双馈风力发电系统中双变流器优化联合控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源和环境问题的日益严峻,风力发电作为当今规模化开发程度最高和最具商业化发展前景的可再生能源,已经越来越受到世界各国的关注和重视,近年来得到了大力发展,其中基于变速恒频的双馈风力发电技术因其显著的优势成为风电领域的主流和研究热点。本文针对双馈风力发电系统在理想电网和不对称电网条件下的数学模型、优化控制尤其是双变流器的联合控制策略等方面进行了细致、深入的探讨,主要内容包括:
     1.推导出三相电压源型PWM变流器在三相静止坐标系和两相同步旋转坐标系中的数学模型,在此基础上,对其稳态特性以及各象限运行区域内桥臂输出电压相量进行了详细的分析、比较,并计算出变流器直流侧电容电压的设定下限值,为双馈风力发电系统的参数选取和变流器控制系统的设计提供了理论依据。提出了同步旋转坐标系中PWM变流器的典型双环控制策略,为双馈风力发电系统中网侧和转子侧变流器的控制研究提供了坚实的理论基础。
     2.对双馈发电机在不同励磁电流组合方式下的性能以及所需双变流器的容量等方面进行了比较分析,对如何合理利用双变流器的容量和充分发挥其调控能力进行了深入研究,基于双馈发电机的等效电路分析了DFIG在理想电网条件下的功率特性,并在此基础上结合DFIG的损耗特性,提出了双馈风力发电系统新型的无功优化控制策略。该控制策略使部分励磁控制从转子侧变流器转移到网侧变流器,而且使得网侧变流器与转子侧变流器容量相同,给工程实施带来了一系列的便利,如减少了工程备品备件的种类,充分利用了双变流器的无功容量,提高了利用率和运行效率等,具有重要的实际意义。
     3.推导出电网电压对称故障和不对称故障条件下双馈发电机定子磁链在正、反向同步旋转坐标系中的数学模型,分析了电网故障时DFIG的动态特性,并给出DFIG定子磁链在对称及不对称电压故障情况下的完整解析表达式。通过对持续时间分别为50ms和100ms的两种电压故障的仿真对比分析,指出电网电压对称故障时磁链会以工频振荡,而不对称故障条件下磁链则以两倍工频振荡,且在持续时间为奇数倍工频半周期的故障情况下,电网电压恢复时磁链振荡的幅度是电压跌落时幅值的两倍。分别对各种典型故障情况进行了仿真,结果验证了理论分析的正确性。
     4.建立了电网电压不对称情况下包括转子侧变流器和网侧变流器的双馈风力发电系统在正、反向同步旋转坐标系中的完整数学模型,并分别推导出定子侧和网侧瞬时有功功率和无功功率的二倍频成分,为双变流器的不对称控制策略的研究提供了理论基础。针对电网电压不对称时双馈系统的运行状态,基于转子侧变流器和网侧变流器分别提出了四种不同的控制策略,并推导出各种控制方案下转子电流和网侧电流负序分量指令值的计算方法。
     5.详细探讨了电网小数值电压故障情况下双馈系统的穿越控制技术。指出在电网电压对称故障时,可充分发挥并利用双馈发电系统中转子侧变流器和网侧变流器的快速无功调节能力,使对故障期间接入端电压提供支撑,从而削弱故障时机端电压下降的幅度,有助于故障后电网的迅速恢复;在电网电压不对称故障时,提出了不对称电网故障条件下基于双坐标变换的转子侧变流器和网侧变流器的联合控制策略,并设置了不同的性能指标,尽可能地改善双馈系统及电网的整体性能。仿真结果验证了双变流器联合控制策略的有效性。
With energy and environment issues increasingly serious, as the current largest scale developmental renewable energy and with the most commercial prospects, wind power has been getting more and more concern and attention by all the countries in the world. In recent years wind power has obtained vigorous expansion, especially doubly-fed wind power system based on variable-speed constant-frequency (VSCF) technology has been one of the main stream models and the control technology of DFIG (Doubly-fed induction generator) wind power generation system has become the research hotspots worldwide due to its excellent advantages. This dissertation aims to discuss the optimal control of wind power and combination control of dual converters in detail based on the mathematical models of doubly-fed wind power generation under symmetric and asymmetric grid conditions. The main contents of this dissertation could be summarized as follows.
     1. The thesis deduces the precise mathematical models for three-phase voltage-source PWM converter in three-phase stationary reference frame and two-phase rotational reference frame, respectively. Based on the models, PWM converter's steady state characteristics are analyzed and its different output bridge voltage vectors are compared carefully. DC low limit voltage value of the converter is also calculated, which provides theoretical foundation for selecting doubly-fed wind power system parameters and designing converter control systems properly. The dissertation proposes the typical dual loops control structure of PWM converters in the synchronous rotational reference frame. This will provide the fundamental basis for studying control systems for grid side converter (GSC) and rotor side converter (RSC) further.
     2. The dissertation makes a comparative analysis of DFIG performances and capacities of the dual converters with several exciting modes, and makes a thorough research for utilizing dual converters capacities properly and bringing their ability of regulation and control into full play. Based on the equivalent circuit of the DFIG, its power characteristics during symmetric grid conditions are obtained. Considering generator losses, a novel reactive power control strategy for doubly-fed wind power system is proposed. This approach reallocates the exciting currents to the stator side and the rotor side. Consequently, the capacity of the GSC is the same as that of the RSC, which makes one converter could be a backup for another. This brings a lot of advantages, such as the less part categories, high usage and operational efficiency, et al. So this method has great practical significance.
     3. The stator flux mathematical models in positive- and negative- synchronous reference frames during symmetrical and asymmetrical grid voltage faults are deduced. The dynamic characteristics of the DFIG are analyzed and the complete dynamic-analytical expressions of the stator flux under symmetric and asymmetric voltage fault conditions are provided. Through two typical voltage-fault simulations with the duration of 50ms and 100ms, respectively, this thesis points out that the stator flux will oscillate with the line frequency when the symmetrical gird fault occurs, and with twice the grid frequency under unsymmetrical grid voltage fault condition. Furthermore, under the unsymmetrical grid voltage fault condition with the duration odd multiple half-cycles, when the grid voltage recovers, the amplitude of the flux oscillations can reach twice the oscillating amplitude at the start of voltage sag. Simulations with various typical voltage faults are presented, and the results validate the correctness of the theoretical analysis.
     4. The dissertation models the doubly-fed wind power generation system, including RSC and GSC, in the positive- and negative- synchronous reference frames under asymmetric grid voltage conditions. The double-line-frequency components of the instantaneous active and reactive powers of the DFIG stator and the AC side of the GSC are analyzed and deduced, which provides a theoretical basis for designing the asymmetric control schemes for the dual converters. Based on the operational states of the doubly-fed wind power system under asymmetric grid voltage conditions, four different control strategies for RSC and GSC are proposed and evaluated, and various negative sequence references of rotor currents and grid side currents within non-identical control scheme are also calculated.
     5. This dissertation discusses fault ride through (FRT) technology of the DFIG wind power system under slight grid voltage fault conditions in detail. It is concluded that under the symmetrical grid voltage fault, the reactive power rapidly regulated capability of RSC and GSC should be made full use of to support the voltage of point of common coupling (PCC) during voltage fault, which helps to suppress the magnitude of the voltage dropping and helps the network to recover quickly after clearing the gird fault. Under the asymmetrical grid voltage faults, the combination control scheme utilizing rotor side converter and grid side converter based on double coordinate transformation method is proposed. And also the paper sets up, analyzes and evaluates several various performance indexes comparatively. Simulated results verify the correctness and effectiveness of the proposed combination control schemes for dual converters.
引文
[1]国际能源署.世界能源展望2009执行摘要[M].巴黎:国际能源署,2009:3-7
    [2]李先奇.变速风电机组风电场并网的系统电压稳定性研究[D].武汉:华中科技大学博士论文,2008:1-3
    [3]李柯,何凡能,席建超.中国陆地风能资源开发潜力区域分析[J].资源科学,2010,32(9):1672-1678
    [4]张强.风力发电并网变流器工程问题研究[D].合肥:合肥工业大学博士论文,2006:1,5-42
    [5]郭家虎.变速恒频双馈风力发电系统控制技术的研究[D].上海:上海大学博士论文,2008:1,5-42
    [6]杨淑英.双馈型风力发电变流器及其控制[D].合肥:合肥工业大学博士论文,2007:1,32-37,58-71,89-99,179-183
    [7]陈雯.我国风力发电的现状与展望[J].应用能源技术,2010,(8):49-51
    [8]赵海翔.风电引起的电压波动和闪变研究[D].北京:中国电力科学研究院博士论文,2004:1-2
    [9]迟永宁.大型风电场接入电网的稳定性问题研究[D].北京:中国电力科学研究院博士论文,2006:1-4
    [10]Walter J Saucier. Principles of meteorological analysis [M].伦敦:多佛出版公司,2003:1-4
    [11]李俊峰.风力12[M].北京:化学工业出版社,2004:10-15
    [12]吕德刚,邢宇航,王广,等.报废汽车发电机应用于风力发电[J].农村电气化,2009,(9):59-60
    [13]GWEC. Global wind report 2009 [EB/OL].:Global wind energy council, 2010-10-20:
    [14]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海南:海南出版社,2010:2-3
    [15]世界风能协会.2009世界风能报告[M].波恩:世界风能协会,2010:9
    [16]国际新能源网.2010年全球风电装机容量将达到200GW [EB/OL].:国际新能源网,2010-10-20:
    [17]邱培基,汤宁平,叶文键,等.变速交流励磁感应发动机的稳态分析[J].电工技术学报,1998,13(5):16-20
    [18]Tamura T, Sasaki T, Ishikawa S, et al. Analysis of the steady state characteristics of doubly fed synchronous machines[J]. IEEE Transactions on Energy Conversion,1989,4(2):250-256
    [19]马小亮,魏学森.数字矢量控制和直接力矩控制调速系统中的电压模型[J].电工技术学报,2004,19(3):65-69
    [20]Lorenz R D, Lipo T A, Novothy D W. Motion control with induction motor [J]. Proceeding of the IEEE,1994,82(8):1215-1240
    [21]Drid S, Tadjine M, Nait-Said M-S. Robust backstepping vector control for the doubly fed induction motor [J]. IET Control Theory and Applications, 2007,1(4):861-868
    [22]Liu Congwei, Weng Haiqing, Sun Xudong, et al. Research of stability of double fed induction motor vector control system [A]. In:China Electrotech Society. The fifth International Conference on Electrical Machines and Systems [C]. Shenyang China:Int Acad Publishers,2001:1203-1206
    [23]Mei Baishan, Hu Wenqi. Stator flux orientated control of induction motors based on fuzzy logic control [A]. In:Hainan Province Institute of Computer.2010 International Conference on Artificial Intelligence and Computational Intelligence (AICI 2010) [C]. Sanya China:IEEE Computer Society,2010:535-539
    [24]Ebrahim O S, Salem M F, Jain P K, et al. Application of linear quadratic regulator theory to the stator flux-oriented control of induction motors [J]. IET Electric Power Application,2010,4(8):637-646
    [25]Boussak M, Jarray K. A high-performance sensorless indirect stator flux orientation control of induction motor drive [J]. IEEE Transactions on Industrial Electronics,2005,53(1):41-49
    [26]Ebrahim O S, Salem M F, Jain P K, et al. Application of linear quadratic regulator theory to the stator-flux-oriented control of induction motors [J]. IET Electric Power Application,2010,4(8):637-646
    [27]Suzuki T, Chiba A, Azizur Rahman M, et al. An air-gap-flux-oriented vector controller for stable operation of bearingless induction motors [J]. IEEE Transactions on Industry Applications,2000,36(4):1069-1076
    [28]Profumo F, Griva G, Pastorelli M, et al. Universal field oriented controller based on air gap flux sensing via third harmonic stator voltage [J]. IEEE Transactions on Industry Applications,1994,30(2):448-455
    [29]Chondrogiannis S, Barnes M. Stability of doubly-fed induction generator under stator voltage oriented vector control [J]. IET Renewable Power Generation, 2008,2(3):170-180
    [30]Zhou Minglei, Wei Kekang, Wang Chenchen, et al. A rotor flux oriented scheme of induction machine based on voltage controller [A]. In:National Chung Hsing University. The 5th IEEE Conference on Industrial Electronics and Applications (ICIEA 2010) [C]. Taiwan:IEEE Computer Society,2010: 744-748
    [31]Myoung-Ho Shin, Dong-Seok Hyun. Online identification of stator transient inductance in rotor-flux-oriented induction motor drive[J]. IEEE Transactions on Industrial Electronics,2007,54(4):2018-2023
    [32]解仓,杜沧,董冀媛,等.大容量异步电动机双馈调速系统[M].北京:机械工业出版社,2009:43,131-140
    [33]黄志武,阳同光.基于滑模观测器定子磁链观测研究[J].电气传动,2008,38(9):43-46
    [34]Idris N R N, Yatim A H M. An improved stator flux estimation in steady-state operation for dirent torque control of induction machines [J]. IEEE Transactions on Industry Applications,2002,38(1):110-116
    [35]Poddar G, Ranganathan V T. Sensorless field-oriented control for double-inverter-fed wound-rotor induction motor drive[J]. IEEE Transactions on Industrial Electronics,2004,51(5):1089-1096
    [36]Rehman H, Derdiyok A, Guven M K, et al. A new current model flux observer for wide speed range sensorless control of an induction machine [J]. IEEE Transactions on Power Electronics,2002,17(6):1041-1048
    [37]Hopfensperger B, Atkinson D J, Lakin R A. Stator-flux-oriented control of a doubly-fed induction machine with and without position encoder [J]. IEE Proceedings Electric Power Applications,2000,147(4):241-250
    [38]李楠.变速恒频风力发电系统中矢量控制系统的研究及应用[D].沈阳:沈阳工业大学硕士论文,2006:35-38
    [39]申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限[J].电网技术,2003,27(11):60-63
    [40]郎永强,张学广,徐殿国,等.双馈电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007,27(9):77-82
    [41]Muljadi E, Butterfield C P. Pitch-controlled variable speed wind turbine generation [J]. IEEE Transactions on Industry Applications,2001,37(1): 240-246
    [42]Refoufi L, AlZahawi B A T, Jack A G. Analysis and modeling of the steady state behavior of static kramer induction generator [J]. IEEE Transactions on Energy Conversion,1999,14(3):333-339
    [43]秦涛,吕跃刚,徐大平.采用双馈机组的风电场无功功率控制技术[J].电网技术,2009,33(2):105-110
    [44]Kayikci M, Milanovic J V. Reactive power control strategies for DFIG-based plants [J]. IEEE Transactions on Energy Conversion,2007,22(2):389-396
    [45]王松岩,朱凌志,陈宁,等.基于分层原则的风电场无功控制策略[J].电力系统自动化,2009,33(13):83-88
    [46]陈宁,朱凌志,王伟.改善接入地区电压稳定性的风电场无功控制策略[J].中国电机工程学报,2009,29(10):102-108
    [47]Tapia A, Tapia G, Ostolaza J X. Modeling and control of a wind turbine driven doubly fed induction generator[J]. IEEE Transactions on Energy Conversion, 2003,18(2):194-204
    [48]Tapia A, Tapia G, Ostolaza J X. Reactive power control of wind farms for voltage control application [J]. Renewable Energy,2004,29(3):377-392
    [49]夏道止.电力系统分析[M].北京:中国电力出版社,2004:185,237-247
    [50]胡书举,李建林,许洪华.变速恒频风电系统应对电网故障的保护电路分析[J].变流技术与电力牵引,2008,(1):45-51
    [51]Bollen M H. Understanding power quality problems:voltages sags and interruptions [M]. Piscataway:IEEE Press,2002:139-452
    [52]马立克,王成山.无差拍控制提高变速异步风力发电系统的故障承受能力(英文)[J].电力系统自动化,2007,31(22):50-56
    [53]蒋雪冬,赵舫.应对电网电压骤降的双馈感应风力发电机Crowbar控制策略[J].电网技术,2008,32(12):84-89
    [54]操瑞发,朱武,涂祥存,等.双馈式风力发电系统低电压穿越技术分析[J].电网技术,2009,33(9):72-77
    [55]王伟,孙明冬,朱晓东.双馈式风力发电机低电压穿越技术分析[J].电力系统自动化,2007,31(23):84-89
    [56]杨淑英,张兴,张崇巍,等.电压跌落激起的双馈型风力发电机电磁过渡过程[J].电力系统自动化,2008,32(19):85-91
    [57]张建华,陈星莺,刘皓明,等.双馈风力发电机三相短路分析及短路器最大电阻整定[J].电力自动化设备,2009,29(4):6-10
    [58]Ottersten R, Petersson A, Pietilainen K. Voltage sag response of PWM rectifiers for variable-speed wind turbines [R]. Helsinki Finland:Nordic Workshop on Power and Industrial Electronics,2004:
    [59]National Grid Transco. Appendix 1, extracts from the grid code—connection conditions [EB/OL].:Nationalgrid,2004-6:
    [60]Q/GDW392-2009.风电场接入电网技术规定(修订版)[s].北京:国家电网公司,2009:
    [61]雷亚洲,Gordon Lightbody.国外风力发电导则及动态模型简介[J].电网技术,2005,25(12):27-32
    [62]Tsili M, Papathanassiou S. A review of grid code technical requirements for wind farms [J]. IET Renewable Power Generation,2009,3(3):308-332
    [63]Gardner P, Tremblay M, Price D. Technical requirements for high-penetration wind:what system operators need, and what wind technology can deliver [A]. In:IEEEPES.2009 CIGRE/IEEE PES Joint Symposium Integration of Wide-scale Renewable Resources into the Power Delivery System [C]. Calgary Canada:IEEE Computer Society,2009:1-11
    [64]关宏亮,赵海翔,王伟胜,等.风电机组低电压穿越功能及其应用[J].电工技术学报,2007,22(10):173-177
    [65]梁亮,李建林,许洪华.电网故障下双馈感应式风力发电系统的无功功率控制策略[J].电网技术,2008,32(11):70-73
    [66]李晶,李建林,许洪华.基于配电网无功优化的变速恒频双馈风电机群控制策略[J].电网技术,2006,30(15):41-45
    [67]迟永宁,关宏亮,王伟胜,等.SVC与桨距角控制改善异步机风电场暂态电压稳定性[J].电力系统自动化,2007,31(3):95-101
    [68]Xiang Dawei, Ran Li, Peter J Tavner, et al. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through [J]. IEEE Transactions on Energy Conversion,2006,21(3):652-662
    [69]Xiang Dawei, Ran Li, Tavner P J, et al. Control of a doubly fed induction generator to ride-through a grid fault [A]. In:.16th International Conference on Electrical Machines [C]. Lodz Poland:Institute of Mechatronics and Information Systems,2004:1-6
    [70]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略[D].重庆:重庆大学博士论文,2006:1,5-42
    [71]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170
    [72]Petersson A, Harnefors L, Thiringer T. Evaluation of current control methods for wind turbines using doubly-fed induction machines[J]. IEEE Transactions on Power Electronics,2005,20(1):227-235
    [73]Rathi M R, Mohan N. A novel robust low voltage and fault ride through for wind turbine application operating in weak grids [A]. In:IEEE Industrial Electronics Society.31st Annual Conference of IEEE Industrial Electronics Society [C]. Raleigh United States:Institute of Electrical and Electronics Engineers Computer Society,2005:2481-2486
    [74]姚骏,廖勇,李辉.采用串联网侧变换器的DFIG风电系统低电压穿越控制[J].电力系统自动化,2010,34(6):98-103
    [75]Flannery P S, Venkataramanan G. Unbalanced voltage sag ride-through of a doubly fed induction generator wind turbine with series grid-side converter [J]. IEEE Transactions on Industry Applications,2009,45(5):1879-1887
    [76]Flannery P S, Venkataramanan G. A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter [J]. IEEE Transactions on Power Electronics,2008,23(3): 1126-1135
    [77]Flannery P S, Venkataramanan G. Evaluation of voltage sag ride-through of a doubly fed induction generator wind turbine with series grid side converter [A]. In:. IEEE 38th Annual Power Electronics Specialists Conference [C]. Orlando United States:Institute of Electrical and Electronics Engineers Inc,2007:1839-1845
    [78]Singh B, Emmoji V, Singh S N. Performance evaluation of series and parallel connected grid side converters of DFIG [A]. In:. IEEE Power and Energy Society 2008 General Meeting:Conversion and Delivery of Electrical Energy in the 21st Century [C]. Pittsburgh United States:Institute of Electrical and Electronics Engineers Computer Society,2008:1-8
    [79]王宏胜,章玮,胡家兵,等.电网电压不对称故障条件下DFIG风电机组控制策略[J].电力系统自动化,2010,34(4):97-102
    [80]Xu Lie. Enhanced control and operation of DFIG-based wind farms during network unbalance [J]. IEEE Transactions on Energy Conversion,2008, 23(4):1073-1081
    [81]胡家兵,贺益康,王宏胜,等.不平衡电网电压下双馈感应发电机转子侧变换器的比例-谐振电流控制策略[J].中国电机工程学报,2010,30(6):48-56
    [82]Miguel Castilla, Jaume Miret, Jose Matas, et al. Direct rotor current-mode control improves the transient response of doubly fed induction generator-based wind turbines [J]. IEEE Transactions on Energy Conversion, 2010,25(3):722-731
    [83]Qiao Wei, Harley R G. Improved control of DFIG wind turbines for operation with unbalanced network voltages [C]. In:.2008 IEEE Industry Applications Society Annual Meeting [C]. Edmonton Canada:Institute of Electrical and Electronics Engineers Inc,2008:1-7
    [84]Hu Jiabing, He Yikang. Modeling and control of grid-connected voltage-source converters under generalized unbalanced operation conditions [J]. IEEE Transactions on Energy Conversion,2008,23(3):903-913
    [85]Xu Lie. Coordinated control of DFIG's rotor and grid side converters during network unbalance[J]. IEEE Transactions on Power Electronics,2008,23(3): 1041-1049
    [86]胡家兵,贺益康,王宏胜,等.不平衡电网电压下双馈感应发电机网侧和转子侧变换器的协同控制[J].中国电机工程学报,2010,30(9):97-104
    [87]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].杭州:浙江大学博士论文,2005:23-25
    [88]张兴.PWM整流器及其控制策略的研究[D].合肥:合肥工业大学博士论文,2003:8-9
    [89]钟炎平.一种新的PWM整流器电流解耦控制策略[J].电工技术学报,2005,20(8):74-77
    [90]张兴,张崇巍.PWM可逆变流器空间电压矢量控制技术的研究[J].中国电机工程学报,2001,21(10):102-105
    [91]徐金榜.三相电压源PWM整流器控制技术研究[D].武汉:华中科技大学博士论文,2004:16-17
    [92]陈耀军,钟炎平.基于合成矢量的电压型PWM整流器电流控制研究[J].中国电机工程学报,2006,26(2):143-148
    [93]刘平,康勇,陈坚.PWM整流器的矢量控制[J].华中理工大学学报,2000,28(6):37-39
    [94]朱永亮,马惠,张宗濂.三相高功率因数PWM整流器双闭环控制系统设计[J].电力自动化设备,2006,26(11):87-91
    [95]Vladimir B, Vikram K. A new mathematical model and control of a three-phase AC-DC voltage source converter [J]. IEEE Transactions on Power Electronics,1997,12(1):116-123
    [96]赵振波,许伯强,李和明.高功率因数PWM整流器综述[J].华北电力大学学报,2002,29(4):36-40
    [97]黄罡.三相高功率因数PWM整流器及其控制策略研究[D].长沙:湖南大学硕士论文,2007:16-19
    [98]朱宁.风力发电PWM变流器及其控制策略[D].北京:北京交通大学硕士论文,2007:29-36
    [99]Ye Y, Kazerani M, Quintana V H. A novel modeling and control method for three-phase PWM converters [A]. In:IEEE. IEEE 32nd Annual Power Electronics Specialists Conference [C]. Vancouver Canada:Institute of Electrical and Electronics Engineers Inc,2001:102-107
    [100]Fernadez L M, Garcia C A, Saenz J R, et al. Reduced model of wind farms using aggregation of wind turbines and equivalent wind [A]. In:. IEEE Mediterranean Electrotechnical Conference [C]. Malaga Spain:Institute of Electrical and Electronics Engineers Inc,2006:881-884
    [101]刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机并网控制策略[J].电力系统自动化,2006,30(3):51-55
    [102]卞松江,吕晓美,相会杰,等.教练刘励磁变速恒频风力发电系统控制策略的仿真研究[J].中国电机工程学报,2005,25(16):57-62
    [103]艾斯卡尔.变速恒频交流励磁风力发电机系统及其控制原理研究[D].南京:河海大学硕士论文,2004:23-27
    [104]刘其辉.变速恒频风力发电系统运行与控制研究[D].杭州:浙江大学博士论文,2005:39-46
    [105]宁玉泉,李炜,涂光瑜.双馈交流励磁变速电机的稳态特性及励磁容量分析[J].大电机技术,2005,21(6):24-27
    [106]Vicatos M S, Tegopoulos J A. Steady state analysis of a doubly-fed induction generator under synchronous operation [J]. IEEE Transactions on Energy Conversion,1989,4(3):495-501
    [107]林成武.变速恒频双馈风力发电机励磁控制技术研究[D].沈阳:沈阳工业大学博士论文,2004:32-37,69-74
    [108]隋红霞.双馈风力发电机组接入电网特性研究[D].沈阳:沈阳工业大学硕士论文,2008:16-20
    [109]肖运启.双馈型风力发电机励磁控制与优化运行研究[D].北京:华北电力大学博士论文,2008:32-35
    [110]Wilch M, Pappala V S, Singh S N. Reactive power generator by DFIG based wind farms with AC grid connection [A]. In:The Institute of Electrical and Electronics Engineers. IEEE Lausanne POWERTECH [C]. Lausanne Switzerland:Institute of Electrical and Electronics Engineers Computer Society,2007:626-632
    [111]Kayikci M, Milanovic J V. Reactive power control strategies for DFIG-based plants [J]. IEEE Transactions on Energy Conversion,2007,22(2):389-396
    [112]骆皓,郭效军,曹阳,等.双馈发电机定子PQ输出数值区间研究[J].电力自动化设备,2009,29(1):104-107
    [113]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究[D].武汉:华中科技大学博士论文,2005:1,5-49
    [114]张文娟,高勇,杨媛.双馈异步发电机的不同目标优化控制[J].电网技术,2009,33(7):109-114
    [115]王克成,余达太.感应电动机双馈调速的3种最佳控制方法[J].北京科技大学学报,1999,21(4):400-402
    [116]曹军,张榕林,林国庆,等.变速恒频双馈电机风电场电压控制策略[J].电力系统自动化,2009,33(4):87-91
    [117]任景.变速恒频风力发电机组动态模型及并网研究[J].电网与水力发电进展,2008,24(1):8-13
    [118]杨淑英,张兴,张崇巍,等.电压跌落激起的双馈型风力发电机电磁过 渡过程[J].电力系统自动化,2008,32(19):85-91
    [119]张建华,陈星莺,刘皓明,等.双馈风力发电机三相短路分析及短路器最大电阻整定[J].电力自动化设备,2009,29(4):6-10
    [120]Bollen M H J, Qader M R, Allan R N. Stochastical and statistical assessment of voltage dips [A]. In:. IEE Colloquium on Tools and Techniques for Dealing with Uncertainty [C]. London UK:IEE,1998:1-4
    [121]Xu Lie, Wang Y. Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions [J]. IEEE Transactions on Power Systems,2007,22(1):314-323
    [122]胡家兵,贺益康,郭晓明,等.不平衡电压下双馈异步风力发电系统的建模与控制[J].电力系统自动化,2007,31(14):47-56
    [123]Petersson A. Analysis, modeling and control of doubly-fed induction generators for wind turbines [D]. Goteborg:PhD dissertation of Chalmers University of Technology,2005:3,45-46,90-92
    [124]Thiringer T, Petersson A, Petru T. Grid disturbance response of wind turbines equipped with induction generator and doubly-fed induction generator [A]. In:IEEE PES. IEEE Power Engineering Society General Meeting [C]. Piscataway USA:Institute of Electrical and Electronics Engineers Inc,2003:1542-1547
    [125]赵阳.风力发电系统用双馈感应发电机矢量控制技术研究[D].武汉:华中科技大学博士论文,2009: 64-75
    [126]Hu Jiabing, He Yikang. Reinforced control and operation of DFIG-based wind-power-generation system under unbalanced grid voltage conditions [J]. IEEE Transactions on Energy Conversion,2009,24(4):905-915
    [127]Seman S,Niiranen J, Arkkio A. Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance [J]. IEEE Transactions on Power Systems,2006,21(4):1782-1789
    [128]臧晓笛.几种双馈式变速恒频风电机组低电压穿越技术对比分析[J].变频器世界,2008,(5):41-45
    [129]郭晓明.电网异常条件下双馈异步风力发电机的直接功率控制[D].杭州:浙江大学博士论文,2008:92-102
    [130]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究[J].中国电机工程学报,2006,26(10):130-135
    [131]胡家兵.双馈异步风力发电机系统电网故障穿越(不间断)运行研究——基础理论与关键技术[D].杭州:浙江大学博士论文,2009:1,5-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700