双馈感应风力发电机特殊运行工况下励磁控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双馈感应发电机可实现变速恒频运行,具有优越的稳态和暂态运行性能以及相对较小的励磁容量,特别适用于风力、变水头水力发电以及抽水蓄能等可再生能源发电系统。适当的励磁控制策略是双馈感应发电机实现优良运行性能的关键,因此对双馈感应发电机励磁控制策略的研究一直都是国内外研究的重点。本论文主要针对一些特殊工况下双馈感应风力发电机的励磁控制策略进行了深入地研究。研究的主要内容包括:电网故障时双馈感应发电机不脱网运行的控制策略;双馈感应发电机与无辅助在线换流的晶闸管HVDC的协调控制策略以及双馈感应发电机的并网与解列控制策略等。
     论文首先建立了双馈感应发电机的空间矢量模型,利用该模型解析推导了双馈感应发电机暂态电磁关系,并结合数值仿真对双馈感应发电机的暂态物理过程进行了解释。研究结果表明:双馈感应发电机的定、转子电流以及电磁转矩取决于发电机内部的定、转子磁场。其中定子磁场受定子外加电压的影响,而转子磁场则可以通过转子电压进行控制。适当地控制转子励磁电压能够实现对发电机运行状态的控制。在理解电网短路故障时发电机的暂态物理过程的基础上,提出了电网短路故障时双馈感应发电机不脱网运行的励磁控制策略。为保证故障期间双馈感应发电机励磁变频器安全运行,新的励磁控制策略针对故障过程中发电机内部电磁变量的暂态特点,控制发电机转子电流产生的磁链(故障暂态时该磁通只通过漏磁路径,是漏磁链)以抵消定子磁链中的“有害”分量(暂态直流分量与负序分量)对转子侧的影响,与此同时,利用定子侧电阻最终对发电机进行灭磁。实验和大量的系统仿真验证了该控制策略的正确性,并分析了各种因素对控制效果的影响,为双馈感应发电机在电力系统中大规模应用奠定了基础。
     大型海上风电场是当前风力发电技术发展的主要趋势。论文针对海上输电的特点,提出了通过无辅助在线换流的晶闸管HVDC连接大型海上风电场并网的新方案,深入研究了无辅助在线换流的晶闸管HVDC与双馈感应发电机的协调控制策略,并对协调控制下风电场电压和频率调节特性以及换流站的电压稳定性进行了分析。研究结果表明:利用本文提出的协调控制策略,在满足晶闸管换流站在线换流要求的前提下,可以实现双馈感应风力发电机跟踪最大风能变速稳定运行。论文的研究为海上或远距离风电场接入电网提供一种技术、经济性能优越的新方案,为解决大型海上或远距离风电场并网技术提供理论依据。
     论文最后对双馈感应发电机并网及解列的控制策略进行了研究,提出了两种简便易行的并网(即准同期、自同期)新方案以及能效较高的解列方案,并通过数值
The Doubly-fed Induction Generator (DFIG), which has features of variable speed operation, superior steady-state and transient-state operation characteristics and relatively small excitation rating, is especially suitable for the renewable energy generation such as wind power generation, hydropower generation with variable water head and pumping storage generation. As a key to achieve good performance during the DFIG operating, the excitation control strategies of the DFIG have being the focus of the research all over the world. Therefore, the excitation control strategies of the DFIG under some special operation modes were deeply studied in this dissertation, including the ride-through control of the DFIG under a grid fault, the coordinated control between a HVDC and the DFIGs in order to connect a wind farm into grid and the control methods of the DFIG under cut in or cut off operation.
     Firstly, the mathematic model of the DFIG expressed with space-vector was build. Then the transient electromagnetic relationship was derived and the transient physical process was explained combined with the analytic and simulation analyses. Research results show that the stator and rotor currents and air-gap torque are subjected to the stator and rotor flux fields in the generator. Where, the stator flux field is mainly constrained by the stator voltage which is decided by the outer operation condition of the machine. However the rotor flux field can be controlled by rotor voltage. Therefore, it’s possible to control the operation state of the DFIG with proper excitation regulation. Based on the deeply understanding of the DFIG transient under a grid fault, the ride-through excitation control strategy was proposed. To guarantee the safety of rotor side converter during the grid fault, the flux linkage produced by the rotor current, which goes through leakage flux path during the transient, is controlled to counteract the effect of the harmful components in the stator flux (including the transient DC flux and negative sequence flux components). At the same time, the stator side resistance is used to weaken the harmful stator flux field. The validity work has been done by experiments and system simulations, while the control performance influenced by different factors was analyzed in detail. The research work carried out in this dissertation is important for the large-scale application of the DFIG in power system.
     Currently, the offshore wind power is one of the mainstream developing trends of wind power technology. Based on the features of the offshore electrical power
引文
[1] 杨顺昌, 廖勇. 交流励磁发电机运行及控制原理. 电工技术学报. 1997. 12 (10): 21-25
    [2] L. Morel, H. Godfroid, A. Mirzaian, J.M. Kauffumann. Double-fed Induction Machine: Converter Optimization and Field Oriented Control without Position Sensor. IEE Proc. –Electr. Power Appl.. 1998. 145 (4): 365-368
    [3] S. Muller, M. Deicke et al. Doubly-fed Induction Generator systems for Wind Turbines. IEEE Industry Application Magazine. 2002. May/June: 26~33
    [4] Y. Liao, D. Xiang, L. Ran, G.A. Putrus. Analysis of harmonic transfer in an AC excited generator including speed ripple. IEEE Industrial Electronics Society 28th Annual Conference. 2002. Vol. 2 Nov: 1162-1166
    [5] 李辉, 杨顺昌, 廖勇. 并网双馈发电机电网电压定向励磁控制的研究. 中国电机工程学报. 2003. 23(8): 159-162
    [6] 林成武, 王凤翔, 姚兴佳. 变速恒频双馈风力发电机励磁控制技术研究. 中国电机工程学报. 23 (11). 2003: 122-125
    [7] 刘琪辉, 贺益康, 卞松江. 变速恒频风力发电机空载并网控制, 中国电机工程学报. 2004. 24 (3): 6-11
    [8] 李晶, 宋家骅, 王胜伟. 大型变速恒频风力发电机组建模与仿真. 中国电机工程学报. 2004. 24(6): 100-105 [9 ] F. Michael Hughes, Olimpo Anaya-Lara, Nicholas Jenkins and Goran Strbac. Control of DFIG-based wind generation for power network support. IEEE Trans. on Power Systems. Nov. 2005. 20(4): 1958-1966
    [10] Xiang Da-wei, Yang Shun-chang, Ran Li. Ride-through Control Strategy of a Doubly Fed Induction Generator for Symmetrical Grid Fault. Proceedings of the CSEE, Feb. 2006. 26 (3): 164-170
    [11] Kokado T.等. 许善椿译. 大河内水电厂首台大型调速抽水蓄能系统. 国外大电机. 1998 (1): 34~42
    [12] E.Kita. 400MW 可调速抽水蓄能系统. 国外大电机. 1992 (4)
    [13] 宁玉泉. 双馈变速同步电机的工作特性及在蓄能机组的应用. 大电机技术. 1994(5): 1~5
    [14] 中村泰造. 可变速抽水蓄能发电系统实用化. 国外大电机. 1992 (5)
    [15] 林瑞光, 赵荣祥等. 水轮发电机交流励磁变速运行的控制策略. 电工技术学报. 1995(8): 1~5
    [16] 许善椿等. 交流励磁调速水轮发电机负荷的优化调节. 大电机技术. 1995 (2): 10~12
    [17] 张为杰. 交流励磁电机发展前景. 大电机技术. 1992(5): 1~6
    [18] 杨顺昌. 国外对异步化同步发电机的探讨. 国外大电机. 1991(4): 1~7
    [19] 张桂娥, 韩居东等. 前苏联双轴励磁异步化水轮发电机研究综述. 国外大电机. 1993(2): 40~42
    [20] 徐锦才, 许大中. 多相励磁发电技术的研究概述. 电力系统自动化. 1997(4): 44~46
    [21] 李建军. 双馈变频调速技术在 650 轧钢机上的应用. 机械与电子. 2001 (5): 66-67
    [22] 廖勇. 交流励磁发电机励磁控制策略及电磁设计的研究.[博士学位论文]. 重庆. 重庆大学电气工程学院. 1997
    [23] I. Cadirci and M. Ermis. Performance evaluation of a wind driven DOIG using a hybrid model. IEEE Trans. on Energy Conversion. June 1998. 13 (2): 148~155
    [24] E. Bogalocka, Maritine Acadamy. Control System of a Doubly-Fed Induction Machine Working as a Generator. Intelligent Motion. June 1991: 104~112
    [25] S.diop 等, 李季秋译. ALSPA GENVAR: 一种优化的恒频变速发电机. 国外大电机. 1996 (6): 34~38
    [26] Pena R, Clare J, Asher G M. A doubly fed induction generator using back-to-back PWM converter and its application to variable-speed wind-energy generation. IEE Proc. EPA. 1996. 143(3): 231-241
    [27] 杨顺昌, 廖勇, 漆小龙. 动态同步轴系及其应用. 电工技术学报. 1999. 14(2): 42-46
    [28] 廖勇, 杨顺昌. 交流励磁发电机双通道励磁系统反馈系数的选取原则. 中国电机工程学报. 1999. 19(1): 122-125
    [29] Datta R, Ranganathan V T. Direct power control of grid-connected wound rotor induction machine without rotor position sensors. IEEE Trans. on Power Electronics. 2001. 16(3): 390-399
    [30] Dallachy J L, Tait I. Guidance Note for the Connection of Wind Farms. Issue No. 2.2.2, SP Transmission and Distribution. Scottish Hydro-Electric. 2002
    [31] Petersson A., Harnefors L., Thiringer T. Evaluation of current control methods for wind turbines using doubly-fed induction machines. IEEE Trans. on Power Electronics. 2005. 20 (1): 227-235
    [32] Jenkins N, Allan R. Embedded Generation. IEE Power and Energy Series 31. 2003
    [33] Ekanayake J, Jenkins N. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency. IEEE Trans. on Energy Conversion, 2004. 19(4): 800-802
    [34] Pannell G, Atkinson D, Kemsley R, Holdsworth L et al. DFIG control performance under fault conditions for offshore wind applications. CIRED Conf.. Turin Italy. June 2005
    [35] Johan Morren, Sjoerd W.H. de Haan. Ridethrough of Wind Turbines with Doubly-Fed Induction Generator During a Voltage Dip. IEEE Trans. on Energy Conversion. June 2005. 20 (1): 435-441
    [36] Andreas Petersson, Stefan Lundberg and Torbjorn Thiringer. A DFIG Wind-Turbine Ride-Through System Influence on the Energy Production. Nordic Wind Power Conference. March 2004: 1-7
    [37] Holdsworth L, Wu X, Ekanayake J ,Jenkins N. Comparison of Fixed Speed and Doubly Fed Induction Wind Turbines During Power System Disturbances. IEE Proc. GTD, 2003,150(3): 343-352
    [38] He Yikang, Hu Jiabing, Zhao Rende. Modeling and Control of Wind-Turbine Used DFIG under Network Fault Conditions. ICEMS. September 2005. Nanjin China
    [39] O. Anaya-Lara, N. Jenkins. Fault current contribution of DFIG wind turbines. IEE Conf. on Reliability of Transmission and Distribution Networks. London UK. February 2005
    [40] www.gepower.com/businesses/ge_wind_energy/en/ technology/lvrt.htm
    [41] Kirby N M, Xu L, Luckett M, Siepmann W. HVDC transmission for large offshore wind farms. IEE Power Engineering Journal. 2002. 16(3): 135-141
    [42] Andersen B R, Xu L. Hybrid HVDC system for power transmission to island networks. IEEE Trans. on Power Delivery. 2004. 19(4): 1884-1890
    [43] 刘其辉, 贺益康, 卞松江. 变速恒频风力发电机空载并网控制. 中国电机工程学报. 2004. 24 (3): 6-11
    [44] 贺益康, 郑康, 潘再平, 刘其辉. 交流励磁变速恒频风电系统运行研究. 电力系统自动化. 2004. 18 (13): 55-58, 68
    [45] 徐甫荣. 大型风电场及风发电机组的控制系统. 电气传动自动化. 2003. 25 (6): 5-11
    [46] Holdsworth L., Wu X., Ekanayake J. and Jenkins N.. Comparison of Fixed Speed and Doubly Fed Induction Wind Turbines During Power System Disturbances. IEE Proc. GTD. 2003. 150 (3): 343-352
    [47] Marcus V. A. Nunes, J. A. Pe?as Lopes, Hans Helmut Zürn, Ubiratan H. Bezerra, and Rogério G. Almeida. Influence of the Variable-Speed Wind Generators in Transient Stability Margin of the Conventional Generators Integrated in Electrical Grids. IEEE Trans. on Energy Conversion, Dec. 2004. 19 (4): 692-701
    [48] Vicatos MS, Tegopoulos JA. Transient State Analysis of A Doubly-fed Induction Generator Under 3-phase Short-circuit. IEEE Trans. on Energy Conversion. March 1991. 6 (1): 62-68
    [49] Peter Vas.. Electrical Machines and Drives a Space-Vector Theory Approach. Oxford University Press. 1992
    [50] Xiang D., Ran L., Tavner P. J., Bumby J. R.. Control of a Doubly Fed Induction Generator to Ride Through a Grid Fault. International Conference on Electric Machines (ICEM). Cracow Poland. September 2004
    [51] National grid electricity transmission Co.. The Grid Code Issue 3 Revision 13. 9th Jan. 2006. connection conditions 6.3.15
    [52] Mohan N., Undeland T.M. and Robbins W.. Power electronics: converters, applications and design. John Wiley & Sons. 2003: 626-637, 208-210
    [53] Bimal K. Bose. Modern power electronics and AC drives. Prentice-Hall. 2002: 401-404
    [54] Mandelbaum R.. Reap the wild wind. IEEE Spectrum. Oct. 2002. 39 (10): 34-39
    [55] Yagi K., Tarutani T., Dohata S., Shiobara Y.. Construction of the first offshore wind turbines in Setana Port in Japan, Ocean '04. MTS/IEEE Techno-ocean '04. Nov. 2004. 4(9): 1841-1846
    [56] Bookman T.. Wind energy's promise: offshore. IEEE Technology and Society Magazine. Summer 2005. 24 (2): 9-15
    [57] 谭恢曾. 海上风力发电. 大众用电. 2004 (8): 20-21.
    [58] 郭雁珩, 易跃春. 海上风力发电. 农电管理. 2004 (7): 42-44
    [59] Thiringer T.. Integration of large sea-based wind parks-how much power electronic devices are needed in order to avoid power quality problems on the grid?, IEEE PES Summer Meeting. Chicago USA. July 2002. Vol. 2: 1277-1279
    [60] Ackermann T.. Transmission systems for offshore wind farms. IEEE Power Engineering Review. Dec. 2002. 22 (12): 23-27
    [61] Sweet W.. Danish wind turbines take unfortunate turn. IEEE Spectrum. Nov. 2004. 41(11): 30, 34
    [62] http://www.vestas.com
    [63] http://www.gepower.com/prod_serv/products/wind_turbines/en/36mw/index.htm
    [64] Weedy B.M. and Cory B.J.. Electric power systems, 4th ed.. John Wiley & Sons. Chichester, UK, 1998: 141
    [65] Axelsson U., Holm A., Liljegren C., Eriksson K., and Weimers L.. Gotland HVDC light transmission—world’s first commercial small scale dc transmission. CIRED Conf.. Nice France. May 1999
    [66] PB power Co.. Concept study: western offshore transmission grid. 2002
    [67] Weixing Lu, Boon-Teck Ooi. Optimal Acquisition and Aggregation of Offshore Wind Power by Multiterminal Voltage-Source HVDC. IEEE Trans. on Power Delivery. January 2003. 18 (1): 201-206
    [68] Slootweg J.G., Polinder H. and Kling W.L.. Dynamic modelling of a wind turbine with doublyfed induction generator. IEEE PES Summer Meeting. Vancouver. 2001: 644-649
    [69] Ran L., Bumby J.R. and Tavner P.J.. Use of turbine inertia for power smoothing of wind turbines with a DFIG, IEEE International Conference on Harmonics and Quality in Power (ICHQP), Portsdam USA. 2004
    [70] Arrillaga J.. High voltage direct current transmission. IEE Power and Energy Series 29. IEE London. 1998: 10-55
    [71] Kundur P.. Power system stability and control. McGraw-Hill. New York. 1994: 500-524

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700