Petri 网模型[J]. 自动化学报,1997,23(3):297-301.
    [140] 夏传良. 一种 Petri 网合成方法及其在系统建模中的应用[J]. 系统仿真学报,2006,18(2):271-277.
    [141] 马国进,齐冬莲. 混合系统 CMAC 直接逆模型控制[J]. 电力系统及其自动化学报,2004,16(3):69-71,82.
    [142] 张伟,孙优贤. 混合系统的稳定性分析[J]. 自动化学报,2002,28(3): 418-422.
    [143] 萧德云,莫以为. 基于混合系统状态估计的故障诊断[J]. 自动化学报, 2004,30(6):980-985.
    [144] 莫以为,萧德云. 基于混合信号的状态估计方法[J]. 控制理论与应用, 2004,21(3):327-334.
    [145] 董苗波,吴铁军. 学习自动机在混杂系统切换控制上的初步应用[J].控制理论与应用,2003,20(1):153-156.
    [146] 张新房,徐大平,柳亦兵,杨锡运. 大型变速风力发电机组的风速软测量[J].太阳能学报,2006,27(4):321-325.
    [147] 李晶,宋家骅,王伟胜. 大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105.
    [148] 李东东,陈陈. 风力发电机组动态模型研究[J].中国电机工程学报, 2005,25(3):115-119.
    [149] 董萍,吴捷,杨金明,陈渊睿. 风力发电机组建模研究现状[J].太阳能学报, 2004,25(5):612-619.
    [150] 杨金明,吴捷,杨俊华. 基于自抗扰控制器的风力发电系统的最大风能捕获控制[J].太阳能学报,2004,25(4):525-529.
    [151] 钱坤,谢寿生,高梅艳. 自适应控制在变速风力发电系统中的应用[J].控制工程,2004,11(1):76-78.
    [152] 张悦,王东风,韩璞,徐大平. 一类混杂系统的推广自动机模型及其仿真[J]. 系统仿真学报,2007,19(15):3546-3549.
    [153] 徐大平,张悦,王东风,韩璞. 基于模糊监督器的混杂系统控制[J]. 仪器仪表学报增刊,2006,27(6):1899-1900.
    [154] Pu Han, Yue Zhang, Dong Feng Wang, Da Ping Xu. Generalized Predictive Control for Constraint Hybrid System[C]. 2007 IEEE International Conference on Control and Automation. Guangzhou, CHINA, May 30 to June 1, 2007, 2495-2498.
    [155] Lijing Zhang,Yue Zhang,Dongfeng Wang,Daping Xu. Multiple Models Generalized Predictive Control for Superheated Steam Temperature Based on MLD Model[C]. 2007 IEEE International Conference on Automation and Logistics. Jinan, Shangdong, China, August 18-21, 2007, 2740-2743.
    [156] 张悦,王东风,徐大平. 基于混合逻辑动态模型的变速风力机全工况运行的控制研究[J]. 华北电力大学学报,2008,35(1): 9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700