肺炎支原体P1C蛋白免疫学活性及plcDNA融合疫苗的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺炎支原体(Mycoplasma pneumoniae, Mp)感染不仅可引起支原体肺炎、气管炎、支气管炎、哮喘等呼吸道疾病,还可导致脑膜脑炎、心肌炎、肾炎、动脉粥样硬化、冠心病等肺外感染和并发症。Mp感染多见于学龄儿童及青少年,是儿童社区获得性肺炎最主要的病原体,其发病率逐年上升,占10%-30%,流行期间为30%~50%,且可引起地区性和世界性流行。虽然大环内酯类等抗生素可控制Mp感染,但耐药菌株的不断增多给临床治疗带来了困难。因此,利用Mp免疫优势抗原基因研制疫苗,是预防和控制Mp感染的关键。
     P1粘附素是Mp最主要的粘附蛋白和免疫优势抗原,其中和抗体能阻止80%以上的Mp粘附到宿主细胞。由此,P1蛋白是最具潜力的Mp候选疫苗。但由于p1基因中含有RepMP4和RepMP2/3两个高度变异的重复序列,且基因中含有21个"UGA"密码子,克隆和表达p1全基因非常困难。本文分析了p1基因的变异情况,选取了P1蛋白第1125-1395位氨基酸免疫优势表位区(P1C蛋白),研究其生物学活性和其所构建的核酸疫苗的免疫活性及白细胞介素2(interleukin2, IL-2)和大肠杆菌不耐热肠毒素B亚单位(B subunit of Escherichia coli heat-labile enterotoxin, LTB)对p1c核酸疫苗的免疫佐剂效应。
     目的:
     检测儿童呼吸道感染患者中分离的159例Mp临床分离株的基因型,分析p1基因的变异情况,确定p1基因的保守序列。构建含Mp P1基因第3373-4185位核苷酸(p1c)的原核表达载体pGEX6p-2//plc,纯化表达产物免疫BALB/c,制备多克隆抗体(pAb);检测其pAb的滴度及对Mp粘附HeLa细胞的抑制作用。构建真核表达载体pcDNA3.1(+)/pklc (pPlC)、pcDNA3.1(+)/plc-IL-2(pPlC-IL-2)和pcDNA3.1(+)/LTB-plc (pLTB-P1C),通过肌肉注射和鼻内接种方式免疫小鼠,检测疫苗所诱发的特异性体液免疫和细胞免疫应答水平;用Mp经呼吸道感染疫苗免疫后的小鼠,观察肺组织病理变化和支气管灌洗液中Mp菌落计数,分析疫苗接种小鼠对Mp感染的免疫保护作用,为研制Mp核酸疫苗提供实验依据。
     方法:
     1.复苏Mp临床株,分离培养单个菌落并进行PCR鉴定。通过聚合酶链式反应-限制性片段长度多态性分析对159例Mp临床株进行p1基因分型,并检测p1变异。
     2.设计特异性引物,PCR扩增p1基因第3373~4185位核苷酸(p1c基因),构建pGEX6p-2/plc原核细胞表达重组体,用PCR介导的定点突变将p1c基因中的“TGA”突变成“TGG”。重组体经IPTG诱导在E.coli BL21中表达融合蛋白P1C-GST,用高亲和力GST Resin亲和柱纯化P1C-GST蛋白,研究P1C-GST蛋白对HeLa细胞的粘附活性;将纯化的PIC-GST蛋白免疫BALB/c鼠,制备多克隆抗体(pAb),研究PIC-GST pAb对Mp的粘附抑制作用。ELISA分析PIC-GST蛋白的免疫原性和抗原性。
     3.将p1c基因亚克隆至真核表达载体构建pPIC重组体,并将p1c基因与细胞因子佐剂IL-2基因和黏膜佐剂LTB基因分别通过一段特殊核苷酸序列(GAT CCG AGA GTA CCG AGC)连接,构建pP1C-IL-2和pLTB-P1C双基因融合表达重组体。将pP1C和pP1C-IL-2经肌肉注射和鼻内接种方式免疫小鼠,pLTB-PIC鼻内途径免疫小鼠。用ELISA法检测血清和支气管灌洗液中特异性抗体(IgG、IgA)的水平、IgG抗体亚类和IFN-γ、IL-4水平,用MTT法检测脾淋巴细胞特异性增殖反应,以分析疫苗诱导的体液免疫应答和细胞免疫应答水平。
     4.plc单基因或融合基因疫苗分别免疫小鼠后,将Mp经呼吸道感染小鼠,检测Mp呼吸道攻击后小鼠肺组织病理学改变及支气管灌洗液中Mp的菌落形成单位,以分析疫苗的免疫保护效果。
     结果:
     1.159例Mp临床标本中,142例为Mp Ⅰ型(89.31%),17例为Mp Ⅱ型(10.69%);PCR-RFLP法共检测出21例临床突变株,其中10株为Mp V2c突变株;3株为V2a突变株;7株为V1a突变。研究发现了一株新型V2型突变株Mp100(命名为V2d突变株),其p1基因RepMP4区最接近309(V2a), RepMP2/3区域中有142bp(2772-2913)序列完全同源重组了一段p1基因以外的RepMP2/3-J序列(606517-606658)。
     2. PCR扩增出约813bp的目的片段;构建了P1C蛋白原核表达重组体pGEX6p-2/p1c,通过PCR介导的定点突变成功地将P1C基因中的TGA突变为TGG。原核表达重组体在E.coli中表达出一相对分子量(Mr)约为66kD的目的蛋白,该目的蛋白在菌体细胞内主要以可溶性形式存在。经高亲和力GST Resin纯化柱纯化,得纯度达95%以上的重组蛋白。
     3.用纯化的P1C-GST免疫BALB/c小鼠,制备了pAb,抗体效价均在1:4000以上,且能与Mp感染患者血清发生特异性结合反应。
     4.粘附试验发现P1C对HeLa细胞有粘附活性,粘附抑制试验显示P1C的pAb可抑制Mp对HeLa细胞的粘附,抑制强度与抗体水平呈正相关,抗体滴度越高,抑制作用越强。
     5.plc单基因疫苗免疫组、p1c-IL-2双基因融合疫苗免疫组小鼠经肌注和鼻饲免疫后,随着接种次数的增多血清抗体水平逐渐升高。第一次免疫后第2w,小鼠血清中可检测到特异性抗体,第6w特异性抗体水平显著升高,第8w抗体水平基本稳定,双基因融合疫苗免疫组血清抗体水平较单基因免疫组高,两种均与对照组有显著性差异(P<0.01)。检测抗体亚类发现单基因免疫组IgG1及IgG2a抗体均较高,而双基因融合疫苗免疫组IgG2a升高更为显著。融合疫苗经鼻饲免疫所诱生的呼吸道局部粘膜抗体显著高于单基因免疫组(P<0.05),肌注免疫组小鼠未产生明显的黏膜抗体。p1c单基因疫苗免疫组、p1c-IL-2双基因融合疫苗免疫组支气管灌洗液中IFN-γ和IL-4水平较对照组显著增高(P<0.05),且双基因疫苗组较单基因疫苗组分泌的IFN-γ和IL-4增高更显著(P<0.05)。疫苗免疫组小鼠脾淋巴细胞增殖反应均较对照组强。肌注组小鼠所诱生的血清IgG抗体滴度和淋巴细胞增殖均强于鼻饲组(P<0.05)。
     6.用Mp攻击各免疫组小鼠,plc-IL-2双基因融合疫苗免疫组小鼠和p1c单基因疫苗组小鼠的肺间质炎症明显减轻,病变区域较局限,肺泡间隔轻度增宽,淋巴细胞、浆细胞浸润减少。两组的肺组织炎症病理评分明显低于对照组;p1c单基因组和plc-IL-2双基因疫苗免疫组小鼠支气管灌洗液中Mp的菌落数较对照组明显减少,p1c-IL-2双基因疫苗免疫组小鼠的Mp菌落数最少。但两组肺组织病理评分和菌落计数差异无显著性(P>0.05)。
     7.LRB-p1c双基因融合疫苗组小鼠肺组织炎症减轻,肺组织病理评分和Mp菌落数均低于对照组,但Mp菌落数较ple单基因疫苗减少,但差异无显著性。LTB-p1c组小鼠支气管灌洗液中的血清总抗体、sIgA和支气管灌洗液和血清中IFN-γ、IL-4水平明显高于p1c核酸疫苗组(P<0.05);
     8.鼻饲接种LTB-plc免疫组小鼠与plc-IL-2疫苗组相比,支气管灌洗液中的IFN-γ和IgA显著增高,但两组小鼠肺组织炎症和Mp菌落计数差异无显著性(P>0.05)。
     结论:
     1.159株Mp临床株主要为Ⅰ型。21株p1基因发生突变,Ⅱ型突变率高于I型。发现一株新的p1基因突变株(V2d)。
     2.P1C融合蛋白有粘附活性,并具有较好的免疫原性和抗原性。
     3.plc、LTB-plc和plc-IL-2核酸疫苗均能刺激机体产生高水平的特异性免疫应答水平和免疫保护作用。
     4.LTB-plc和plc-IL-2核酸疫苗较p1c单基因疫苗诱导更强的特异性免疫应答水平和免疫保护作用。
     4.plc核酸疫苗鼻饲免疫组小鼠支气管灌洗液产生高水平的IgA,但血清IgG水平低于肌注组,在感染早期发挥更强的作用。肌注组结果相反。
Mycoplasma pneumoniae is the causative agent of atypical pneumonia and is also responsible for other respiratory tract infections such as tracheobronchitis, bronchiolitis, croup, and less severe upper respiratory tract infections in older children and young adults. Cardiovascular disease and neurological diseases are serious nonrespiratory symptoms associated with M. pneumoniae infection. It has been estimated that between10and30%of pneumonia cases that occur in the endemic period and that up to30and50%of all cases that occur in the epidemic period are caused by M. pneumoniae. Traditionally, M. pneumoniae infection is controlled by the use of antibiotics. However, the increased prevalence of antimicrobial-resistant strains of M. pneumo-niae increases the risk of reinfection. Accordingly, the prevention of atypical pneumonia through vaccination is needed.
     The P1protein is considered to be the major ligand mediating attachment of virulent M. pneumoniae to the host cell membrane. An earlier study showed that pretreatment of M. pneumoniae with antiserum directed against P1blocked cytadherence to hamster tracheal rings by up to80%. As the polymorphism regions RepMP4and RepMP2/3of p1gene are variablility and the P1gene contains an open reading frame of4,881nucleo-tides and contains21UGA codons that code for tryptophan, it is very difficulted to express the P1protein in Escherichia coli (E.coli) and mammalian cells as UGA codes for a stop codon. In this study, we studied the p1gene genotyping and the variation of p1gene to determined the conserved sequence of p1gene, chose the biological characteristics of M.pneumoniae P1immundominant region (1125-1395aa, P1C protein) and explored the use of a DNA vaccine encoding P1C.
     Objectives
     To determine the conserved sequence of p1gene, the p1gene genotyping and variation was studied with the159M. pneumoniae clinical samples which were isolated from pediatric patients with respiratory tract infection. The prokaryotic expression vector pGEX6p-2/plc with M. pneumoniae p1adhesin immundominant region gene (3374-4185nucleotide, plc gene) was constructed and the recombinant protein was expressed in E.coli BL21(DE3). The purified P1C-GST protein was used to immunize the BALB/c mice and obtain polyclonal antibody. Antibody was used for adhesion and inhibition assay. The immunogenicity or antigenicity of P1C was analyzed. The pcDNA3.1(+)/plc (named pP1C) monogenic nucleic acid vaccine and pcDNA3.1(+)/plc/IL-2(named pP1C-IL-2) fused gene vaccine were contructed and immunogenicity were analyzed in BALB/c mice immunized by intramuscular injection and intranasal innoculation. pcDNA3.1(+)//LTB-plc (named pLTB-P1C) fused gene vaccine was innoculated by intranasal route. An animal model for M.pneumoniae infection was established using BALB/c mice, the humoral and cellular immune response in mice induced by the vaccines and the pathological changes of lung tissue were investigated. This study may provide experimental evidence for the development of high performance and new-style M.pneumoniae nucleic acid vaccine.
     Methods
     1. M. pneumoniae clinical isolates were revived and passaged in broth medium, and then cultured in agar medium for single colony which was further characterized by PCR. p1genotyping and the variation of p1gene were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).
     2. P1adhesin immundominant region gene (3374-4185nucleotide, plc gene) was amplified by PCR from the genome of M. pneumoniae and cloned into pGEX6p-2after digestion with BamH I and EcoR I. A codon TGA encoding Tryptophan was changed into TGG by site-directed mutagenesis. The mutagenized recombinant expression vector pGEX6p-2/plc was transformed into E.coli BL21and induced to express PIC-GST with IPTG. The obtained fusion protein, which was purified by high affinity GST Resin, was analyzed by SDS-PAGE and Western blot. The purified protein was used to immune BALB/c mice. Then the polyclonal antibody against the purified protein was acquired and used for adhesion and inhibition assay. ELISA was used to analyze the immunogenicity and antigenicity of P1C.
     3. Plc gene was subcloned to pcDNA3.1(+)(named pcD) eukaryotic plasmid. The plc gene and interleukin2(IL-2) gene or B subunit of E.coli heat-labile enterotoxin (LTB) gene was fused with a linker by recombination PCR to construct pP1C-IL-2or pLTB-P1C eukaryotic expression vectors. After verifying that the P1C and P1C-IL-2antigens could be expressed in HeLa cells by Western-blot,6-week-old BALB/c mice were immunized with pP1C-IL-2or pP1C or pcDNA3.1(+)/IL-2(named pIL-2) or pcD or PBS buffer intramuscularly and nasally at2-week interval for three times, while pLTB-P1C was vaccined nasally. ELISA was used for the quantitative detection of the P1C-specific total antibodies and IgG1, IgG2a isotypes, IgA the cytokines IFN-y and IL-4in the sera and bronchoalveolar lavage fluids of BALB/c mice. The proliferation response of spleen cells was detected by MTT assay.
     4. Mice were inoculated by plc gene or its fusion gene respectively. Mice were exsanguinated and lungs were removed for histological examination after M.pneumoniae challenge inoculation to analyze the immune. Serial10-fold dilutions of BAL fluids were immediately cultured on SP4agar plates, quantification was performed by counting colonies on plated specimens and expressed as log10CFU per milliliter.
     Results
     1.159cases of clinical samples in PCR-RFLP indicated that142samples (89.31%) were classified as typel,17samples (10.69%)were classified as type2.21clinical variarable samples were identified by the PCR-RFLP. Among the M.pneumoniae mutants,10were V2c strains,3were V2a strains and7isolates of the point mutants of type1. A new V2d mutant strain was found in the study, which contained a novel variable region of142bp between nucleotides (nt)2772-2913and these variable regions showed sequence homology with the RepMP2/3-j (606517-606658) elements beyond the p1gene.
     2. The, p1c gene fragment (813bp) was successfully amplified. The prokaryotic expression recombinant pGEX-6P-2/plc was successfully constructed. The codon TGA encoding Tryptophan was changed into TGG by site-directed mutagenesis. A soluble fusion protein with molecular weight about66kDa was obtained after expression and purification. The result of Western blot showed that P1C-GST could be recognized by the monoclonal mouse anti-M.pneumoniae sera.
     3. The polyclonal antibody against the purified protein was acquired, the titers of the specific antibodies were above1:4000. ELISA and western blot showed the PIC-GST protein could react with the M.pneumoniae infective sera.
     4. P1C protein could attach to the HeLa cells and the polyclonal antibody against the P1C protein could inhibit the binding of M. pneumoniae to the HeLa cells.
     5. Immunization with pP1C by the intramuscular route induced a moderate antibody response, and the response was better than those obtained by nasal immunization (P<0.01). IgG1and IgG2a were the dominant subclasses. While antibody titers of mice immunized with pPlC-IL-2were markly increased and mainly of the IgG2a subclass. Nasal-immunized animals exhibited significantly higher levels (P<0.05) of anti-P1C IgA in bronchoalveolar lavage (BAL) fluids than intramuscular-immunized animals, and there was no specific antibody in the BAL fluids of mice immunized with pcD or PBS. The pP1C and pPlC-IL-2groups immunized by intramuscular injection produced significant levels (P<0.05) of IFN-y and IL-4in BAL fluids and sera than those inoculated by nasal route, and only small numbers of nonspecific IFN-y and IL-4secreting cells were detected in the control groups. The stimulation index of pP1C group or pP1C-IL-2group was higher than that of control group (P<0.05).
     6. M.pneumoniae inoculated Mock-vaccinated or pcDNA3.1-treated mice consisted of peribronchial and perivascular mononuclear infiltrates, but there was no intrabronchial exudate or parenchymal pneumonia (neutrophilic alveolar infiltrate). The histopathologic scores of pP1C and pP1C-IL-2-vaccinated animals were significantly decreased. The infective control mice, which inoculated with sterile SP4broth, had an HPS of0-1. There was no significant difference in the number of M. pneumoniae in BAL Fluids cultures grown from the pP1C-IL-2immunized mice compared with cultures from the pP1C inoculated group.
     7. The pLTB-P1C immunizations elicited high levels of IgA and IFN-y, while the proliferation response of spleen cells had no difference from pP1C vaccinated mice. When the mice were challenged intranasally with107CFU M.pneumoniae strain (M129), the LTB-plc fusion DNA vaccine conferred significantly better protection than controls (P<0.05), as characterized by lighter inflammation, lower HPS values and lower detectable number of M.pneumoniae strain. The M.pneumoniae strains in BAL fluids of pLTB-P1C immunized mice is lower than pP1C immunized mice. These results indicate that the pLTB-P1C DNA vaccine can efficiently improve protective efficacy against M.pneumoniae infection, and effectively attenuate development of Mycoplasmal pneumomae in mice.
     Conclusions
     1.159M.pneumoniae clinical isolates maily for type1strains and21mutants were detected, the mutatuon rate of type2is higher than type1. A new p1mutant strain V2d was discovered.
     2. P1C protein was shown to be cytadherent, strong immunogenicity and antigenicity.
     3. Strong cellular immunity and humoral immunity responses could be induced by all pP1C, pP1C-IL-2and pLTB-P1C DNA vaccines in BALB/c mice.
     4. Both pP1C-IL-2vaccine and pLTB-P1C vaccines could induce more powerful immune response and immune protection than pP1C vaccine.
     5. Intranasal route of pP1C vaccine Induced higher sera IgG, lower BAL fluids IgA in BALB/c mice than intramuscular immuned mice, and effected mainly in Late stage of M.pneumoniae infection. While the latter was opposite.
引文
[1]Clyde, W. A. Clinical overview of atypical Mycoplasma pneumoniae infections. Clin. Infect. Dis.1993,17(Suppl.):S32-S37.
    [2]Hu, P. C., A. M. Collier, and J. B. Baseman. Surface parasitism by Mycoplasma pneumoniae in respiratory epithelium. J. Exp. Med. 1977,145:1328-1343.
    [3]Maia IL, Nicolau JC, Machado Mde N, Maia LN, Takakura IT, Rocha PR, Cordeiro JA, Ramires JA. Prevalence of Chlamydia pneumoniae and Mycoplasma pneumoniae in different forms of coronary disease. Arq Bras Cardiol.2009;92(6):405-411.
    [4]Dhouib N, Guedhami H, Mellouli F, Ben Khaled M, Kaabi H, Belhassen E, Hmida S, Bejaoui M. Mycoplasma pneumoniae Associated with Severe Autoimmune Hemolytic Anemia in a child with homozygous beta-thalassemia.Tunis Med.2011;89(7):652-653.
    [5]Baseman, J. B., R. M. Cole, D. C. Krause, et al. Molecular basis for cytadsorption of Mycoplasma pneumoniae. J. Bacteriol.1981,151:1514-1522.
    [6]Feldner, J., U. Gobel, and W. Bredt. Mycoplasma pneumoniae adhesin localized to tip structure by monoclonal antibody. Nature (London) 1982,298:765-767.
    [7]Hu, P. C., R. M. Cole, Y. S. Huang, et al. Mycoplasma pneumoniae infection: role of a surface protein in the attachment organelle. Science, 1982,216:313-315.
    [8]Franzoso, G., P. C. Hu, G. A. Meloni, et al. The immunodominant 90-kilodalton protein is localized on the terminal tip structure of Mycoplasma pneumoniae. Infect Immun,1993,61:1523-1530.
    [9]Seto S, G.Layh-Schmitt, Kenri T, et al. Visualization of the attachment organelle and cytadherence proteins of Mycoplasma pneumoniae by immunofluorescence microscopy. J Bacteriol,2001,183:1621-1630.
    [10]Baseman, J. B., J. Morrison-Plummer, D. Drouillard, et al. Identification of 30-kilodalton protein of Mycoplasma pneumoniae associated with hemadsorption. Israel J. Med. Sci,1987,23:474-479.
    [11]Gerstenecker, B., and E. Jacobs. Topological mapping of the P1 adhesin of Mycoplasma pneumoniae with adherence inhibiting monoclonal antibodies. J. Gen. Microbiol,1990;136:471-476.
    [12]Razin, S., and E. Jacobs. Mycoplasma adhesion. J. Gen. Microbiol, 1992,138:407-422.
    [13]Zhao F, Cao B, Li J, Song S, Tao X, Yin Y, He L, Zhang J.Sequence analysis of the p1 adhesin gene of Mycoplasma pneumoniae in clinical isolates collected in Beijing in 2008 to 2009.J Clin Microbiol.2011;49(8):3000-3003.
    [14]Svenstrup H. F., P. K. Nielsen, M. Drasbek, et al. Adhesion and inhibition assay of Mycoplasma genitalium and Mycoplasma pneumoniae by immunofluorescence microscopy. J. Med. Microbiol,2002,51:361-373.
    [15]Baseman, J. B., D. L. Drouillard, D. K. Leith, et al. Role of Mycoplasma pneumoniae adhesin P 1 and accessory proteins in cytadsorption. In Molecular Basis of Oral Microbial Adhesion. S. E. Mergenhagen and B. Rosen, editors. American Society for Microbiology, Washington, DC.1985,18-23.
    [16]Roberts DD, Olson LD, Barile MF, et al. Sialic acid-dependent adhesion of Mycoplasma pneumoniae to purified glycoproteins. J. Biol. Chem. 1989,264:9289-9293.
    [17]Krivan HC, Olson LD, Barile MF, et al. Adhesion of Mycoplasma pneumoniae to sulfated glycolipids and inhibition by dextran sulfate. J. Biol. Chem. 1989,264:9283-9288.
    [18]Krause, DC. Mycoplasma pneumoniae cytadherence:unraveling the tie that binds. Mol. Microbiol.1996,20:247-253.
    [19]Krause DC. Mycoplasma Pneumoniae cytadherence:organization and assembly of the attachment organelle. Trends Microbiol,1998,6:15-18.
    [20]Baseman JB, Reddy SP, and Dallo SF. Interplay between mycoplasma surface proteins,airway cells,and the protean manifestations of mycoplasma-mediated human infections. Am J Respir Crit Care Med,1996,154:sl37-sl44.
    [21]Dorigo-Zetsma JW, Wilbrink B, Dankert J, et al. Mycoplasma pneumoniae P1 type 1-and type 2-specific sequences within the P1 cytadhesin gene of individual strains.Infect Immun,2001;69(9):5612-5618.
    [22]Krause DC, Baseman JB. Inhibition of Mycoplasma pneumoniae hemadsorption and adherence to respiratory epithelium by antibodies to a membrane protein. Infect Immun,1983,39:1180-1186.
    [23]Enno J, Bemhard G, Beatrix M, et al. Binding sites of attachment inhibiting monoclonal antibodies of the Mycoplasma pneumoniae adhesion. Infect Immun,1989,57:685-686.
    [24]Bottero D, Gaillard ME, Fingermann M, et al.Pulsed-field gel electrophoresis, pertact-in, pertussis toxin S1 subunit polymorphisms, and surfaceome analysis of vaccine and clinical Bordetella pertussis strains[J].Clin Vaccine Immunol,2007,14(11):1490-1498.
    [25]Shima K, Terajima J, Sato T, et al. Development of a PCR-restriction fragment length polymorhi-sm assay for the epidemiological analysis of shiga toxinproducing Escheri-chia coli[J].J Clin Microbiol,2004,42:5205-5213.
    [26]Chaudhry R, Nisar N, Hora B, et al. Expression and immunological characterization of the carboxy-terminal region of the P1 adhesin protein of Mycoplasma pneumoniae. J Clin Microbiol,2005,43(1):321-325.
    [27]Beghetto E, De Paolis F, Montagnani F, et al. Discovery of new Mycoplasma pneumoniae antigens by use of a whole-genome lambda display library. Microbes Infect,2009,11(1):66-73.
    [28]Dumke, R., Schurwanz, N., and Jacobs, E.2008. Characterisation of subtype-and variant-specific antigen regions of the P1 adhesin of Mycoplasma pneumoniae. Int J Med Microbiol.2005,298(5-6):483-491.
    [29]Schurwanz, N., Jacobs, E., and Dumke, R. Strategy To Create Chimeric Proteins Derived from Functional Adhesin Regions of Mycoplasma pneumoniaefor Vaccine Development. Infect Immun.2009,77(11):5007-5015.
    [30]Spuesens, E.B., Hartwig, N.G., van Rossum, A.M., et al. Sequence variation within the P1 gene of Mycoplasma pneumoniae. J Clin Microbiol.2011,49(10): 3723;
    [31]Spuesens, E.B., Oduber, M., Hoogenboezem, T., et al. Sequence variations in RepMP2/3 and RepMP4 elements reveal intragenomic homologous DNA recombination events in Mycoplasma pneumoniae.Microbiology.2009,155(Pt 7):2182-2196.
    [32]Dumke R, Luck PC, Noppen C,et al.Culture-independent molecular subtyping of Myco-plasma pneumoniae in clinleal samples[J].J Clin Microbiol, 2006,44(7):2567-2570
    [33]Hu, P. C., Y. S. Huang, J. A. Graham, and D. E. Gardner. Identification of immunogens of Mycoplasma pneumoniae by protein blotting. Biochem. Biophys. Res. Commun,1981,102:1363-1370.
    [34]Jacobs, E., A. Bennewitz, and W. Bredt. Reaction pattern of human anti-Mycoplasma pneumoniae antibodies in enzymelinked immunosorbent assays and immunoblotting. J. Clin. Microbiol,1986,23:517-522.
    [35]Leith, D. K., L. B. Trevino, J. G. Tully, L. B. Senterfit, et al. Baseman. Host discrimination of Mycoplasma pneumoniae proteinaceous immunogens. J. Exp. Med.1983,157:502-514.
    [36]Nakane D, Adan-Kubo J, Kenri T, Miyata M.Isolation and characterization of P1 adhesin, a leg protein of the gliding bacterium Mycoplasma pneumoniae.J Bacteriol.2011;193(3):715-722.
    [37]Gerstenecker B, Jacobs E. Topological mapping of the P1-adhesin of Mycoplasma pneumoniae with adherence-inhibiting monoclonal antibodies. J Gen Microbiol,1990,136(3):471-476.
    [38]Fred Ausubel, Roger Brent, Robert E Kingston et al.著,颜子颖,王海林.编译精编分子生物学实验指南.科学出版社,2006.
    [39]黄培堂等,编译.分子克隆实验指南.科学出版社,2002.
    [40]陶义训.免疫学和免疫学检验(第二版)人民卫生出版社,1997.
    [41]Spencer A. Leigh, Kim S.Wise. Identification and functional mapping of the Mycoplasma fermentans P29 adhesin. Infect Immun,2002,70(9):4925-4935.
    [42]Bove JM. Molecular features of mollicutes. Clin Infect Dis,1993,17,S10-S31.
    [43]Kicinski P, Wisniewska-Ligier M, Wozniakowska-Gesicka T. Pneumonia caused by Mycoplasma pneumoniae and Chlamydophila pneumoniae in children-comparative analysis of clinical picture.Adv Med Sci. 2011;1;56(1):56-63
    [44]Nadagir SD, Kaleem Bahadur A, Anantappa Shepur T. Prevalence of Mycoplasma pneumoniae among HIV infected children.Indian J Pediatr. 2011;78(4):430-434.
    [45]Rasmussen JN, Voldstedlund M, Andersen RL, Ellermann-Eriksen S, Jensen TG, Johansen HK, Kolmos B, M(?)lvadgaard M, Nielsen SS, Olsen E, Sch(?)nning K, Uldum SA. Increased incidence of Mycoplasma pneumoniae infections detected by laboratory-based surveillance in Denmark in 2010.Euro Surveill.2010;11;15(45). pⅱ:19708. Erratum in:Euro Surveill.2010;25;15 (47)pⅱ:19725.
    [46]Xu MC, Ma HH, Ou QQ, Luo AW, Ren GL, Wang XY, Jing LJ. [Epidemiological and clinical analysis of Mycoplasma pneumoniae infection in children with acute respiratory tract infection].Nan Fang Yi Ke Da Xue Xue Bao.2009;29(10):2082-2087.
    [47]Principi, N., and S. Esposito. Emerging role of Mycoplasma pneumoniae and Chlamydia pneumoniae in paediatric respiratory-tract infections. Lancet Infect Dis,2001,1:334-344.
    [48]Principi, N., S. Esposito, F. Blasi, L. Allegra, and the Mowgli Study Group. Role of Mycoplasma pneumoniae and Chlamydia pneumoniae in children with community-acquired lower respiratory tract infections. Clin. Infect.Dis, 2001;32:1281-1289.
    [49]Waites, K. B., and D. F. Talkington. Mycoplasma pneumoniae and its role as a human pathogen. Clin. Microbiol. Rev.2004,17:697-728.
    [50]Hammerschlag, M. R. Mycoplasma pneumoniae infections. Curr Opin Infect Dis,2001,14:181-186.
    [51]Ou ZY, Zhou R, Wang FH, Lu JP, et al. Retrospective analysis of Mycoplasma pneumoniae infection in pediatric fatal pneumonia in Guangzhou, South China. Clin Pediatr (Phila).2008,47(8):791-796
    [52]Miyuki Morozumi, Satoshi Iwata, Keiko Hasegawa, et al. Increased Macrolide Resistance of Mycoplasma pneumoniae in Pediatric Patients with Community Acquired Pneumonia. Antimicrobial Agents and Chemotherapy, 2008,52 (1):348-350.
    [53]Jensen K. E., L. B. Senterfit, R. M. Chanock, et al. An inactivated Mycoplasma pneumoniae vaccine. J. Am. Med. Assoc,1965,194:248-252.
    [54]Wenzel, R. P., R. B. Craven, J. A. Davies. Protective efficacy of an inactivated Mycoplasma pneumoniae vaccine. J. Infect. Dis,1977,136:S204-S207.
    [55]Linchevski I, Klement E, Nir-Paz R.Mycoplasma pneumoniae vaccine protective efficacy and adverse reactions--Systematic review and meta-analysis. Vaccine.2009; 21;27(18):2437-2446.
    [56]Mogabgab, W. J. Efficacy of inactivated Mycoplasma pneumoniae vaccine demonstrated by protection in large field trials. Ann. N.Y. Acad. Sci. 1973,225:453-461.
    [57]Chanock, R. M., C. B. Smith, W. T. Friedwald, et al. Infection with artificially propagated Eaton agent (Mycoplasma pneumoniae):implications for development of attenuated vaccine for cold agglutinin-positive pneumonia. J. Am. Med. Assoc.1967,187:442-447.
    [58]Brown, R. C., J.0. Hendley, and J. M. Gwaltney, Jr. Mycoplasma pneumoniae vaccine:antigenicity of buffered antigens in volunteers. Infect. Immun.1972,5:657-661.
    [59]Yayoshi M, Hayatsu E, Yoshioka M. Protective effects of Mycoplasma pneumoniae live vaccine or its hyperimmune serum on the experimental infection in mice. Kansenshogaku Zasshi.1989,63(7):684-91
    [60]Zhang Q, Guo Z, MacDonald NE. Vaccine preventable community-acquired pneumonia in hospitalized children in Northwest China. Pediatr Infect Dis J. 2011;30(1):7-10
    [61]贾飞勇,梁东,傅文永,等.肺炎支原体P1蛋白预防动物支原体肺炎的研究.中华儿科杂志,2001;39(5):293-295.
    [62]Gurunathan, S., D. M. Klinman, and R. A. Seder. DNA vaccines:immunology, application and optimization. Annu. Rev. Immunol,2000,18:927-974.
    [63]Boyle JS, Silva A, Brady JL, et al. DNA immunization:induction of higher avidity antibody and effect of route on T cell cytotoxicity. Proc Natl Acad Sci USA,1997,94(26):14626-14631.
    [64]Masayuki Hayakawa, Haruhiko Taguchi, Shigeru Kamiya, et al. Animal Model of Mycoplasma pneumoniae Infection Using Germfree Mice. Clinical AnD Diagnostic Laboratory Immunology,2002,9(3):669-676
    [65]Robert D. Hardy, Hasan S. Jafri, Kurt Olsen, et al. Mycoplasma pneumoniae Induces Chronic Respiratory Infection, Airway Hyperreactivity, and Pulmonary Inflammation:a Murine Model of Infection-Associated Chronic Reactive Airway Disease. Infection And Immunity,2002,70(2):649-654.
    [66]刘晓红,辛德莉,侯安存,等.小鼠肺炎支原体肺炎模型的建立及干扰素-γ的变化.中国人兽共患病杂志,2004,20(4):482-485.
    [67]Martin RJ,Chu HW,Honour JM. Airway inflammation and bronchial hyperresponsiveness after Mycoplasma pneumoniae infction in a murine model [J].Am J Respir Cell Mol Biol,2001,24:577
    [68]刘晓红,辛德莉,侯安存,等。小鼠肺炎支原体肺炎模型的建立及组织病理学评分方法的应用.重庆医学,2004,33(9):1338-1340
    [69]Martin RJ,Chu HW,Honour JM. Airway inflammation and bronchial hyperresponsiveness after Mycoplasma pneumoniae infction in a murine model. Am J Respir Cell Mol Biol,2001,24:577.
    [70]李学荣,余新炳.核酸疫苗及其免疫机制研究.中国人兽共患病杂志,2000,16(6):82-86.
    [71]孙树汉,戴建新,张平武等.《核酸疫苗》,上海第二军医大学出版社,2000.
    [72]张以芳.核酸疫苗的构成及主要特点.上海畜牧兽医通讯,2000,(2):11
    [73]Abdulhaqq SA, Weiner DB. DNA vaccines:developing new strategies to enhance immune responses. Immunol Res.2008;42(1-3):219-32. Review.
    [74]Kang YM, Ding MJ, Han YL, Wang SF, Ma X, Li H. Thl/Th2 immune response in bronchoalveolar lavage fluid in children with severe Mycoplasma pneumoniae pneumonia.Zhongguo Dang Dai Er Ke Za Zhi. 2011;13(3):188-190.
    [75]郭红,邹全明,赵晓晏.幽门螺杆菌疫苗免疫机制的研究进展.免疫学杂志,2001,17(3):49-52.
    [76]Zhao, F., Wu, Y., Zhang, X., Yu, J., Gu, W., Liu, S., et al. Enhanced immune response and protective efficacy of a Treponema pallidum Tp92 DNA vaccine vectored by chitosan nanoparticles and adjuvanted with IL-2. Hum. Vaccin. 2011,7(10):1083-1089.
    [77]Zhao, F., Wang, S., Zhang, X., Gu, W., Yu, J., Liu, S., et al.. Protective efficacy of a Treponema pallidum Gpd DNA vaccine vectored by chitosan nanoparticles and fused with interleukin-2. Can. J. Microbiol.2012,58(2):117-123.
    [78]Machy P, Serre K, Baillet M, et al. Induction of MHC class I presentation of exogenous antigen by dendritic cells is controlled by CD4+T cells engaging class Ⅱ molecules in cholesterol-rich domains. J Immunol, 2002,168(3):1172-1180.
    [79]Walker J, Lee R, Mathy N, et al. Restricted B-cell response to microbial challenge of the respiratroy tract. Vet Immunol Immunopathol,1996,54(1-4):197-204.
    [80]de Rosbo NK, Ben-Nun A. T-cell responses to myelin antigens in multiple sclerosis; relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein. J Autoimmun,1998,11 (4):287-299.
    [81]Schirmbeck R, Bohmw, Ando K, et al. Nucleic acid vaccina-tion primes hepatitis B virus surface antigen-specific cytotoxic T lymphocytes in nonrespondermice. J Viro,1995,69(10):5929-5934.
    [82]Chow YH, Chiang BL, Lee YL, et al. Development of Thl and Th2 populations and the nature of immune responses to hep-atitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol,1998,160 (3):1320-1329.
    [83]Barouch DH, Santra S, Schmitz JE, et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science,2000,290 (5491):486-492.
    [84]陈创夫,余兴龙,乔军,等.猪瘟基因疫苗在小鼠肌肉中的免疫病理学观察.石河子大学学报,2001,5(3):215218.
    [85]Shah MA, Xu L, Yan R, Song X, Li X. Cross immunity of DNA vaccine pVAX1-cSZ2-IL-2 to Eimeria tenella, E. necatrix and E. maxima.Exp Parasitol. 2010;124(3):330-333.
    [86]Cen D, Hu G, Zhou Y, Yang L, Chen S, Schmidt CA, Li Y.Enhancement of specific cellular immune response induced by DNA vaccines encoding PML-RARalpha and hIL-2 genes.Hematology.2010 Apr;15(2):88-95.
    [87]Yu W, Zhang Y, Jing J, Liu Z. Construction of Helicobacter pylori Lpp20-IL2 DNA vaccine and evaluation of its immunocompetence in C57BL/6 mice. Wei Sheng Wu Xue Bao.2010 Apr 4;50(4):554-559
    [88]Wang D, Christopher ME, Nagata LP, et al. Intranasal immunization with liposome-encapsulated plasmid DNA encoding influenza virus hemagglutinin elicits mucosal, cellular and humoral immune responses. J Clin Virol, 2004,31 Suppl 1:S99-106.
    [89]Vajdy M, O'Hagan DT. Microparticles for intranasal immunization. Adv Drug Deliv Rev,2001,23;51(1-3):127-141.
    [90]Hedges SR, Mayo MS, Mestecky J, et al. Limited local and systemic antibody responses to Neisseria gonorrhoeae during uncomplicated genital infections. Infect Immun,1999,67(8):3937-3946.
    [91]Plummer FA, Chubb H, Simonsen JN, et al. Antibodies to opacity proteins correlate with areduced risk of gonococcal salpingitis. Clin Invest,1994,93: 1748-1755.
    [92]Fingerut, E., B. Gutter, M. Goldway, D. Eliahoo, and J. Pitcovski. B subunit of E. coli enterotoxin as adjuvant and carrier in oral and skin vaccination. Vet. Immunol. Immunopathol.2006,112:253-263.
    [93]戴志兵,胡四海,陈敏等。淋球菌porB和大肠杆菌1tB融合基因的构建、表达及其免疫活性。微生物学报,2010,50(4),517-523
    [94]Richards, C. M., A. T. Aman, T. R. Hirst, T. J. Hill, and N. A. Williams. Protective mucosal immunity to ocular herpes simplex virus type 1 infection in mice by using Escherichia coli heat-labile enterotoxin B subunit as an adjuvant. J.Virol.2001,75:1664-1671.
    [95]Verweij WR, de Haan L, Holtrop M, Agsteribbe E, Brands R, van Scharrenburg GJ, Wilschut J. Mucosal immunoadjuvant activity of recombinant Escherichia coli heat-labile enterotoxin and its B subunit: induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with influenza virus surface antigen. Vaccine. 1998,16:2069-2076.
    [96]Waheed MT, Thones N, Miiller M, Hassan SW, Gottschamel J, Lossl E, Kaul HP, L6ssl AG. Plastid expression of a double-pentameric vaccine candidate containing human papillomavirus-16 L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes. Plant Biotechnol J. 2011;9(6):651-660.
    [97]Yamamoto M, McGhee JR, Hagiwara Y, Otake S, Kiyono H. Genetically manipulated bacterial toxin as a new generation mucosal adjuvant. Scand J Immunol.2001,53:211-217.
    [98]Yihang Li, Sudhir K. Ahluwalia, Alexandre Borovkov, Andrey Loskutov, Chengming Wang, Dongya Gao, Anil Poudel, Kathryn F. Sykes, and Bernhard Kaltenboeck, Novel Chlamydia pneumoniae vaccine candidates confirmed by Thl-enhanced genetic immunization. Vaccine.2010,10; 28(6):1598.
    [99]陈敏,胡四海,王玉峰等。黏膜佐剂大肠埃希菌不耐热肠毒素B亚单位优化的淋病奈瑟菌孔洞蛋白B核酸疫苗的构建及其诱导小鼠的免疫应答。中华传染病杂志,2011,29(4):199-205.
    [100]戴志兵,胡四海,刘清南等。抗淋病LTB-PorB核酸疫苗与蛋白疫苗联合应用增强免疫应答的研究。中国免疫学杂志,2010,26(12):1059-68.
    [101]You J, Xu Y, He M, McAllister TA, Thacker PA, Li X, Wang T, Jin L. Protection of mice against enterotoxigenic E. coli by immunization with a polyvalent enterotoxin comprising a combination of LTB, STa, and STb. Appl Microbiol Biotechnol.2011;89(6):1885-93.
    [102]王健,胡四海,戴志兵,等。粘膜佐剂LTB优化的抗淋病ltB-nspA融合基因疫苗鼻饲免疫效果研究。中国免疫学杂志,2010,26(11):968-72
    [103]Toshiyasau S,Keiko S, Michio K,et al.A mutant of Escherichia coli enterotoxin inducing a specific Thl-type of T cells to varicella-zoster vaccine enhances the production of IL-12 by IFN-y stimulated macro-phages. Vaccine,2006,24(18): 3719-3726.
    [104]Qiao X, Li G, Wang X, Li X, Liu M, Li Y. Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice. BMC Microbiol.2009,4;9:249
    [105]Li R, Yu X, Bai X, Xiang W, Ge M, Li M. [Fusion expression of Escherichia coli heat-labile enterotoxin B subunit gene and foot-and-mouth disease virus type O VP1 gene and immunogenicity analysis. Sheng Wu Gong Cheng Xue Bao.2009;25(4):560-565.
    [106]Zhang GG, Li DX, Zhang HH, Zeng YM, Chen L. Enhancement of mucosal immune response against the M2eHBc+ antigen in mice with the fusion expression products of LTB and M2eHBc+ through mucosal immunization route.Vet Res Commun.2009;33(7):735-747.
    [107]胡耀华,胡四海,戴志兵,等。淋病奈瑟菌nspA与LtB融合基因的表达及其免疫活性。免疫学杂志,2010,26(11):982-86.
    [108]Hagiwar Y, Tsuji T,Iwasaki T,et al. Effectivenss and safety of mutant Escherichia coliheat-labile enterototxin(LTH44A) as an adjuvant for nasal influenza vassine. Vaccine,2001,19(15-16):2071-2079.
    [109]Pine S, Barackman J,Ott G, et al. Intranasal immunization with influenza vaccine and a detoxified mutant of heat labile enterotoxin from Escherichia coli(LTK63). Control Realease,2002,85(1-3):263-270.
    [1]Fleury B. Bergonier D, Berthelot X, et al. Characterization of P40, a cytadhesin of Mycoplasma agalactiae. Infect Immun,2002,70(10):5612-5621.
    [2]Browning GF, Marenda MS, Noormohammadi AH, Markham PF. The central role of lipoproteins in the pathogenesis of mycoplasmoses. Vet Microbiol.2011 21;153(1-2):44-50.
    [3]Shibata K, Hasebe A, Into T, et al. The N-terminal lipopeptide of a 44 kD membrane-bound lipoprotein of Mycoplasma salivarium is responsible for the expression of intercellular adhesion molecule-1 on the cell surface of normal human gingival fibroblasts. Immunol,2000,165(11):6538-6544.
    [4]Rottem S. Interaction of Mycoplasmas with host cells. Physiol Rev,2003, 83(2):417-432.
    [5]Sippel KH, Venkatakrishnan B, Boehlein SK, Sankaran B, Quirit JG, Govindasamy L, Agbandje-McKenna M, Goodison S, Rosser CJ, McKenna R. Insights into Mycoplasma genitalium metabolism revealed by the structure of MG289, an extracytoplasmic thiamine binding lipoprotein.Proteins.2011 Feb;79(2):528-536.
    [6]Meens J, Bolotin V, Frank R, Bohmer J, Gerlach GF.Characterization of a highly immunogenic Mycoplasma hyopneumoniae lipoprotein Mhp366 identified by peptide-spot array.Vet Microbiol.2010 19;142(3-4):293-302.
    [7]Sippel KH, Robbins AH, Reutzel R, Boehlein SK, Namiki K, Goodison S, Agbandje-McKenna M, Rosser CJ, McKenna R. Structural insights into the extracytoplasmic thiamine-binding lipoprotein p37 of Mycoplasma hyorhinis.J Bacteriol.2009;191(8):2585-2592.
    [8]Takeuchi O, Kaufmann A, Grote K, et al. Cutting edge:preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2-and MyD88-dependent signaling pathway. Immunol,2000,164(2)554-557.
    [9]You XX, Zeng YH, Wu YM. Interactions between Mycoplasma lipod-associated membrane proteins and the host cells. Zhejiang Univ Sci B, 2006,7(5):342-350.
    [10]Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol Rev,1998,62(4):1094-1156.
    [11]Chambaud I, Wroblewski H, Blanchard A. Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol,1999, 7(12):493-499.
    [12]Zimmermann L, Peterhans E, Frey J. RGD motif of lipoprotein T, involved in adhesion of Mycoplasma conjunctivae to lamb synovial tissue cells. J Bacteriol. 2010;192(14):3773-3779
    [13]Baseman JB, Lange M, Criscimagna NL, et al. Interplay between mycoplasmas and host target cells. Microb Pathog,1995,19(2):105-116.
    [14]Rawadi G, Roman-Roman S, Castedo M, et al. Effects of Mycoplasma fermentans on the myelomonocytic lineage different molecular entities with cytokine-inducing and cytocidal potential. Immunol,1996,156(2):670-678.
    [15]Into T, Okada K, Inoue N, et al. Extracellular ATP regulates cell death of lymphocytes and monocytes induced by membrane-bound lipoproteins of Mycoplasma fermentans and Mycoplasma salivarium. Microbiol Immunol, 2002,46(10):667-675.
    [16]Kannan TR, Baseman JB. ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. Proc Natl Acad Sci USA,2006,103(17):6724-6729.
    [17]You XX, Wu YM, Zeng YH, et al. Mycoplasma genitalium-derived lipid-associated membrane proteins induce activation of MAPKs, NF-kappaB and AP-1 in THP-1 cells. FEMS Immunology & Medical Microbiology, 2008,52(2):228-236.
    [18]Into T, Nodasaka Y, Hasebe A, et al. Mycoplasmal lipoproteins induce toll-like receptor 2 and caspases-mediated cell death in lymphocytes and monocytes. Microbiol Immunol,2002,46(4):265-276.
    [19]Fujita M, Into T, Yasud M, et al. Involvement of leucine resides at position 107,112,and 115 in a leucine-rich repeat motif of human Toll-like receptor 2 in the recognition of diacylated lipoprotein and lipopeptide and staphylococcus aureus peptidoglycans. Immunol,2003,171(7):3675-3683.
    [20]Shimizu T, Kida Y, Kuwano K. A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLRl,TLR2,and TLR6. Immunol,2005,175(7):4641-4646.
    [21]Shimizu T,Kida Y,Kuwano K. Triacylated lipoproteins derived from Mycoplasma pneumoniae activate nuclear factor-KB through toll-like receptors 1 and 2. Immunol,2007,121(4):473-483.
    [22]He J, You X, Zeng Y, Yu M, Zuo L, Wu Y. Mycoplasma genitalium-derived lipid-associated membrane proteins activate NF-kappaB through toll-like receptors 1,2, and 6 and CD14 in a MyD88-dependent pathway.Clin Vaccine Immunol.2009; 16(12):1750-1757
    [23]Buwitt-Beckmann U,Heine H,Wiesmuller KH, et al. Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur Immunol, 2005,35(1):282-289.
    [24]Davis KL, Wise KS. Site-specific proteolysis of the MALP-404 lipoprotein determines the release of a soluble selective lipoprotein-associated motif-containing fragment and alteration of the surface phenotype of Mycoplasma fermentans. Infect Immun,2002,70(3):1129-1135.
    [25]Wu Y, Qiu H, Zeng Y, You X, Deng Z, Yu M, Zhu C. Mycoplasma genitalium lipoproteins induce human monocytic cell expression of pro inflammatory cytokines and apoptosis by activating nuclear factor kappaB.Mediators Inflamm. 2008;2008:195427
    [26]曾焱华,吴移谋,余敏君,等.穿透支原体LAMPs诱导NF-KB激活介导小鼠巨噬细胞凋亡.微生物学报,2008,48(3)355-361.
    [27]Shimizu T,Kida Y,Kuwano K. Lipid-associated membrane proteins of Mycoplasma fermentans and Mycoplasma penetrans activate human immunodeficiency virus long-terminal repeats through Toll-like receptors. Immunology,2004,113(1):121-129.
    [28]Iyama K, Zhang S, Lo SC. Effects of mycoplasmal LAMPs on receptor responses to steroid hormones in mammalian cells. Curr Microbiol, 2001,43(3):163-169.
    [29]Rharbaoui F, Drabner B, Borsutzky S, et al. The Mycoplasma derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur Immunol, 2002,32(10):2857-2865.
    [30]Romero F, Moreno E, Ruiz-Bravo A, et al. In vivoimmunomodulation by Mycoplasma fermentans membrane lipoprotein. Curr Microbiol, 2004,48(3):237-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700