低渗透砂岩型铀矿床爆破增渗的机理及模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足我国核电快速发展对铀资源的大量需求,解决制约低渗透砂岩型铀矿床原地浸出顺利生产的瓶颈,本文提出了无临空面深层岩体爆破增渗方法,以提高低渗透赋矿岩层的渗透性。建立了爆炸荷载下岩石损伤-渗透率耦合动本构模型。在研究不同装药结构对深层岩体爆破效果的影响的基础上,以内蒙某低渗透砂岩型铀矿床为工程背景,通过无临空面深层岩体爆破增渗模型试验及模型渗流特性试验,探讨了无临空面深层岩体爆破增渗的可行性、增渗效果及增渗机理,得出了一些有益的结论。具体内容如下:
     1、基于前人提出的损伤模型,本文构建了爆炸荷载下岩石损伤-渗透率耦合动本构模型。本模型抛弃之前模型基于张拉体积应变的拉伸损伤判断准则,且不去区分材料所处的拉压状态,而以某一点主张拉应变之和作为损伤开始积累的判据,以反映差应力引起的材料损伤。同时,假设岩石渗透率各向同性,建立了岩石渗透率的变化和与之相关的损伤状态之间的关系式。本模型简化了问题的描述,使其损伤的物理意义更加明确。
     2、基于冲击波在交界面两侧压力和速度必须各自相等的连续性条件,求解爆轰产物中适用的反射波方程和介质中适用的冲击波方程,得到药包周围介质中冲击波的初始参数。随后,通过波的传播机理,把集中药包应力波随距离的衰减公式扩展到延长药包,并计算耦合与不耦合装药时距爆心相同距离处岩石中冲击波的参数。由计算结果可知:(1)耦合装药爆破时形成的冲击波压力超过岩石抗压强度极限几十倍以上,药包周围岩石形成粉碎区,爆炸能被大量耗散;(2)与耦合装药相比,不耦合装药可以降低孔壁处岩石中冲击波初始压力。合理的不耦合系数,可使岩石不形成粉碎区,大幅度减少能量耗散;(3)水作为炸药爆轰产物与岩石间的弹性缓冲层,延长了冲击波作用时间,加大了爆炸的作用范围,增加了能量传递。
     3、以内蒙某低渗透砂岩型铀矿床为工程背景,在模型试验相似理论基础上,设计并实施了无临空面深层岩体爆破增渗初步模型试验和优化模型试验。试验结果表明:(1)耦合装药爆破不适宜在无临空面深层岩体爆破增渗中应用,应采用不耦合装药爆破,并且验证了不耦合介质(水)对爆炸冲击波的弹性缓冲作用;(2)验证了自制PVDF压力传感器的性能,并根据爆炸应力波的实测结果拟合了不同不耦合系数下模型中爆炸应力波幅值随距离衰减的关系式,为无临空面深层岩体爆破增渗方法中合理不耦合系数的选取提供了依据,并且这些关系式可以推广到与模型性质相似的岩石中应用;(3)初步揭示了爆破增渗的作用机理。
     4、研发了适用于测量模型渗透率的小尺度原位瞬态压力脉冲测试系统,并对爆破后模型进行了渗透率测量试验。试验结果表明:(1)本文提出的无临空面深层岩体爆破增渗方法增渗效果显著,爆破后模型渗透率提高了2~3个数量级;(2)确定了在不耦合装药爆破增渗中合理的不耦合系数范围为1.5~3,不耦合装药爆破增渗的范围大概为70倍的药包半径;(3)表明了爆生气体及微差爆破对渗透率提高的显著作用。
     5、通过爆破增渗模型试验研究和模型渗透率测量试验研究,揭示了无临空面深层岩体爆破增渗的作用机理:(1)爆炸冲击波致裂及微差爆破增渗机理;(2)不耦合装药爆破增渗机理;(3)空间补偿增渗机理;(4)爆生气体的驱动增渗机理。
     最后,作者对本文的研究工作做了总结,指出了其中存在的问题,并讨论了今后的研究工作。
In order to solve the low permeability of the ores in in-situ leach uranium mining from low-permeability sandstone-type uranium deposits, the method of blasting enhanced permeability of no free surface deep rock mass(abbreviated to BEPDR) is proposed in this thesis to increase the permeability of the ores with low permeability. A coupled damage-permeability dynamic constitutive model of rock under explosive load is developed. Based on studying the influence of different charge configurations on deep rock mass blasting effect, combined with a low-permeability sandstone-type uranium deposits in Inner Mongolia, China, the model tests of BEPDR and seepage characteristics test of the models are carried out, respectively. Then the feasibility, enhanced effect and mechanism of BEPDR are investigated. Some available conclusions are obtained and summarized as follows:
     1、Based on the evolved damage models, a coupled damage-permeability dynamic constitutive model of rock under explosive load is developed in this thesis. In this model it is assumed that the damage is initiated and controlled by the sum of all the principal tensile strains in place of volumetric strain at a point. The later was used in the evolved damage models to control the damage. This model doesn’t distinguish whether the material is in tension state or in compression state and simulates the damage induced by differential stress. Moreover, in this model it is also assumed that the permeability of rock is isotropy and the relational expression between of damage growth and permeability variation in brittle rocks is proposed.
     2、Based on the succession conditions at the interface on both sides of which the pressures and velocities must be equal,the initial shock-wave parameters of the medium surrounding a charge are given by calculating the equations valid for the reflected wave in the detonation products and the equations valid for the shock wave in the medium. Damping equation of stress waves, which is damped with increased distance of wave front from the vibration source, is extended from spherical charges to cylindrical charges based on the propagation theory of wave. Then the shock-wave parameters of the rock having the same distance from the detonation source are worked out in the case of decoupled charges and coupled charges. The conclusions obtained as follows:(1) the shock-wave pressure is tens or hundreds of times larger than compressive ultimate strength of rock,then the crush zone comes into being in the rock surrounding a charge. So blasting energy are vastly dissipated;(2) in contrast with couple charge blasting,decouple charge blasting could decrease the initial shock-wave pressure of bore wall’s rock. If the reasonable coefficient of decouple charge is adopted, the crush zone will disappear and the dissipation of energy will decrease;(3) water, between detonation products and rock, is indicated as an elastic buffer which protracts action time of shock wave, enlarges the action region of shock wave and increases the propagation of energy.
     3、Combined with a low-permeability sandstone-type uranium deposits in Inner Mongolia, China, based on the similarity theory of the model test, the preliminary model tests of BEPDR and the optimized model tests of BEPDR are designed and implemented. According to the results of the model tests, the conclusions obtain as follows: (1) blasting with coupling charging is not appropriate for BEPDR and the decoupling charging is recommended, moreover, elastic buffering effect of the decoupling medium(water) on the explosion wave is verified; (2) characteristic of homemade PVDF pressure transducer is proved, the damping relationships between blasting stress waves amplitude and distance of the wave front from the blasting source in the case of different decouple coefficients are fitting according to experimental results and this formulas could be applied in the rocks that their lithology is similar to the model; (3) the mechanism of the permeability increase of the BEPDR is preliminary revealed.
     4、Small-scale in situ transient pulse test system that could measure the permeability of the blasted models is developed. According to the results of the permeability of the blasted models, the conclusions obtain as follows: (1) the effect of the proposed method BEPDR on the increase of the permeability is remarkable, and compared with the permeability of original models, the permeability of blasted models is increased two or three orders of magnitude; (2) the reasonable decoupling coefficient should be within the range of 1.5~3 for the decoupling charging blast and the incidence of increasing permeability is about 70 times of the radius of charge; (3) the influence of the explosive gases and short delay blasting on the permeability is considerable.
     5、According to model tests of BEPDR and permeability tests of the models, the mechanism of the permeability increase of the BEPDR is revealed as follows: (1) blasting shock wave created cracks and short delay blasting action mechanism; (2) decouple charge blasting action mechanism; (3) space compensating action mechanism; (4) blasting gases driving action mechanism.
     At last, the research work are generalized, and the problems which need further study in the future are discussed.
引文
[1] 国家发展和改革委员会.核电中长期发展规划(2005~2020 年),2007.
    [2] 杨伯和.铀矿加工工艺学.出版信息不详.
    [3] 国防科工委.核工业“十一五”发展规划,2006.
    [4] 王正邦.国外地浸砂岩型铀矿地质发展现状与展望[J],铀矿地质,2002,18(1):9~21.
    [5] 阙为民,王海峰,田时丰等.我国地浸采铀研究现状与发展[J],铀矿冶,2005,24(3):113~117.
    [6] 王涛.高能气体压裂技术在濮城油田的研究与应用[J],油气井测试,2004,13(5):73~74.
    [7] 姜瑞忠,蒋廷学,汪永利.水力压裂技术的近期发展及展望[J],石油钻采工艺,2004, 26(4):52~57.
    [8] 石崇兵,李传乐.高能气体压裂技术的发展趋势[J],西安石油学院学报(自然科学版),2000,15(5):17~20.
    [9] 田和金,薛中天,李璗等.高能气体压裂联作技术进展[J],石油钻采工艺,2002,24(4):67~69.
    [10] 秦发动,吴晋军.我院高能气体压裂技术十年发展综述[J],西安石油学院学报,1997,12(3):14~17.
    [11] 马新仿.复合压裂技术研究[J],河南石油,2001,15(3):39~41.
    [12] J.L.吉德利等.水力压裂技术新发展[M],北京:石油工业出版社,1995.
    [13] 米卡尔 J.等著,张保平译.油藏增产措施(第三版),北京:石油工业出版社,2002.
    [14] 薄其众,葛刚,马功联.高能气体压裂技术与应用[J],海洋石油,2003,23(3):69~72.
    [15] 李安启,姜海,陈彩虹.我国煤层气井水力压裂的实践及煤层裂缝模型选择分析[J],天然气工业,2004,24(5):91~93.
    [16] 蒋金宝,林英松,阮新芳等.低渗透油藏改造技术的研究及发展[J],钻采工艺,2005,28(5):50-54.
    [17] 陈莉静.油井岩层复合射孔爆燃气体压裂机理研究[D],西安理工大学,2006.
    [18] 王艳萍,黄寅生,潘永新等.复合射孔技术的现状与趋势[J],爆破器材,2002,31(3):30~33.
    [19] 王安仕,吴晋军.射孔-高能气体压裂复合技术研究[J],西安石油学院学报,1997,12(4).
    [20] 罗勇,沈兆武,多面聚能射孔压裂排放瓦斯的研究[J],工程爆破,2005,11(1):68~71.
    [21] 金和田,薛中天,张杰等.“压胀松动”增产技术现场试验研究[J],石油钻采工艺,2000,22(2):46~50.
    [22] 李璗,田和金,张杰等.压涨对裂缝参数的影响[J],岩石力学与工程学报,2003,22(9):1417~1420.
    [23] 蓝成仁.穿层深孔爆破提高瓦斯抽防量[J],煤矿安全,2003,34(8):14~16.
    [24] 张光林.深孔松动爆破防治媒与瓦斯突出的分析[J],工业安全与环保,2002,28(3):17~21.
    [25] 李鸿宽,吴继园,刘思远.深孔预裂爆破强化抽放低透气性特厚煤层瓦斯的实践[J],煤矿安全,2003,34(2):12~14.
    [26] 田和金,李璗,张杰等,岩石的“压胀现象”与“爆炸松动”增产技术[J],石油钻采工艺,1997,19(supp):113~117.
    [27] 张杰,田和金,王爱华等,子长油矿 4207 裸眼井“压胀松动”增产技术现场试验[J],西安石油学院学报(自然科学版),2000,15(1):21~25.
    [28] 丁雁生,陈力,谢燮.低渗透油气田“层内爆炸”增产技术研究[J],石油勘探与开发,2001,28(2):90~96.
    [29] 李传乐,王安仕,李文魁.国外油气井“层内爆炸”增产技术概述及分析[J],石油钻采工艺,2001,23(5):77~78.
    [30] 杨悦,蒲春生,王萍.低频脉冲波对储层岩心渗流特性影响规律研究[J],西安石油大学学报(自然科学版),2007,22(3):123~126.
    [31] 宋建平,陈建华,刘斌.低频脉冲波强化采油技术研究及试验[J],石油钻采工艺,16(6):81~87.
    [32] 雷光伦.国内外振动采油技术的发展简介[J],钻采工艺,2002,25(6):46~48.
    [33] 郭三民.某砂岩型铀矿床原地浸出采矿的地质及水文地质条件可行性探讨[J],铀矿地质,1991,5:279~285.
    [34] 苏学斌.提高低渗透性矿床地浸钻孔涌水量的方法[J],铀矿冶,2005,24(4):174~179.
    [35] 高文学.岩石动态响应特性及损伤模型研究[D],北京:北京理工大学.1999.
    [36] Grady,D.E.,Kipp,M.E.,Continuum modeling of explosive fracture in oil shale[J], International Journal of Rock Mechanics & Mining Sciences,1980,17(2):147~157.
    [37] Kipp,M.E.,Grady,D.E.,Numerical studied of rock fragmentation,SAND-79-1582,Sandia National Laboratories, 1980.
    [38] Talor,L.M.,Chen,E.P.,Kuszmaul,J.S.,Microcrack-induced damage accumulation in brittle rock under dynamic loading[J],Computer Methods in Applied Mechanics and Engineering.1986,55(3):301~320.
    [39] Thorne,B.J.,A damage model for rock fragmentation comparison of calculation with blasting experiments in granite,SAND-90-1389,Sandia National Laboratories,1990.
    [40] Thorne,B.J.,Application of a damage model for rock fragmentation to the straight creek mine blast experiments,SAND-91-0867,Sandia National Laboratories,1991.
    [41] Liqing Liu,Katsabanis,P.D,Development of a continuum damage model for blasting analysis[J],International Journal of Rock Mechanics & Mining Sciences,1997,34(2):217~231.
    [42] Chen,E.P.,Dynamic brittle material response based on continuum damage model, SAND-94-2298,Sandia National Laboratories,1994.
    [43] Paterson,S.,Experimental deformation of rock:the brittle field[M],Berlin:Springer,1978.
    [44] Zhou,J.J.,Shao,J.F.,Xu,W.Y.,Coupled modeling of damage growth and permeability variation in brittle rocks[J],Mechanics Research Communications,2006,33:450~459.
    [45] Souley,M.,Homand,F.,Pepa,S.,Hoxha,D.,Damage-induced permeability changes in granite:a case example at the url in Canada[J],International Journal of Rock Mechanics and Mining Sciences,2001,38:297~310.
    [46] 谢和平.岩石、混凝土损伤力学[M].北京:中国矿业大学出版社,1990.
    [47] Shao,J.F.,Chau,K.T.,Feng,X.T.,Modeling of anisotropic damage and creep deformation in brittle rocks[J], International Journal of Rock Mechanics and Mining Sciences,2006,43:582~592.
    [48] Seamen,L.,Curran,D.R.,Shockey,D.A.,Computational models for ductile and brittle fracture[J],Journal of Applied Physics,1976,47(11):4814~4826.
    [49] Seamen,L.,Curran,D.R.,Murri,W.J.,A continuum model for dynamic tensile microfracture and fragmentation[J],Joural of Applied Mechanics.1985,52(3):593~600.
    [50] Grady,D.E.,Local inertial effects in dynamic fragmentation[J],Journal of Applied Physics,1982,53(1):322~325.
    [51] Grady,D.E.,Lipkin, L.,Criteria for impulsive rock fracture[J],Geophysics research letters, 1980,7(4):255~258.
    [52] Budiansky,B.,O’Connell,R.J.,Elastic moduli of a cracked solid[J],International Journal of Solids and Structures,1976,12(1):81~97.
    [53] Sang Ho Cho,Katsuhiko Kaneko,Influence of the applied pressure waveform on the dynamic fracture processes in rock[J],International Journal of Rock Mechanics & Mining Sciences,2004,41:771~784.
    [54] Chengqing Wu,Fuzzy dynamic damage analysis of rock mass[D],Singapore:Nanyang Technological University,2001.
    [55] 杨军.岩石爆破分形损伤模型研究[D].北京:中国矿业大学(北京),1994.
    [56] Kuszmaul,J.S.,A new constitutive model for fragmentation of rock under dynamic loading[J],2nd International Symposium on Rock Fragmentation by Blast,1987:412~424.
    [57] 凌建明.节理裂隙岩体损伤力学研究中的若干问题[J],力学进展,1994,24(2):257~264.
    [58] 金乾坤,杨永琦.岩石爆破的逾渗模型[J],爆破,1996,13(2):7~11.
    [59] 张继春,刘浩吾.岩体爆破松裂区的损伤机制及其数值模拟[J],爆炸与冲击,1996,16(3):250~258.
    [60] Jaeger,J.C.,Cook,N.G.W.,Fundamentals of rock mechanics[M],New York:Chapman & Hall,1979.
    [61] Bieniawski,Z.T.,Mechanism of brittle fracture of rock[J],International Journal of Rock Mechanics & Mining Sciences,1967,4(4):407~423.
    [62] 陈颙,黄庭芳.岩石物理学[M],北京:北京大学出版社,2001.
    [63] A.H.哈努卡耶夫.矿岩爆破物理过程[M],刘殿中译,北京:冶金工业出版社,1980.
    [64] Englman,R.,Jaeger,Z.,Theoretical aids for improvement of blasting efficiencies in oil shale and rocks,AP-TR-12/87,Soreq Nuclear Research Center,Yavne,Israel,1987.
    [65] Yang,R.,Bawden,W.F.,Katsabanis,P.D.,A new constitutive model for blasting damage[J], International Journal of Rock Mechanics Mining Sciences & Geomech. Abstr,1996,33(3): 245~254.
    [66] Holcomb,D.J.,Memory,relaxation and microfracturing in dilatant rock[J],Journal of Geophysical Research,1981,86(B7):6235~6248.
    [67] Holcomb,D.J.,Costin,L.S.,,Detecting damage surfaces in brittle materials using acoustic emissions[J],Journal of Applied Mechanics,1986,53(33):536~544.
    [68] Ls-dyna keyword user’s manual,Livermore Software Technology Corporation,2003.
    [69] Oda,M.,Takemura,T.,Aoki,T.,Damage growth and permeability change in triaxial compression tests of inada granite[J],Mechanics of Material,2002,34:313-331.
    [70] Brace,W.F.,Walsh,J.B.,Frangos,W.T.,Permeability of granite under high pressure[J],Journal of Geophysical Research,1968,73(6):2225-2236.
    [71] Oda,M.,Katsube,T.,Takemura,T.,Microcrack evolution and brittle failure of inada granite in triaxial compression tests at 140 MPa[J],Journal of Geophysical Research,2002,107(B10).
    [72] Chen,M.,Bai,M.,Modeling stress-dependent permeability for anisotropic fractured porous rocks[J],International Journal of Rock Mechanics & Mining Sciences,1998,35(8):1113~1119.
    [73] Mark,D.Z.,James,D.B.,The effect of microcrack dilatancy on the permeability ofwesterly granite[J],Journal of Geophysical Research,1975,80(5):752-755.
    [74] Souley,M.,Homand,F.,Hoxha,D.,et al.,Damage around a keyed URL excavation:change in permeability induced by microcracks growth,Proceedings of the international FLAC symposium,On numerical modeling in geomechanics,Rotterdam:Balkema,1999,205~213.
    [75] Xiaochun Li,Permeability change in sandstones under compressive stress conditions[D],Ibaraki University,2001.
    [76] Henrych,J.,The dynamics of explosion and its use[M],New York:Elesvier Scientific Publishing Company,1979.
    [77] 杨小林,员小有,梁为民.不偶合装药爆炸作用机理及试验研究[J].煤炭学报,1998,23(2):130~134.
    [78] 武海军,杨军,黄风雷等.不同耦合装药下岩石的应力波传播特性[J],矿业研究与开发,2002,22(1):44~47.
    [79] 陈士海,崔新壮.水偶合装药与全偶合装药爆破效能讨论[J].爆破,1998,15(2):10~13.
    [80] 宗琦,罗强.炮孔水耦合装药爆破应力分布特性试验研究[J].实验力学,2006,21(3):393~397.
    [81] 颜事龙,徐颖.水耦合装药爆破破岩机理的数值模拟研究[J],地下空间与工程学报,2005,1(6):921~925.
    [82] 罗云滚,罗强,宗琦.炮孔水耦合装药爆破孔壁冲击压力研究[J],安徽理工大学学报(自然科学版),2004,24:60~63.
    [83] 凌伟明.岩石爆破炮孔孔壁压力的试验研究[J],矿冶,2004,13(4):13~16.
    [84] 李金河,赵继波,池家春等.水中爆炸冲击波传播规律的实验研究[J],高能量密度物理,2007,(1):25~28.
    [85] 李开文.我国地浸采铀工艺成功展现了铀矿工业的发展前景-对新疆某铀矿地浸工业试验成果的技术经济评价[J],中国矿业.2004,13(9):1~6.
    [86] 罗梅.加速发展地浸与堆浸技术开发我国的矿产资源[J],铀矿地质,1999,15(4):193~197.
    [87] 采矿手册第三卷:冶金工业出版社,北京:1991.
    [88] 姚益轩,阙为民,苏学斌等.地浸采铀中几个重要因素的技术经济分析[J],铀矿开采,1999,23(3-4):1~8.
    [89] 潘燕译.哈萨克斯坦的铀生产和环境[J],世界核地质科学,2003,20(2):79~84.
    [90] 刘增洁.2006 年世界铀资源、生产及供需现状,资源网,2007,12 月,13 号.
    [91] 张振强.地浸采铀技术与工艺[J],资源调查与环境,2002,23(3):200~204.
    [92] 姚益轩,刘乃忠,霍建党等.砂岩铀矿床原地浸出开采条件评价[J],铀矿冶,2002,21(4):169~175.
    [93] 内蒙某铀矿床地浸采铀条件试验技术总结,核工业北京化工冶金研究院.
    [94] 杜晓松,杨邦朝,周鸿仁.PVDF 冲击压力传感器的制备和应用[J],功能材料,2002,33(1):15~18.
    [95] Kawai. H.,The Piezoelectricity of Polyvinyldene Fluoride[J].Journal of Applied Physics,1969,8(7):975-976.
    [96] 巫绪涛.钢纤维高强混凝土动态力学性质的研究[D],中国科技大学,2006.
    [97] Bauer,F,Method and device for polarizing Ferroelectric materials[P],United States Patent:4611260:1986.
    [98] Graham,R.A.,Bauer,F.,Response of bauer piezoelectric polymer stress gauges to shock loading[A],Schmidt,S.C.,Holmes,N.C.,Shock waves condensed matter-1987[C], Elsevier science publishers BV,1988:619-622.
    [99] Reed,R.P.,Graham,R.A.,Moore,L.M.,etal,The sandia standard of for pvdf shock sensors[A] , Schmidt , S.C. , Davison , L.W. , Shock compression of condensed matter-1989[C],Elsevier science publishers BV,1990:825-828.
    [100] 赵红平,叶琳,陆中琪.PVDF 压电薄膜在应力波测量中的应用[J],力学与实践,2004,26:37~41.
    [101] 李 焰,张向荣,谭红梅等.国产 PVDF 压电薄膜的冲击加载及卸载响应研究[J],高压物理学报,2004,18(3):261~266.
    [102] 余尚江,李科杰.混凝土结构内冲击波应力传感器设计及其行为[J],爆炸与冲击,2005,25(4):350~354.
    [103] 陶纪南,张克利等.土岩爆破相似律与爆破参数优化[M],北京:科学出版社,1998.
    [104] 马建军,熊祖钊,段卫东等.工程爆破模拟试验的相似律[J],武汉科技大学学报(自然科学版),2001,24(2):170-173.
    [105] 杨振声.工程爆破的模型试验与模型律[J],工程爆破,1995,1(2):1~10.
    [106] 刘殿中,杨仕春.工程爆破实用手册(第二版)[M],北京:冶金工业出版社,2003.
    [107] 周传波,卢方伟.一次爆破成井物理模型试验研究[J],爆破器材,2004,33(6):1~8.
    [108] 杨祖光.裂隙对岩石爆破破碎的影响[A],第一届爆破破岩国际会议论文集[C],长沙,1985.
    [109] Gert Bjarnholt,露天矿山台阶模型爆破[A],第一届爆破破岩国际会议论文集[C],长沙,1985.
    [110] 杨文渊.工程爆破常用数据手册[M],北京:人民交通出版社,2002.
    [111] 中华人民共和国国家标准,爆破安全规程,北京:中国标准出版社,2003.
    [112] J. 贝尔,著.李竞生,称崇希译.多孔介质流体动力学[M],中国建筑工业出版社,北京,1983.
    [113] BRACE,W.F.,WALSH,J.B.,FRANGOS,W.T.,Permeability of granite under high pressure[J],Journal of Geophysical Research,1968,73(6):2225–2236.
    [114] Hsieh,P.A.,Tracy,J.V.,Neuzil,C.E.,et al.A transient laboratory method for determining the hydraulic properties of ‘tight’rocks—I. Theory[J],International Journal of Rock Mechanics Mining Sciences & Geomech. Abstr.,1981,18(3):245~252.
    [115] Neuzil,C.E.,Cooley,C.,Silliman,S.E.,A transient laboratory method for determining the hydraulic properties of tight rocks–II. Application[J],International Journal of Rock Mechanics Mining Sciences & Geomech. Abstr.,1981,18(3):253~258.
    [116] Stormont,J.C.,Howard,C.L.,Daemen,J.J.K.,In Situ Measurements of Rock Salt Permeability Changes Due to Nearby Excavation,SANDIA REPORT Printed July 1991.
    [117] Takeda,M.,Zhang,M.,Esaki,T.,Mitani,Y.,Effects of anisotropy and heterogeneity of rock mass on in-situ permeability tests,ISRM 2003–Technology roadmap for rock mechanics,South African Institute of Mining and Metallurgy,2003,1195~1198.
    [118] 李小春,高桥学,吴智深等.瞬态压力脉冲法及其在岩石三轴试验中的应用[J],岩石力学与工程学报,2001,20(增 1):1725~1733.
    [119] 张铭.低渗透岩石试验理论及装置[J],岩石力学与工程学报,2003,22(6):919~925.
    [120] 阮小平,李方全.三峡坝区水库诱发地震研究[M],北京:地震出版社,1993.
    [121] 陈群策,祁英男,毛吉震等.利用压力脉冲试验测定某地花岗岩体的渗透系数[J],岩土力学,26(9):1469~1472.
    [122] Bredehoeft,J.D.,Papadopulos,S.S.,A method for determining the hydraulic properties of tight formations[J],Water Resources Research,1980,16(1):233~238.
    [123] Bauer,C.,Homand,F.,Henry,J.P.,Technical note in situ low permeability pulse test measurements[J],International Journal of Rock Mechanics Mining Sciences & Geomech. Abstr.,1995,32(4):357~363.
    [124] 陈卫忠,杨建平,伍国军等.低渗透介质渗透性试验研究[J],岩石力学与工程学报,2008,27(2):236~243.
    [125] 王旭生,陈占清.岩石渗透试验瞬态法的水动力学分析[J],岩石力学与工程学报,2006,25(增 1):3098~3103.
    [126] SL 31—2003 水利水电工程钻孔压水试验规程[S],北京:中国水利水电出版社,2003.
    [127] 孙荣琳,梁杏,靳孟贵.裂隙岩体渗透系数确定方法综述[J],水文地质工程地质,2006,6:120~123.
    [128] 李玉璞,王献坤,郭东兴等.稳定流抽水试验存在的问题及对策-以王岗水源地抽水试验为例[J],地下水,2007,29(4):64~67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700