双馈异步风力发电机系统电网故障穿越(不间断)运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风电机组装机容量的日益扩大和并网规范要求的不断提高,促使目前国际风电技术的主要研发动向是从正常电网条件下风电机组的变速恒频运行转向电网故障下的穿越运行,其中最为瞩目的研究内容是:适应电网故障下运行的基于双馈异步发电机(DFIG)风电机组的控制模型和控制策略;电网故障对DFIG风电机组影响和保护对策;电网故障下DFIG风电机组的不间断运行控制策略。更为重要的是目前的故障运行研究已从对称故障向不对称故障范畴延伸,这正是风电领域需要努力工作、做出创新贡献且具有挑战性的新研究方向。
     本文以与大电网或与分布式输电系统相联的DFIG风力发电机系统(简称DFIG风电机组)在外部电网对称、不对称故障下的不间断运行(穿越运行)与控制为主题,从理论分析、运行仿真和实验验证三个方面全方位地进行了全面、深入、细致的研究,获得了一些同步甚至超前于国际风电技术先进水平的重要结论与自主创新研究成果。
     1.建立了三相定子静止坐标系、两相静止坐标系和两相任意速旋转坐标系中表达的DFIG励磁用网侧PWM变换器和转子侧PWM变换器的精确数学模型。在此基础上,构建了两相同步速旋转坐标系中包括电网状态、DFIG发电机及网侧、转子侧PWM变换器在内的完整风力发电机系统模型,分析了该系统的瞬时有功、无功功率成分。随后,针对网侧PWM变换器引入了基于电网电压定向的直流环节电压、电流双闭环矢量控制策略,针对转子侧PWM变换器建立了两相同步速旋转坐标系中计及定子电压变化、励磁电流过渡过程的DFIG精确控制模型,进一步又提出了分别基于定子电压定向、定子磁链定向的两种改进矢量控制方案,奠定了DFIG风电机组运行分析和电网电压骤降(跌落)故障下实施有效控制的理论基础。仿真分析验证了所建立的DFIG本体精确模型和改进的两种DFIG风电机组矢量控制策略在较小值电网电压骤降故障下实施控制的有效性。
     2.重点研究了不平衡电网电压条件下DFIG风电机组的运行性能评估、动态建模与增强不间断运行能力的控制对策设计,包括:评估了电网电压不平衡时所包含的负序电压对DFIG励磁用网侧、转子侧变换器运行影响;采用对称分量法建立了不平衡电网电压条件下包括DFIG发电机、网侧、转子侧变换器在内的完整风力发电机系统正、负序dq轴模型;针对DFIG网侧、转子侧变换器分别提出了不平衡电网电压条件下的增强运行能力控制对策及相应的有功、无功功率与正、负序电流指令算法。
     3.基于不平衡电网电压条件下包括网侧、转子侧变换器在内的正、负序分量形式DFIG风力发电机组完整数学模型,提出、讨论、验证、评估了适合于不平衡电网电压条件下DFIG风力发电机励磁用网侧、转子侧变换器的四种不同正、负序电流控制方案,即正、反转同步速旋转坐标系中的双d-q、PI控制、正、反转同步速旋转坐标系中的主、辅电流控制、两相静止坐标系中及正转同步速旋转坐标系中的比例-谐振(PR)控制和比例-积分-谐振(PI-R)控制方案,以此实现了所提出的电网电压不平衡条件下网侧、转子侧变换器增强运行能力控制的各个目标。翔实的仿真和严格的实验验证了各种电流控制方案在不平衡电网电压条件下的优良控制性能。
     4.研究了严重对称电压骤降(跌落)时DFIG风电机组的控制策略和保护方案,优化了转子crowbar的投/切时刻,分析了转子crowbar所用串联耗能电阻大小对交流电网恢复的影响,并在此基础上提出了一种采用串联电阻的crowbar和改进网侧变换器控制的低电压穿越运行方案;基于不对称电网故障时DFIG风电机组运行特性,分析了大值不对称故障下励磁变频器中网侧、转子侧变换器容量对两者协同控制的影响,据此提出了一种计及有限励磁变频器容量的改进DFIG不对称电网故障穿越运行控制新策略,仿真结果验证了其有效性。
     5.为了验证电网电压不平衡条件下DFIG风电机组增强运行能力控制策略的有效性和实用性,获得有实用价值的创新性关键风电技术成果,设计和研制了一台基于双PWM变换器(网侧和转子侧PWM变换器)的变速恒频双馈风力发电机组实验样机系统,对电网电压不平衡条件下DFIG风电机组网侧、转子侧变换器不同增强控制目标、不同正、负序电流控制方案、网侧、转子侧变换器协同控制策略等分别在几种典型运行工况情况下进行了系统深入的实验研究,获得了相对完整的实验成果,对本论文提出的对称、不对称故障下交流励磁DFIG发电机系统基础理论和关键技术从实践角度进行了有效地验证和进一步创新,实现了理论联系实际的全面研究。
As the increased penetration of wind power generations in power system, modern grid codes concerning grid-connected wind turbines are developed. As a result, the steady-state response and variable-speed constant-frequency (VSCF) performance of Doubly Fed Induction Generator-based (DFIG-based) wind turbines under normal grid conditions is well understood and applied. The fault ride-through (FRT) operation and control of the DFIG wind power system when network fault conditions has been the main subject of much recent research and development worldwide. The attractive research subjects are as follows, viz., modeling and control of wind turbine driven DFIG adjusting to network fault operation; impact of grid fault on the DFIG and the associated protection schemes; control strategies for ride-through operation of DFIG generation system during network fault. Among them, the most important is that research on the FRT operation has covered asymmetrical grid faults as well as symmetrical ones, which is a challenging and innovative research subject in the field of global wind power technologies.
     This dissertation intends to study the enhanced control and the fault ride-through operation of wind farms based on DFIG, connected to either a transmission system or embedded within a distribution system, when the network is faulted either symmetrically or asymmetrically. Comprehensive, thorough and detailed studies with respect to theoretical analysis, simulated operations and experimental verifications, are carried out. Keeping in step with advanced wind power technologies globally, some important conclusions and independent-innovative achievements are made and obtained.
     1. The precise mathematical model of DFIG's grid-side converter (GSC) and rotor-side converter (RSC) are created and expressed in the three-phase stator stationary reference frame, two-phase stator stationary reference frame and two-phase rotating reference frame at arbitrary angular speed, respectively. Based on the model, the dissertation presents an integrated system model with network, DFIG, GSC and RSC included in the two-phase synchronous reference frame, and analyzes the system's instantaneous active and reactive powers. Thereafter, a classical vector control scheme based on grid/stator voltage orientation (GVO/SVO) and composed of dual closed-loops, viz., DC-link voltage control and AC current control loops, for DFIG's GSC is introduced. While for RSC, a precise control model taking the stator voltage variation transients into account is constructed in the synchronous reference frame, and accordingly two improved vector control schemes are suggested based on stator voltage orientation (SVO) and stator flux orientation (SFO), respectively. Simulated analysis verifies the correctness and effectiveness of the proposed DFIG's control model and the system's new vector control schemes under relatively small grid voltage dips. It is clearly shown that the two proposed control model designs are useful tools for DFIG fault studies and can be used to determine the required converter rating and protection device settings.
     2. Under unbalanced network voltage conditions, evaluation of the DFIG's operation, dynamic modeling of DFIG's system and design of enhanced control strategies are emphasized. At first, evaluation of the impact of unbalanced network voltage on the DFIG and associated GSC and RSC are carried out. Secondly, via symmetric-component method, novel unified mathematical d-q models of DFIG, GSC and RSC in the positive and negative synchronously rotating frames under unbalanced grid voltage conditions are deduced. Finally, for GSC and RSC four different enhanced control targets are proposed, respectively. According to the positive and negative sequence active and reactive power orders, associated positive and negative sequence current orders are presented in the positive and negative synchronous reference frames.
     3. Under unbalanced grid voltage conditions, based on the precise models of entire DFIG system, including GSC and RSC, in terms of positive and negative sequence components, the dissertation proposes, discusses, verifies and evaluates four different control schemes for positive/negative sequence currents of DFIG-used GSC and RSC. The four control schemes are dual d-q PI current controllers implemented in the respective positive and negative synchronous reference frames, main and auxiliary current controllers in the positive and negative synchronous reference frames, proportional resonant (P-R) current controller in the two-phase stator stationary reference frame and proportional integral plus resonant (PI-R) in the positive synchronous reference frame. Once the positive and negative sequence currents are fully regulated, the proposed enhanced control targets for GSC and RSC are completely realized during network unbalance. Detailed simulations and comprehensive experiments verify the feasibility and performance of each current control schemes when the network voltage is unbalanced.
     4. The dissertation studies control strategies and protection schemes for DFIG wind generation systems under serious grid voltage dip conditions. The timing of rotor crowbar's switching on and off is optimized. The impact of value of resistor series-connected to rotor crowbar on faulted network recovery is analyzed. On the basis, a FRT operation scheme composed of a series-connected resistor rotor crowbar and an improved grid-side converter control strategy is proposed. Concerning the operation characteristics of wind turbine driven DFIG system during network unbalance, the dissertation analyzes the impact of limited ratings of GSC and RSC on the coordinated control strategies when the network voltage is relatively larger unbalanced. Thereafter, another improved unbalanced FRT control scheme for DFIG system by taking into account the limited converter's ratings is presented and simulated results are shown to confirm its feasibility.
     5. In order to verify the effectiveness and practicability of the enhanced control strategies for DFIG wind power generation systems during network voltage unbalance, the dissertation designs and develops a VSCF DFIG test rig based on GSC and RSC. On the test rig, detailed experiments are carried out under a few classical operation conditions when the network voltage is unbalanced. Several practical and independent-innovative achievements on key wind power technologies are obtained, viz., different enhanced control targets for GSC and RSC during network unbalance, various positive/negative sequence current control schemes and coordinated control strategies of GSC and RSC under unbalanced network voltage conditions. The experimental results further confirm the feasibility of the proposed basic theories and key technologies for AC-excited DFIG wind power system under both symmetrical and asymmetrical network fault conditions. As a result, theory and practice are achieved thoroughly.
引文
[1]国家中长期科学和技术发展规划纲要(2006-2020年).网址:http://www.most.gov.cn/yw/t20060209_28601_0.doc.
    [2]国 家 “ 十 一 五 ” 科 学 技 术 发 展 规 划 . 网 址 :http://www.kxsz.org.cn/webedit/uploadfile.do?action=open&filepath=file/file96f7538481ab.doc.
    [3]863计划先进能源技术领域2006、2007、2008年度专题课题申请指南.网址:program.most.gov.cn.
    [4]C. L. Archer, M. Z. Jacobson. Evaluation of Global Wind Power [J]. Journal of Geophysical Research, Vol.110, D12110, doi:10.1029/2004JD005462,2005.
    [5]China Meteorology Bureau:China Wind Resource Assessment Report,2006.
    [6]S. L. Weng. Technical Feasible Wind Resource Exceeds 1000GW in China. April 23,2008.网址:http://www.newenergy.org.cn.
    [7]C. L. Xia, Z. F. Song. Wind Energy in China:Current Scenario and Future Perspective [J]. Renewable and Sustainable Energy Reviews,网 址 :http://linkinghub.elsevier.com/retrieve/pii/S 1364032109000148.
    [8]我国风能资源分布(小资料).网址:http://www.newenergy.org.cn/Html/0062/2006217_7650.html.
    [36]R. Datta, V. T. Ranganathan. Direct Power Control of Grid-Connected Wound Rotor Induction Machine Without Rotor Position Sensors [J]. IEEE Transactions on Power Electronics,2001,16(3):390-399.
    [37]L. Xu, P. Cartwright. Direct Active and Reactive Power Control of DFIG for Wind Energy Generation [J]. IEEE Transactions on Energy Conversion,2006,21(3):750-758.
    [38]G. Abad, M. A. Rodriguez, J. Poza. Two-Level VSC-Based Predictive Direct Power Control of the Doubly Fed Induction Machine with Reduced Power Ripple at Low Constant Switching Frequency [J]. IEEE Transactions on Energy Conversion,2008,23(2):570-580.
    [39]D. Zhi, L. Xu. Direct Power Control of DFIG With Constant Switching Frequency and Improved Transient Performance [J]. IEEE Transactions on Energy Conversion,2007,22(1):110-118.
    [40]D. Zhi, L. Xu, J. Morrow. Improved Direct Power Control of Doubly-Fed Induction Generator Based Wind Energy System [C]. IEEE International Electric Machines and Drives Conference,2007:436-441.
    [41]National Grid Transco, "Appendixl, Extracts from the Grid Code-Connection Conditions,"www.nationalgrid.com, Feb.2004
    [42]“三相电压允许不平衡度”,中华人民共和国国家标准-电能质量,GB/T 15543·1995,1996.
    [43]M. H. J. Bollen. Understanding Power Quality Problems:Voltage Sags and Interruptions [M]. New York, IEEE Press,1999.
    [44]M. Kezunovic, Y. Liao. A New Method for Classification and Characterization of Voltage Sags [J]. Electric Power Systems Research,2001,58(1):27-35.
    [45]M. H. J. Bollen, L. D. Zhang. Different Methods for Classification of Three-Phase Unbalanced Voltage Dips due to Faults [J]. Electric Power Systems Research,2003,66(1):59-69.
    [46]I. Erlich, U. Bachmann. Grid Code Requirements Concerning Connection and Operation of Wind Turbines in Germany[C]. IEEE Power Engineering Society General Meeting, June 12-16,2005,2: 1253-1257.
    [47]I. Erhich, W. Winter, A. Dittrich. Advanced Grid Requirements for the Integration of Wind Turbines into the German Transmission System [C]. IEEE Power Engineering Society General Meeting, October,2006.
    [48]C. Jauch, J. Matevosyan, T. Ackermann, S. Bolik. International Comparison of Requirements for Connection of Wind Turbines to Power Systems [J]. Wind energy,2005,8(3):295-306.
    [49]J. Morren, S.W.H. de Haan. Ride Through of Wind Turbines with Doubly-Fed Induction Generator during a Voltage Dip [J]. IEEE Transactions on Energy Conversion,2005,20(2):435-441.
    [50]T. Sun, Z. Chen, F. Blaabjerg. Transient Stability of DFIG Wind Turbines at an External Short-Circuit Fault [J]. Wind Energy,2005,8(3):345-360.
    [51]B. Idsoe Nass, T. Undeland, T. Gjengedal. Methods for Reduction of Voltage Unbalance in Weak Grids Connected to Wind Plants [C]. IEEE Workshop on Wind Power and The Impacts on Power Systems, Norway, June 2002, pp.17-18.
    [52]C. Hochgraf, R. H. Lasseter. STATCOM Controls for Operation with Unbalanced Voltage [J], IEEE Transactions on Power Delivery,1998,13(2):538-544.
    [53]H. S. Song, K. Nam. Dual Current Control Scheme for PWM Converter under Unbalanced Input Voltage Conditions [J]. IEEE Transactions on Industrial Electronics,1999,46(5):953-959.
    [54]Y. Suh. Analysis and Control of Three-Phase AC/DC PWM Converter under Unbalanced Operating Conditions [D]. University of Wisconsin-Madison,2004.
    [55]J. Svensson, A. Sannino. Active Filtering of Supply Voltage with Series-connected Voltage Source Converter [J]. EPE Journal,2002,12(1):19-25.
    [56]L. Xu, B. R. Andersen, P. Cartwright. VSC Transmission System Operating under Unbalanced Network Conditions-Analysis and Control Design [J]. IEEE Transactions on Power Delivery,2005,20(1): 427-434.
    [57]F. A. Magueed, A. Sannino, J. Svensson. Transient Performance of Voltage Source Converter under Unbalanced Voltage Dips [C].35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany,2004:1163-1168.
    [58]L. Xu, Y. Wang. Dynamic Modeling and Control of DFIG-Based Wind Turbines Under Unbalanced Network Conditions [J]. IEEE Transactions on Power Systems,2007,22(1):314-323.
    [59]T. K. A. Brekken, N. Mohan. Control of a Doubly Fed Induction Wind Generator Under Unbalanced Grid Voltage Conditions [J]. IEEE Transactions on Energy Conversion,2007,22(1):129-135.
    [60]J. Arbi, I. Slama-Belkhodia, S. A. Gomez. Control of a DFIG-based Wind System in Presence of Large Grid Faults:Analysis of Voltage Ride Through Capability [C].9th International conference on electrical power quality and utilization (EPQU), Oct.9-11,2007:1-6.
    [61]A. Petersson, S. Lundberg, T. Thiringer. A DFIG Wind Turbine Ride-through System. Influence on the Energy Production [J]. Wind Energy,2005,9(8):251-263.
    [62]A. D. Hansen, G. Michalke, P. Sorensen, T. Lund. Coordinated Voltage Control of DFIG Wind Turbines in Uninterrupted Operation during Grid Faults [J]. Wind Energy,2006,10(10):51-68.
    [63]D. Xiang, L. Ran, P. J. Tavner, S. Yang. Control of a Doubly Fed Induction Generator in a Wind Turbine During Grid Fault Ride-Through [J]. IEEE Transactions on Energy Conversion,2006,21(3):652-662.
    [64]李建林,赵栋利,李亚西.适合于变速恒频双馈感应发电机的Crowbar对比分析[J].可再生能源,2006,5:57-60.
    [65]D. Santos-Martin, J. L. Rodriguez-Amenedo, S. Arnalte. Direct Power Control Applied to Doubly Fed Induction Generator Under Unbalanced Grid Voltage Conditions [J]. IEEE Transactions on Power Electronics,2008,23(5):2328-2336.
    [66]Janos Rajda, Anthony William Galbraith, Colin David Schauder. Device, System, and Method for Providing a Low-Voltage Fault Ride-Through for a Wind Generator Farm [P]. United States, US 2006/0267560 A1. Nov.30,2006.
    [67]P. S. Flannery, G. Venkataramanan. Evaluation of Voltage Sag Ride-Through of a Doubly Fed Induction Generator Wind Turbine with Series Grid Side Converter [C]. IEEE Power Electronic Specialists Conference,2007:1839-1845.
    [68]P. S. Flannery, G. Venkataramanan. A Fault Tolerant Doubly Fed Induction Generator Wind Turbine Using a Parallel Grid Side Rectifier and Series Grid Side Converter [J]. IEEE Transactions on Power Electronics,2008,23(3):1126-1135.
    [69]D. N. Zmood, D. G. Holmes. Stationary Frame Current Regulation of PWM Inverters with Zero Steady-State Error [J]. IEEE Transactions on Power Electronics,2003,18(3):814-822.
    [70]X. Yuan, W. Merk, H. Stemmler, J. Allmeling. Stationary-Frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-State Error for Current Harmonics of Concern Under Unbalanced and Distorted Operating Conditions [J]. IEEE Transactions on Industry Application,2002, 38(2):523-532.
    [71]Y. S. Suh, V. Tijeras, T. A. Lipo. A Nonlinear Control of the Instantaneous Power in dq Synchronous Frame for PWM AC/DC Converter under Generalized Unbalanced Operating Condition [C]. In Proceeding of IEEE-IAS Annual Meeting,2002, pp.1189-1196.
    [72]Y. S. Suh, V. Tijeras, T. A. Lipo. Control Scheme in Hybrid Synchronous Frame for PWM AC/DC Converter under Generalized Unbalanced Operating Condition [J]. IEEE Transaction on Industry Applications,2006,42(3):825-835.
    [73]国家电网公司,风电场接入电网技术规定(修订版),2009年2月。
    [1]A. Petersson, S. Lundberg, T. Thiringer. A DFIG Wind Turbine Ride-through System. Influence on the Energy Production [J]. Wind Energy,2005,8(3):251-263.
    [2]A. Petersson, S. Lundberg, T. Thiringer. Evaluation of Current Control Methods for Wind Turbines Using Doubly-Fed Induction Machines [J]. IEEE Transactions on Power Electronics,2005,20(1):227-235.
    [3]A. Petersson, T. Thiringer, S. Lundberg, T. Petru. Modeling and Experimental Verification of Grid Interaction of a DFIG Wind Turbine [J]. IEEE Transactions on Energy Conversion,2005,20(4):878-886.
    [4]J. Lopez, P. Sanchis, X. Roboam, L. Marroyo. Dynamic Behavior of the Doubly Fed Induction Generator During Three-Phase Voltage Dips [J]. IEEE Transactions on Energy Conversion,2007,22(3):709-717.
    [5]J. Morren, S. W. H. de Haan. Ride Through of Wind Turbines with Doubly-Fed Induction Generator during a Voltage Dip [J]. IEEE Transactions on Energy Conversion,2005,20(2):435-441.
    [6]T. Sun, Z. Chen, F. Blaabjerg. Transient Stability of DFIG Wind Turbines at an External Short-Circuit Fault [J]. Wind Energy,2005,8(3):345-360.
    [7]J. B. Ekanayake, L. Holdsworth, N. Jenkins. Comparison of 5th Order and 3rd Order Machine Models for Doubly Fed Induction Generator (DFIG) Wind Turbines [J]. Electric Power System Research,2003, 67(3):207-215.
    [8]D. Xiang, L. Ran, P. J. Tavner, S. Yang. Control of a Doubly Fed Induction Generator in a Wind Turbine During Grid Fault Ride-Through [J]. IEEE Transactions on Energy Conversion,2006,21(3):652-662.
    [9]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170.
    [10]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究[J].中国电机工程学报,2006,26(10):130-135.
    [11]J. A. Baroudi, V. Dinavahi, A. M. Knight. A Review of Power Converter Topologies for Wind Generators [J]. Renewable Energy,2007,32(14):2369-2385.
    [12]贺益康,何鸣明,赵仁德,潘再平.双馈风力发电机交流励磁用变频电源拓扑浅析[J].电力系统自动化,2006,30(4):105-112.
    [13]J. W. Choi, S. K. Sul. Fast Current Controller in Three-Phase AC/DC Boost Converter Using d-q Axis Cross Coupling [J]. IEEE Transactions on Power Electronics,1998,19(1):179-185.
    [14]张兴.PWM整流器及其控制策略的研究[博士学位论文].安徽合肥,合肥工业大学,2003:33-180.
    [15]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003:62-320.
    [16]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[博士学位论文].浙江杭州,浙江大学,2005:43-87.
    [17]赵仁德,贺益康,刘其辉.提高PWM整流器抗负载扰动性能研究[J].电工技术学报,19(8):67-72.
    [18]R. Pena, J. C. Clare, G. M. Asher. Doubly Fed Induction Generator Using Back-to-back PWM Converters and its Application to Variable-Speed Wind-Energy Generation [J]. IEE Proc. Electric Power Applications,1996,143(3):231-241.
    [19]A. Petersson, S. Lundberg, T. Thiringer. Comparison Between Stator-Flux and Grid-Flux-Oriented Rotor Current Control of Doubly-Fed Induction Generators [C].35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany,2004:482-486.
    [20]A. Petersson. Analysis, Modeling and Control of Doubly-Fed Induction Generators for Wind Turbines [D]. Goteborg, Chalmers University of Technology,2005.
    [21]刘其辉.变速恒频风力发电系统运行与控制研究[博士学位论文].浙江杭州,浙江大学,2005:137-156.
    [22]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):87-90.
    [23]M. P. Kazmierkowski, R. Krishnan, F. Blaabjerg. Control in Power Electronics:Selected Problems [M]. New York:Academic Press,2002.
    [24]赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究[J].中国电机工程学报,2005,25(20):56-61.
    [25]M. Malinowski, M. Jasinski, M. P. Kazmierkowski. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPC-SVM) [J]. IEEE Transactions on Industrial Electronics, 2004,51(2):447-457.
    [26]S. A. Larrinaga, M. A. Rodriguez Vidal, E. Oyarbide, J. R. T. Apraiz. Predictive Control Strategy for DC/AC Converters Based on Direct Power Control [J]. IEEE Transactions on Industrial Electronics,2007, 54(3):1261-1271.
    [27]D. Zhi, L. Xu. Direct Power Control of DFIG With Constant Switching Frequency and Improved Transient Performance [J]. IEEE Transactions on Energy Conversion,2007,22(1):110-118.
    [28]G. Abad, M. A. Rodriguez, J. Poza. Two-Level VSC-Based Predictive Direct Power Control of the Doubly Fed Induction Machine with Reduced Power Ripple at Low Constant Switching Frequency [J]. IEEE Transactions on Energy Conversion,2008,23(2):570-580.
    [29]G. Abad, M. A. Rodriguez, J. Poza. Two-Level VSC Based Predictive Direct Torque Control of the Doubly Fed Induction Machine With Reduced Torque and Flux Ripples at Low Constant Switching Frequency [J]. IEEE Transactions on Power Electronics,2008,23(3):1050-1061.
    [30]D. Santos-Martin, J. L. Rodriguez-Amenedo, S. Arnalte. Direct Power Control Applied to Doubly Fed Induction Generator Under Unbalanced Grid Voltage Conditions [J]. IEEE Transactions on Power Electronics,2008,23(5):2328-2336.
    [31]胡家兵,孙丹,贺益康,赵仁德.电网电压骤降下双馈风力发电机建模与控制[J].电力系统自动化,2006,30(8):21-26.
    [32]HU Jiabing, HE Yikang. Dynamic Modeling and Robust Current Control of Wind-Turbine Driven DFIG during External AC Voltage Dip [J]. Journal of Zhejiang University, SCIENCE A,2006,7(10): 1757-1764.
    [1]R. Pena, J. C. Clare, G. M. Asher. Doubly Fed Induction Generator using Back-to-Back PWM Converters and its Application to Variable-Speed Wind-Energy Generation [J]. IEE Proc. Electric Power Applications,1996,143(3):231-241.
    [2]刘其辉.变速恒频风力发电系统运行与控制研究[博士学位论文].浙江杭州,浙江大学,2005:]37-156.
    [3]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[博士学位论文].浙江杭州,浙江大学,2005:89-112.
    [4]A. Petersson, S. Lundberg, T. Thiringer. A DFIG Wind Turbine Ride-through System. Influence on the Energy Production [J]. Wind Energy,2005,8(3):251-263.
    [5]J. Lopez, P. Sanchis, X. Roboam, L. Marroyo. Dynamic Behavior of the Doubly Fed Induction Generator During Three-Phase Voltage Dips [J]. IEEE Transactions on Energy Conversion,2007,22(3):709-717.
    [6]J. Morren, S.W.H. de Haan. Ride Through of Wind Turbines with Doubly-Fed Induction Generator during a Voltage Dip [J]. IEEE Transactions on Energy Conversion,2005,20(2):435-441.
    [7]T. Sun, Z. Chen, F. Blaabjerg. Transient Stability of DFIG Wind Turbines at an External Short-Circuit Fault [J]. Wind Energy,2005,8(3):345-360.
    [8]D. Xiang, L. Ran, P. J. Tavner, S. Yang. Control of a Doubly Fed Induction Generator in a Wind Turbine During Grid Fault Ride-Through [J]. IEEE Transactions on Energy Conversion,2006,21(3):652-662.
    [9]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170.
    [10]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究[J].中国电机工程学报,2006,26(10):130-135.
    [11]I. Codd. Wind Farm Power Quality Monitoring and Output Comparison with EN50160 [C]. Proceeding of the 4th International Workshop on Large-scale Integration of Wind Power and Transmission Networks for Offshore Wind Farm, Sweden, Oct.2003, pp.20-21.
    [12]B. Idsoe Nass, T. Undeland, T. Gjengedal. Methods for Reduction of Voltage Unbalance in Weak Grids Connected to Wind Plants [C]. IEEE Workshop on Wind Power and The Impacts on Power Systems, Norway, June 2002, pp.17-18.
    [13]National Grid Transco. Appendix 1, Extracts from the Grid Code-Connection Conditions. www.nationalgrid.com, Feb.2004.
    [14]C. Hochgraf, R. H. Lasseter. STATCOM Controls for Operation with Unbalanced Voltage [J], IEEE Transactions on Power Delivery,1998,13(2):538-544.
    [15]H. S. Song, K. Nam. Dual Current Control Scheme for PWM Converter under Unbalanced Input Voltage Conditions [J]. IEEE Transactions on Industrial Electronics,1999,46(5):953-959.
    [16]Y. Suh. Analysis and Control of Three-Phase AC/DC PWM Converter under Unbalanced Operating Conditions [D]. University of Wisconsin-Madison,2004.
    [17]J. Svensson, A. Sannino. Active Filtering of Supply Voltage with Series-connected Voltage Source Converter [J]. EPE Journal,2002,12(1):19-25.
    [18]L. Xu, B. R. Andersen, P. Cartwright. VSC Transmission System Operating under Unbalanced Network Conditions-Analysis and Control Design [J]. IEEE Transactions on Power Delivery,2005,20(1): 427-434.
    [19]G. C. Paap. Symmetrical Components in the Time Domain and Their Application to Power Network Calculations [J]. IEEE Transactions on Power Systems,2000,15(2):522-528.
    [20]Jiabing Hu, Yikang He. Modeling and Control of Grid-Connected Voltage Sourced Converters under Generalized Unbalanced Operation Conditions [J]. IEEE Transactions on Energy Conversion,2008,23(3): 903-913.
    [21]胡家兵,贺益康,郭晓明.不平衡电压下双馈异步风力发电系统的建模与控制[J].电力系统自动化,2007,31(14):21-26.
    [22]Jiabing Hu, Yikang He, Heng Nian. Enhanced Control of DFIG used Back-to-Back PWM Voltage-Source Converter under Unbalanced Grid Voltage Conditions [J]. Journal of Zhejiang University SCIENCE A, 2007,8(8):1330-1339.
    [23]Jiabing Hu, Yikang He. Modeling and Enhanced Control of DFIG under Unbalanced Grid Voltage Conditions [J]. Electric Power Systems Research (EPSR),2009,79(2):273-281.
    [24]Jiabing Hu, Yikang He. Reinforced Control and Operation of DFIG-based Wind Generation System under Unbalanced Grid Voltage Conditions [J]. IEEE Transactions on Energy Conversion, accepted and in press (Paper No:TEC-00425-2007).
    [1]H. S. Song, K. Nam. Dual Current Control Scheme for PWM Converter under Unbalanced Input Voltage Conditions [J]. IEEE Transactions on Industrial Electronics,1999,46(5):953-959.
    [2]I. W. Joo, H. S. Song, K. Nam. Source-Voltage-Sensorless Scheme for PWM Rectifier Under Voltage Unbalance Condition [C]. Proceedings of 4th Power Electronics and Drive Systems, IEEE International Conference on,22-25, Oct.,2001:33-38.
    [3]H. S. Song, I. W. Joo, K. Nam. Source Voltage Sensorless Estimation Scheme for PWM Rectifier Under Unbalanced Conditions [J]. IEEE Transactions on Industrial Electronics,2003,50(6):1238-1245.
    [4]F. A. Magueed, A. Sannino, J. Svensson. Transient Performance of Voltage Source Converter under Unbalanced Voltage Dips [C].35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany,2004:1163-1168.
    [5]B. Yin, R. Oruganti, S. K. Panda, A. K. S. Bhat. An Output-Power-Control Strategy for a Three-Phase PWM Rectifier Under Unbalanced Supply Conditions [J]. IEEE Transactions on Industrial Electronics, 2008,55(5):2140-2151.
    [6]C. Hochgraf, R. H. Lasseter. STATCOM Controls for Operation with Unbalanced Voltage [J], IEEE Transactions on Power Delivery,1998,13(2):538-544.
    [7]胡家兵,贺益康,郭晓明.不平衡电压下双馈异步风力发电系统的建模与控制[J].电力系统自动化,2007,31(14):21-26.
    [8]Jiabing Hu, Yikang He, Heng Nian. Enhanced Control of DFIG used back-to-back PWM Voltage-Source Converter under Unbalanced Grid Voltage Conditions [J]. Journal of Zhejiang University SCIENCE A, 2007,8(8):1330-1339.
    [9]L. Xu, Y. Wang. Dynamic Modeling and Control of DFIG-Based Wind Turbines Under Unbalanced Network Conditions [J]. IEEE Transactions on Power Systems,2007,22(1):314-323.
    [10]H. G. Park, A. G. Abo-Khail, D. C. Lee, K. M. Son. Torque Ripple Elimination for Doubly-Fed Induction Motors under Unbalance Source Voltage [C]. PEDS, IEEE,2007:1301-1306.
    [11]T. K. A. Brekken, N. Mohan. Control of a Doubly Fed Induction Wind Generator Under Unbalanced Grid Voltage Conditions [J]. IEEE Transactions on Energy Conversion,2007,22(1):129-135.
    [12]K. Hirano, S. Nishimura, S. K. Mitra. Design of Digital Notch Filters [J]. IEEE Transactions on Communications,1974, Com-22(7):964-970.
    [13]S. K. Chung. Phase-Locked Loop for Grid-Connected Three-Phase Power Conversion Systems [J]. IEE Proceedings on Electric Power Applications,2000,147(3):213-219.
    [14]L. Xu, B. R. Andersen, P. Cartwright. VSC Transmission System Operating under Unbalanced Network Conditions-Analysis and Control Design [J]. IEEE Transactions on Power Delivery,2005,20(1): 427-434.
    [15]L. Xu. Enhanced Control and Operation of DFIG-Based Wind Farms During Network Unbalance [J]. IEEE Transactions on Energy Conversion,2008,23(4):1073-1081.
    [16]L. Xu. Coordinated Control of DFIG's Rotor and Grid Side Converters During Network Unbalance [J]. IEEE Transactions on Power Electronics,2008,23(3):1041-1049.
    [17]Jiabing Hu, Yikang He, Hongsheng Wang, L. Xu. Improved Rotor Current Control of Wind Turbine Driven Doubly Fed Induction Generators During Network Unbalance [C].1st International Conference on Sustainable Power Generation and Supply, April 6-7,2009, Nanjing, China.
    [18]Jiabing Hu, Yikang He. Modeling and Control of Grid-Connected Voltage Sourced Converters under Generalized Unbalanced Operation Conditions [J]. IEEE Transactions on Energy Conversion,2008,23(3): 903-913.
    [19]Jiabing Hu, Yikang He. Reinforced Control and Operation of DFIG-based Wind Generation System under Unbalanced Grid Voltage Conditions [J]. IEEE Transactions on Energy Conversion, accepted and in press (Paper No:TEC-00425-2007).
    [20]D. N. Zmood, D. G. Holmes. Stationary Frame Current Regulation of PWM Inverters with Zero Steady-State Error [J]. IEEE Transactions on Power Electronics,2003,18(3):814-822.
    [21]X. Yuan, W. Merk, H. Stemmler, J. Allmeling. Stationary-Frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-State Error for Current Harmonics of Concern Under Unbalanced and Distorted Operating Conditions [J]. IEEE Transactions on Industry Application,2002, 38(2):523-532.
    [22]D. N. Zmood, D. G. Holmes, G. H. Bode. Frequency-Domain Analysis of Three-Phase Linear Current Regulators [J]. IEEE Transactions on Industry Applications,2001,37(2):601-610.
    [23]P. C. Tan, P. C. Loh, D. G. Holmes. High-Performance Harmonic Extraction Algorithm for a 25kV Traction Power Quality Conditioner [J]. IEE Proceedings-Electric Power Application,2004,151(5): 505-512.
    [24]Jiabing Hu, Yikang He. Modeling and Enhanced Control of DFIG under Unbalanced Grid Voltage Conditions [J]. Electric Power Systems Research (EPSR),2009,79(2):273-281.
    [25]Jiabing Hu, Yikang He, Lie Xu, Barry W. Williams. Improved Control of DFIG Systems during Network Unbalance Using PI-R Current Regulators [J]. IEEE Transactions on Industrial Electronics,2009,56(2): 439-451.
    [26]Y. S. Suh, V. Tijeras, T. A. Lipo. A Nonlinear Control of the Instantaneous Power in dq Synchronous Frame for PWM AC/DC Converter under Generalized Unbalanced Operating Condition [C]. In Proceeding of IEEE-IAS Annual Meeting,2002, pp.1189-1196.
    [27]Y. S. Suh, V. Tijeras, T. A. Lipo. Control Scheme in Hybrid Synchronous Frame for PWM AC/DC Converter under Generalized Unbalanced Operating Condition [J]. IEEE Transaction on Industry Applications,2006,42(3):825-835.
    [1]I. Erlich, U. Bachmann. Grid Code Requirements Concerning Connection and Operation of Wind Turbines in Germany [C]. IEEE Power Engineering Society General Meeting, June 12-16,2005,2: 1253-1257.
    [2]I. Erhich, W. Winter, A. Dittrich. Advanced Grid Requirements for the Integration of Wind Turbines into the German Transmission System [C]. IEEE Power Engineering Society General Meeting, October,2006.
    [3]C. Jauch, J. Matevosyan, T. Ackermann, S. Bolik. International Comparison of Requirements for Connection of Wind Turbines to Power Systems [J]. Wind energy,2005,8(3):295-306.
    [4]National Grid Electricity Transmission, The Grid Code, Issue 3, Revision17,1st September 2006, Available at www.nationalgrid.com.
    [5]E.ON NETz GmbH. Grid Code for High and Extra High Voltage.1st August 2003. http://www.eon-netz.com/Ressources/downloads/enenarhsengl.pdf.
    [6]R. Pena, J. C. Clare, G. M. Asher. Doubly Fed Induction Generator using Back-to-Back PWM Converters and its Application to Variable Speed Wind-Energy Generation [J]. IEE Proceedings:Electric Power Application,1996,143(3):231-241.
    [7]刘其辉,贺益康,赵仁德.变速恒频风力系统最大风能追踪控制[J],电力系统自动化,2003,27(20):62-67.
    [8]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J],电力系统自动化,2005,29(24):32-38.
    [9]A. Perdana, O. Carlson, J. Persson. Dynamic Response of Grid-Connected Wind Turbine with Doubly Fed Induction Generator during Disturbances [C]. Nordic workshop on power and industrial electronics. June 2004, Trondheim, Norway.
    [10]V. Akhmatov. Variable-Speed Wind Turbines with Doubly-Fed Induction Generators. Part IV: Uninterrupted Operation Features at Grid Faults with Converter Control Coordination [J], Wind Engineering,2003,27 (6):519-529.
    [11]胡家兵,孙丹,贺益康.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化,2006,30(8):21-26.
    [12]J. Morren, S.W.H. de Haan. Ride Through of Wind Turbines with Doubly-Fed Induction Generator during a Voltage Dip [J]. IEEE Transactions on Energy Conversion,2005,20(2):435-441.
    [13]T. Sun, Z. Chen, F. Blaabjerg. Transient Stability of DFIG Wind Turbines at an External Short-Circuit Fault [J]. Wind Energy,2005,8(3):345-360.
    [14]J. Arbi, I. Slama-Belkhodia, S. A. Gomez. Control of a DFIG-based Wind System in Presence of Large Grid Faults:Analysis of Voltage Ride Through Capability [C].9th International conference on electrical power quality and utilization (EPQU), Oct.9-11,2007:1-6.
    [15]A. Petersson, S. Lundberg, T.Thiringer. A DFIG Wind Turbine Ride-through System. Influence on the Energy Production [J]. Wind Energy,2005,9(8):251-263.
    [16]A. D. Hansen, G. Michalke, P. Sorensen, T. Lund. Coordinated Voltage Control of DFIG Wind Turbines in Uninterrupted Operation during Grid Faults [J]. Wind Energy,2006,10(10):51-68.
    [17]D. Xiang, L. Ran, P. J. Tavner, S. Yang. Control of a Doubly Fed Induction Generator in a Wind Turbine During Grid Fault Ride-Through [J]. IEEE Transactions on Energy Conversion,2006,21(3):652-662.
    [18]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170.
    [19]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究[J].中国电机工程学报,2006,26(10):130-135.
    [20]李建林,赵栋利,李亚西.适合于变速恒频双馈感应发电机的Crowbar对比分析[J].可再生能源,2006,5:57-60.
    [21]李建林,许鸿雁,梁亮,赵斌,许洪华.VSCF-DFIG在电压瞬间跌落情况下的应对策略[J].电力系统自动化,2006,30(19):65-68.
    [22]胡家兵,贺益康.双馈风力发电系统的低压穿越运行与控制[J].电力系统自动化,2008,32(2):1-4.
    [23]J. Lopez, P. Sanchis, X. Roboam, L. Marroyo. Dynamic Behavior of the Doubly Fed Induction Generator During Three-Phase Voltage Dips [J]. IEEE Transaction on Energy Conversion,2007,22(3):709-717.
    [24]Johan Morren, Sjoerd W. H. de Haan. Short-Circuit Current of Wind Turbines With Doubly Fed Induction Generator [J]. IEEE Transaction on Energy Conversion,2007,22(1):174-180.
    [25]Yikang He, Jiabing Hu. DFIG Wind Power Generation Systems During Unbalanced Network Fault: Analysis and Operation [C]. Invited paper presented on ICEMS2008, Wuhan, China.
    [26]Jiabing Hu, Yikang He, Lie Xu, Barry W. Williams. Improved Control of DFIG Systems during Network Unbalance Using PI-R Current Regulators [J]. IEEE Transactions on Industrial Electronics,2009,56(2): 439-451.
    [27]R. Gagnon, G. Sybille, S. Bernard, D. Pare, S. Casoria. Modeling and Real-Time Simulation of a Doubly-Fed Induction Generator Driven by a Wind Turbine [C]. International Conference on Power System Transients, Canada, June,2005.
    [1]Jiabing Hu, Yikang He, Lie Xu, Barry W. Williams. Improved Control of DFIG Systems during Network Unbalance Using PI-R Current Regulators [J]. IEEE Transactions on Industrial Electronics,2009,56(2): 439-451.
    [2]刘其辉.变速恒频风力发电系统运行与控制研究[博士学位论文].浙江杭州,浙江大学,2005:116-156.
    [3]http://www.semikron.com/internet/gecont/pdf/40.pdf.
    [4]http://www.semikron.com/internet/gecont/pdf/2706.pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700