双馈型风力发电变流器及其控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电作为一种已获得商业化利用并具有较大潜能的可在生能源开发形式,近年来得到了较快的发展,其中变速风力发电技术尤其是双馈型变速恒频(VSCF)风力发电技术以其独特的优势而倍受关注。本文以国家“十一五”科技支撑项目(2006BAA01A18、2006BAA01A20)和安徽省“十五”科技攻关项目(040120564)为依托,在双馈型风力发电系统数学建模、驱动控制策略以及变流器的工程设计等方面进行了深入研究,并获得了一些具有创新价值的研究成果。
     本文主要研究内容可概括如下:
     1.建立了针对不同仿真目的和研究需要的双馈电机数学模型,并重点对双馈电机的磁饱和模型和戴维宁等效模型进行了研究。为了简化采用同步发电机对电网特性的仿真,提出了基于受控电压源和电压频率下垂特性对电网运行特性进行模拟的方法,降低了仿真运算量,提高了仿真效率。
     2.利用了双馈电机的“T”型等效电路对其运行控制机理进行了分析,在此基础上对双馈电机的定子磁链定向矢量控制策略和电网虚拟磁链定向矢量控制策略进行了深入研究,并提出了基于自适应谐振调节器的双馈电机控制方案,使得在无需对转子电流进行坐标变换的情况下实现了对双馈电机转子电流的无静差控制。
     3.探讨了双馈电机矢量控制系统的控制性能,并对定子磁链定向和电网虚拟磁链定向两种矢量控制系统的稳定性进行对比;针对双馈电机反电势扰动所形成的振荡过程,提出了“虚拟阻抗”控制策略,从而有效地改善了双馈电机矢量控制系统的动态抗扰能力;研究了双馈电机定子磁链的振荡及其抑制措施。
     4.采用了对称分量法对电网电压不平衡条件下双馈电机的运行特性进行了研究,并对有功功率脉动、无功功率脉动以及电磁转矩脉动之间的关系进行了探讨。重点研究了双同步旋转坐标系(双SRF)不平衡控制策略和单SRF不平衡控制策略,并且针对单SRF不平衡控制策略,首次分析了基于直接转子电压补偿控制方案的理论基础,并针对转子电压补偿控制与转子电流控制之间的耦合作用对系统控制性能的影响,提出了一种解耦控制方案,改善了直接转子电压补偿控制的控制性能。
     5.研究了双馈电机的无速度传感器控制策略。针对基于定子励磁电流的闭环速度观测方案和基于定子电压幅值的闭环速度观测方案均受双馈电机运行状态的影响且速度观测的动态增益受转子电流相位角影响之不足,提出了定子电流双回路和定子电压双回路两种闭环速度观测方案。在基于转子电流的模型参考自适应(MRAS)速度观测方案中,针对速度观测的动态增益与观测电流矢量偏差角之间的非线性特性,提出了基于转子电流偏差角的闭环速度观测方案,改善了系统的动态响应特性。
     6.剖析了双馈电机空载定子电压控制的机理,提出了基于PI调节器和谐振调节器并行的以及解耦的空载定子电压控制方案。
     7.描述了电网电压跌落时双馈电机的电磁过渡过程,并以数学模型对电网电压跌落时双馈电机定转子电流、定子磁链以及电磁转矩的动态响应特性进行了定量分析,讨论了转子电流的控制和电网电压的跌落类型对双馈电机电磁过渡过程的影响。在此基础上深入研究了双馈型风力发电机的低电压穿越(LVRT)控制策略。针对基于转子撬棒的LVRT控制策略,提出了一套完整的控制逻辑,实现了电网故障时风力发电机与电网之间的协调控制和双馈电机不同运行状态之间的平稳切抉;针对基于暂态磁链补偿技术的LVRT控制策略,提出了虚拟电感控制技术,削弱了LVRT控制策略对双馈电机漏感参数的依赖性,改善了双馈电机的LVRT控制性能:针对电网电压恢复时可能形成的电流冲击,研究了基于短暂中断(STI)技术的LVRT控制策略。
     8.搭建了多套不同功率等级、不同机组类型和不同试验目的的双馈型风力发电机实验室模拟系统,获得了一系列的试验结果。研究了对诸如风机气动特性、转动惯量及传输轴系的动态特性等风力机特性进行模拟的软件算法。尤其是建立了基于MW级“双馈电机对”拖动机组的实验室模拟系统,为大功率双馈型风力发电机的模拟试验提供了必要条件。针对“双馈电机对”拖动机组的起动与运行,研究了双馈电机定子短路转子驱动的矢量控制策略,较好的实现了双馈电机的起动控制和低速运行控制。
     9.阐述了用于双馈型风力发电机驱动的背靠背变流器之关键部件的工程设计。针对直流母线支撑电容的设计,依据直流母线电压的脉动特性,研究了转子有功功率阶跃响应和电网电压跌落时双馈电机转子有功功率的交流脉动对直流母线支持电容的设计要求:针对LCL滤波器参数的设计,依据网侧变流器交流谐波的特点和滤波要求,研究了LCL滤波器参数的优化设计方案;针对长线驱动du/dt滤波器的设计,依据波的反射机理,研究了几种变流器端du╱dt滤波器和电机端阻抗匹配网络的设计方案。
     10.设计了2MW双馈型风力发电机驱动变流器的试验样机,并完成了基于“双馈电机对”拖动机组的实验室模拟系统中的试验,且通过了某风力发电机专用试验平台的地面测试试验。
As a renewable energy technology already commercially available and with great potential to be further exploited, wind power generation experienced fast development in the last two decades. Variable-speed wind-energy conversion systems (WECS), especially the doubly fed induction generator (DFIG) -based WECS attract big attention for their exclusive advantages. With the support of "The National Eleventh Five-Year Research Programme of China" (2006BAA01A18、2006BAA01A20) and "The Tenth Five-Year Research Programme of Anhui Provience"(040120564), a number of the key topics, such as modeling of DFIG-based WECS, driving control strategies, engineering design of the back-to-back converters, and so on, are studied in this dissertation. It is through these studies that some innovative results are achieved.
     The main contents of the dissertation can be summarized as:
     1. Different mathematical models of DFIG are derived for different purposes in simulation and research, and the stress is put on the model with flux saturation and the Thevenin's equivalent model. In contrary to the complexity of the method of simulating the characteristics of the power grid by using synchronous generators, a method with less computation and higher efficiency is proposed to perform the simulation by controlled voltage source with frequency-droop and voltage-droop in accordance to its output active and reactive power respectively.
     2. The T-type equivalent circuit of DFIG is used to analyze its control mechanism, on which based the study on the stator-flux and the grid-flux-oriented vector control is carried out, and an adaptive resonant regulator-based control strategy, by which errorless control in steady state is achieved without any frame transformation for the rotor currents, is proposed.
     3. The performance of the vector control of DFIG is discussed, and comparison is made on the stability of the stator-flux and the grid-flux-oriented vector control strategies. To improve the disturbance-rejection from the back-EMF, a strategy of "virtual impedance control" for the DFIG controller is proposed. Analysis is done on the oscillation and its damping of DFIG's stator flux.
     4. The symmetrical component method is adopted to study the behavior of DFIG under unbalanced grid voltage, and the correlations among the pulsations of the stator-side active power, reactive power and the electromagnetic torque are investigated. The unbalance control strategies are studied based on either the dual synchronous reference frame (SRF) or the single SRF. As one of the single SRF-based control schemes, the mechanism of the direct rotor-voltage compensation control is proposed and fully analyzed in the dissertation. To overcome the influence of the coupling between the rotor-voltage compensation and the rotor-current control, a decoupled control scheme is put forward, by which the system performance is improved.
     5. Several typical sensorless control strategies of DFIG are studied. The speed observation based on either the stator excitation current or the stator voltage are both affected by the DFIG's operation modes, and the dynamic gains of both observers are also affected by the phase angles of the rotor currents. To overcome the above mentioned disadvantages, two speed observers, i.e. stator-current dual loop coordinated observer and stator-voltage dual loop coordinated observer, are proposed. And to overcome the nonlinearity between the dynamic gain of the speed observer and the deviation angle of the observed rotor current vector, for the rotor current -based model reference adaptive system (MRAS) speed observer, a deviation angle-based speed observer is proposed, consequently the system dynamic performance is improved.
     6. The mechanism of the no-load stator voltage control of the DFIG is analyzed, and two control approaches, one is based on a hybrid regulator composed of an adaptive resonant component and a PI component and another is based on a decoupled controller, are proposed.
     7. The electromagnetic transfer process of the DFIG during grid voltage dip is described, and the dynamic responses of the stator currents, rotor currents, stator flux and the electromagnetic torque to the grid voltage dip are quantitatively analyzed by modeling, meanwhile, the affection of rotor-current control and the types of the dip to the transfer process is discussed. Based on above study, several typical control strategies for improved LVRT performance of DFIG-based WT are further investigated. For the rotor-side crowbar-based LVRT control strategy, a set of control logic is put forward, with which the coordinated control between the WT and the power grid during grid fault and smoothly switching between different DFIG's operation states are achieved. For the transient flux compensation-based one, a virtual inductance control scheme is proposed to relieve the dependence on the leakage inductance of DFIG and reach better performance. For the current surge, which maybe happens at voltage recovery, the "Short Term Interruption" (STI)-based LVRT control strategy is researched.
     8. Several sets of test benches, with different power level, different types of machine sets, and different experimental purposes, are built, and a series of experimental results are achieved. The software calculation method of WT's dynamic behavior, such as wind turbine aero-dynamics, mechanical load moments, and gearbox and shafts dynamics, following which the prime motor is operated, is studied. Especially a test bench based on dual-MW-level DFIGs is set up, which is indispensable to simulating high power level DFIG-based WT. To meet the requirements of the start-up and low-speed operation of the drive system, rotor-side driving vector control of DFIG with its stator-side short circuit is researched, and good operation performance is obtained.
     9. The key parts engineering design of the back-to-back converters, driving the DFIG-based WT, is presented. For the DC-link capacitor design, the requirements to cope with load perturbation and the rotor-side active power pulsation during grid voltage dip are studied, according to the DC-link pulsation behavior. For the LCL filter design, the optimizing design schemes of the LCL filter are studied, according to the harmonic distribution in the AC side of the grid-side converter and the filtering requirements. For the long lead filter design, several converter-side du/dt filters and motor-side impedance matching networks are analyzed and designed, according to the wave reflection mechanism.
     10. A converter prototype, for 2MW DFIG-based WTs, is designed, with which the experiment has been taken on the dual-DFIGs-based test bench above mentioned. And the on-ground test on a dedicated test bench for WT has been accomplished.
引文
[1] 王革华主编.新能源概论.北京:化学工业出版社,2006年8月.
    [2] 刘万琨,张志英,李银凤、赵萍编著.风能与风力发电技术,北京:化学工业出版社,2007年1月.
    [3] Global Wind Energy Council (GWEC). www.gwec.com.
    [4] Global Wind Energy Council(GWEC). Global Wind Energy 2006. Sep.2006.
    [5] 翟秀静,刘奎仁,韩庆编著.新能源技术.北京:化学工业出版社,2005年9月.
    [6] 于午铭.新疆风能开发的现状与前景.国家风力发电工程技术研究中心,www.nwtc.cn.
    [7] 叶杭冶编著.风力发电机组的控制技术.北京:机械工业出版社,2006年1月.
    [8] A. E. Feijoo, J. Cidras, and J. L. G. Dornelas. "Wind speed simulation in wind farms for steady-state security assessment of electrical power systems". IEEE Trans. Energy Conversion. Pp. 1582-1588, vol. 14, Dec. 1999.
    [9] X. Wang, G. Sideratos, N. Hatziargyriou, and L. H. Tsoukalas. "Wind speed forecasting for power system operational planning", in Proc. of 8th International Conference on Probabilistic Methods Applied to Power Systems, Iowa State University, Ames, Iowa, Sept. 2004, pp. 470-474.
    [10] Gary C. Thomann, Michael J. Barfield. "The time variation of wind speeds and windfarm power output in KANSAS". IEEE Trans. Energy Conversion, pp. 44-49, vol.3 Mar. 1988.
    [11] Cristian Nichita, Dragos Luca, Brayima Dakyo, and Emil Ceanga. "Large band simulation of th wind speed for real time wind turbine simulators". IEEE Trans. Energy Conversion, pp 523-529, vol. 17, Dec. 2002.
    [12] 风的起源及特性.www.xjwind.com.
    [13] 倪安华.风力发电简介.上海大中型电机,2005(3):1-8.
    [14] 规避石油危机风力发电蓬勃发展,燕赵环保网www.yzhbv.com.
    [15] 李永东,苑国峰.中国风力发电的发展现状和前景.电气时代,2006(3):16-19.
    [16] 吴治坚主编.新能源和可再生能源的利用.北京:机械工业出版社,2006年2月.
    [17] R. C. Bansai, Ahmed F. Zobaa, and R. K. Saket. "Some issues related to power generation using wind energy conversion systems: an overview". International Journal of Electric Power Systems, Article 1070, vol.3, 2005.
    [18] S. Muller, M. Deicke, nd Rik W. De Doncker. "Adjustable speed generators for wind turbines based on doubly-fed induction machines and 4-quadrant IGBT converters linked to the rotor", in Proc. of IEEE Industry applications conference, pp. 2249-2254, vol.4, Oct. 2000, Rome.
    [19] "Electrical guide to utility scale wind turbines", American Wind Energy Association (AWEA), www.awea.org,Mar. 2005.
    [20] Frede Blaabjerg. "Power electronics in wind turbines for power systems".高等电力电子技术课程讲义,第六讲,2006年8月,西安交通大学.
    [21] S. Moller, M. Delcke, and Rik W. De Doncker. "Doubly fed induction generator systems for wind tuebines". IEEE Industry Application Magaze. pp.26-33, May/June 2006.
    [22] "Global wind overview", by Bunlung Neammanee, King Mongkut's Institute of Technology North Bangkok.
    [23] Peter Borre Eriksen, Thomas Ackermann, Hans Abildgaard, etc. "System operation with high wind penetration". IEEE Power and Energy Magazine. pp. 65-74, Nov./Dec. 2005.
    [24] "Large scale integration of wind energy in the European power supply: analysis, issues and recommendations". A report by EWEA, Dec. 2005, www.ewea.org.
    [25] "Supply-chain capabilities in the Canadian wind power industry". Information Distribution Center Communications and Marketing Branch Industry Canada, Nov. 2004, http://strategis.gc.ca/rei.
    [26] Monica Chinchilla, Santiago Arnaltes, and Juan Carlos Burgos. "Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid". IEEE Trans. Energy Conversion, pp. 130-135, vol. 21, Mar. 2006.
    [27] Xiong Xin, Liang Hui. "Research on multiple boost converter based on MW-level wind energy conversion system" in Proc. of 8th ICEMS, pp.1046-1049, vol.2 Sept. 2005, Nanjing, China.
    [28] Andrew M. Knight, and Glenn E. Peters. " Simple wind energy controller for an expanded operating range". IEEE Trans. Energy Conversion, pp.459-466, vol.20, June 2005,
    [29] R. Cardenas, and R. Pena. "Sensorless vector control of induction machines for variable-speed wind energy applications". IEEE Trans. Energy Conversion, pp. 196-205, vol. 19, Mar. 2004.
    [30] Henk Polinder, Frank F. A. van der Pijl, Gert-Jan de Vilder, and Peter J. Tavaner. "Comparison of direct-drive and geared generator concepts for wind turbines". IEEE Trans. Energy Conversion, pp.725-733, vol.21, Sept. 2006.
    [31] Rajib Datta, and V. T. Ranganathan. "A method of Tracking the peak power points for variable speed wind energy conversion system". IEEE Trans. Energy Conversion, pp. 163-168, vol. 18, Mar.2003.
    [32] 林勇刚,李伟,陈晓波等.大型风力发电机组独立桨叶控制系统.太阳能学报,2005(6):780-786.
    [33] F. Blaabjerg, Z. Chen, R. Teodorescu, and F. Iov. "Power electronics in wind turbines systems", in Proc. of 5th IEEE IPEMC, pp. 46-56, vol. 1, Aug. 2006, Shanghai, China.
    [34] 张希良主编.风能开发利用.北京:化学工业出版社,2005年1月.
    [35] 欧洲风能协会/国际绿色和平编著,中国资源综合利用协会可再生能源专业委员会/绿色和平中国编译.风力12.北京:中国环境科学出版社,2004年5月.
    [36] "Global wind 2005 report", by Global Wind Energy Council (GWEC). www.gwec.net,2005.
    [37] "Global wind 2006 report", by Global Wind Energy Council (GWEC). www.gwec.net,2006.
    [38] "International wind markets expected to grow by an average of 19% per year up to 2010 according to latest GWEC report", a piece of news on http://www.gwec.net.11/05/2007.
    [39] Gijs van Kuik, Bart Ummels, and Ralph Hendriks. "Perspectives of wind energy", in Proc. of the IUC Conference, Invited Paper, Sept. 2006, Dubrovink.
    [40] "The European experience in wind power development". A report presented by Prof. Arthourous Zervos, President EWEA.
    [41] "European wind power integration experience and the cell controller concept". A report presented by Dr. Thomas Ackerman, Energynautics GmbH, Germany, Dec. 2005.
    [42] 第一情报.风力发电.上海图书馆上海科技情报研究所,上海情报服务平台www.istis.sh.cn,试刊第1期,2005年12月1日。
    [43] 第一情报.风力发电.上海图书馆上海科技情报研究所,上海情报服务平台www.istis.sh.cn,试刊第17期,2006年09月30日。
    [44] Gordon Feller: "China's wind power". Available online http://www.EccWoeld.com,July 15 2006.
    [45] 李娜,荣振威.我国风电设备制造业的现状和发展前景.电力技术经济,2005(17):5-11.
    [46] 王琦,陈小虎,吴正伟.电力电子技术在风力发电众的应用综述.南京师范大学学报(工程技术版),2005(4):7-10.
    [47] 中国风电发电设备容量规模位居亚洲第三世界第十,行业要闻/信息服务,中华人民共和国国家发展和改革委员会(NGRC),http://www.ndrc.gov.cn/xxfw/hyyw/t20060925_85777.htm,2007年5月23日.
    [48] 施鹏飞.2005年中国风电场装机容量统计.国家风力发电工程技术研究中心,www.nwtc.cn.
    [49] 施鹏飞.2006年中国风电场装机容量统计.中国风能,2007(1):14-28.
    [50] 王景.开发风电,走中国自己的新能源之路——与风能专家贺德馨研究员谈中国风能德发展.创新中国,2006年7月.
    [51] 2006年我国风电装机容量快速增长,综合动态/能源交通,中华人民共和国国家发展和改革委员会 (NGRC), http://www.ndrc.gov.cn/xxfw/hyyw/t20060925_85777.htm, 2007年1月05日.
    [52] Wissenschaftspark Gelsenkirchen. "Internationalization of a Wind Turbine Manufacturer: The Example of China, "New Energy/for the South""., May 2005, Repower Systems, www.repower.de.
    [53] 国内首台自主知识产权1.5兆瓦风电机组研制成功,综合动态,能源交通,中华人民共和国国家发展和改革委员会(NGRC),http://www.ndrc.gov.cn/xxfw/hyyw/t20060925_85777.htm,2006年10月27日.
    [54] "International wind energy development world market update 2006 forecast 2007-2011". BTM Consult Aps, Press Release, March 26, 2007.
    [55] 我国海上风电场建设拉开序幕,综合动态/能源交通,中华人民共和国国家发展和改革委员会(NGRC),http://www.ndrc.gov.cn/xxfw/hyyw/t20060925_85777.htm,2006年11月30日.
    [56] Hannele Holttinen and Ritva Hirvonen. "Power system requirements for wind power". Chapter 8 in Wind Power Systems, Ed. by Ackermann, T. John Wiley & Sons Ltd, 2005, pp.144-167(in print) ISBN0-470-85508-8(HB).
    [57] "Large scale integration of wind energy in the European power supply: analysis, issues and recommendations". A report by EWEA, Dec. 2005, www.ewea.org.
    [58] T. Sun, Z. Chen, and F. Blaabjerg. "Voltage recovery of grid-connected wind turbines with DFIG", in Proc. of 35th Annual IEEE PESC, pp.1991-1997, 2004, Aachen Germany.
    [59] E. Fagan, S. Grimes, J. McArdle, P. Smith, and M. Stronge. "Grid code provisions for wind generators in Ireland", in Proc. of IEEE Power Engineering Society General Meeting, pp.1241-1247, June 2005.
    [60] Johan Morren, Sjoerd W. H. de Haan, Wil L. Kling, and J. A. Ferreira. "Wind turbines emulating inertia and supporting primary frequency control". IEEE Trans. Power Systems, pp.433-434, vol.21, Feb. 2006.
    [61] Rogerio G. de Almeida, and J. A. Pecas Lopes. "Primary frequency control participation provided by doubly fed induction wind generators", in Proc. of 15th PSCC, pp. 1-7, Session33, Paperl, Aug. 2005, Liege.
    [62] F. Michael Hughes, Olimpo Anaya-Lara, Nicholas Jenkins, and Goran Strbac. "Control of DFIG-based wind generation for power network support". IEEE Trans. Power Systems, vol. 20, Nov.2005.
    [63] Sigrid M. Bolik. "Modelling and analysis of variable speed wind turbines with induction generator during grid fault". Ph. D. dissertation, Institute of Energy Technology, Aalborg University, Denmark, Oct. 2004.
    [64] Clemens Jauch, Julija Matevosyan, Thomas Ackermann, and Sigrid Bolik. "International comparison of requirements for connection of wind turbines to power systems". Wind Energy, pp. 295-306, Jul. 2005.
    [65] Chad Abbey Wei Li, Loic Owatta, and Geza Joos. "Power electronic converter control techniques for improved low voltage ride through performance in WTGs", in Proc. of37th IEEE PESC, pp.2905-2909, Jun. 2006, Jeju, Korea.
    [66] Johan Morren, and Sjoerd W. H. de Haan. "Ridethrough of wind turbines with doubly-fed inductin generator during a voltage dip". IEEE Trans. Energy Conversion, pp.435-441, vol.20, Jun.2005.
    [67] L. Holdsworth, X. G. Wu, J. B. Ekanayake, and N. Jenkins. "Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances", in IEE Proc. pp.343-352, vol. 150, May 2003.
    [68] M. S. Vicatos, and J. A. Tegopuios. "Transient state analysis of a doubly-fed induction generator under three phase short circuit". IEEE Trans., Energy conversion, pp. 62-68, vol. 6, Mar.1991.
    [69] Andreas Petersson. "Analysis, modeling and control of doubly-fed induction generators for wind turbines". Ph. D. Thesis, Department of Energy and Environment, Chalmers University of Technology, Goteborg, Sweden, 2005.
    [70] 胡家兵,孙丹,赞益康,赵仁德.电网电压骤降故障下双馈风力发电机建模与控制.电力系统自动化,2006(8):21-26.
    [71] Jorun I. Marvik, Torstein Bjorgum, Bjarne I. Naess, etc. "Control of a wind turbine with a doubly fed induction generator after transient failures" in Proc. of Nordic Wind Power Conference, pp. 1-8, Mar. 2004, Chalmers University of Technology, Sweden.
    [72] 向大为,杨顺昌.冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究.中国电机工程学报, 2006(10):130-135.
    [73] 向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略.中国电机工程学报,2006(3):164-170.
    [74] Andrzej Geniusz, and Stephan Muller-Engelhardt. "Riding through grid faults with modified multiscalar control of doubly fed asynchronous generators for wind power systems", in Proc. of International Conference for Power Electronics-Intelligent Motion-Power Quality, May/June 2006, Numberg.
    [75] C. Zhan, C. D. Barker. "Fault ride-through capability investigation of a doubly-fed induction generator with an additional series-connected voltage source converter", in Proc. of AC and DC Power Transimmion, pp. 79-84, Mar. 2006.
    [76] Slavomir Seman. "Transient performance analysis of wind-power induction generators". Ph. D. Thesis. Helsinki University of Technology, Espoo, Finland, Nov. 2006.
    [77] Wilhelm Janssen, etc. "Low voltage ride through for wind turbine generators". United Stated Patent, Patent No. US6921985B2, Jul. 26, 2005.
    [78] Nicholas W. Miller, Einar V. Larsen, and Jason M. Macdowell. "Advanced Control of wind turbine-generators to improve power system dynamic performance", in Proc. of 11th International Conference on Harmonics and Quality of Power, 2004.
    [79] Florin Iov, Remus Teodorescu, Frede Blaabjerg, Bjom Andresen, etc. "Grid code compliance of grid-side converter in wind turbine systems", in Proc. of 37th IEEE PESC, pp.86-92, June, 2006, Jeju, Korea.
    [80] Alan Mullane, Gordon Lightbody, and R. Yacamini. "Wind-turbine fault ride-through enhancement". IEEE Trans. Power Systems, pp. 1929-1937, vol. 20, Nov. 2005.
    [81] Gautam Poddar, and V. T. Ranganathan. "Sensorless double-inverter-fed wound-rotor induction-machine drive". IEEE Trans Industrial Electronics, pp. 86-95, vol.53, Feb. 2006.
    [82] Debiprasad Panda, and Thomas A. Lipo. "Double side control of wound rotor induction machine for wind energy application employing half controlled converters", in Proc. of IEEE ISA, pp. 2468-2475, 2005.
    [83] Y. W. li, D. M. Vilathgamuwa, F. Blaabjerg, and P. C, Loh. "A robust control scheme for medium-voltage-level DVR implementation". IEEE Trans. Industrial Electronics, pp.2249-2261, vol.54, Aug. 2007.
    [84] Nicolas Patin, Eric Monmasson, and Jean-Paul Louis. "Analysis and control of a cascaded doubly-fed induction generator", in Proc. of IEEE IECON, pp.2487-2492, Nov. 2005.
    [85] Kostyantyn Protsenko, and Dewei Xu. "Modeling and control of brushless doubly-fed induction generators in wind energy application", in Proc. of IEEE APEC, pp. 529-535, Feb. 2007.
    [86] Duro Basic, Jian Guo Zhu, and Gerard Boardman. "Transient performance study of a brushless doubly fed twin stator induction generator". IEEE Trans. Energy Conversion, pp. 400-408, vol. 18, Sept. 2003.
    [87] F. Riincos, R. Carlson, N. Sadowski, and P. Kuo-Peng. "Performance and vibration analysis ofa 75kW burshless double-fed induction generator prototype", in Proc. of IEEE 41st IAS annual Meeting, pp.2395-2402, vol.5, Oct. 2006.
    [88] 王琦,陈小虎,纪延超,李枫.同步坐标下的无刷双馈风力发电机控制系统.南京理工大学学报,2006(6):673-678.
    [89] 黄守道,王毅,王耀南,李新田.无刷双馈电机风力发电控制系统与仿真研究.湖南大学学报,2004(1):37-40.
    [90] L. H. Hansen, L. Helle, F. Blaabjerg, E. Ritchie, etc. "Conceptual survey of generators and power electronics for wind turbines". A report by Riso National Laboratory, Roskilde, Denmark, Dee. 2001.
    [91] 贺益康,何鸣明,赵仁德,潘再平.双馈风力发电机交流励磁用变频电源拓扑浅析.电力系统自动化,2006(4):105-111.
    [92] 伍小杰,柴建云.王祥珩.变速恒频双馈风力发电系统交流励磁综述.电力系统自动化,2004(23):92-96.
    [93] 王兆安,黄俊.电力电子技术.北京:机械工业出版社,2002年1月.
    [94] 陈学顺,许洪华.双馈电机变速恒频风力发电运行方式研究.太阳能学报,2004(5):582-586.
    [95] 陈伯时.电力拖动自动控制系统.北京:机械工业出版社,1997年10月.
    [96] Andrzej M. Trzynadlowski, Niculina Patriciu, Frede Blaabjerg, and John K. Pedersen. "A hybrid, current-source/voltage-source power inverter circuit". IEEE Trans. Power Electronics, pp. 866-871, vol.16, Nov. 2001.
    [97] A. M. Trzyndlowski, F. Blaabjerg, J, K. Pedersen, A. Patriciu, and N. Patriciu. "A tandem inverter for high-performance AC drives", in Proc. of IEEE 33rd IAS Annual Meeting, pp.500-505, Oct. 1998, St. Louis, MO, USA.
    [98] Maria Imecs, Andrzej M. Trzynadlowski, Ioan I. Incze, and Csaba Szabo. "Vector control schemes for tandem-converter fed induction motor drives". IEEE Trans. Power Electronics, pp. 493-501, vol. 20, Mar. 2005.
    [99] 黄科元,贺益康.矩阵式变换器励磁的双馈风力发电机系统.太阳能学报,2002(6):732-737。
    [100] Arup K. Dalal, Prasid Syam, and Ajit K. Chattopadhyay. "Use of matrix converter as slip power regulator in doubly-fed induction motor drive for improvement of power quality", in Proc. of IEEE Power India Conference, April 2006.
    [101] K. Ghedamsi, D. Aouzellag, and E. M. Berkouk. "Application of matrix converter for variable speed wind turbine driving an doubly fed induction generator", in Proc. of International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1201-1205, May 2006.
    [102] L. Huber, and D. Borojevic. "Space vector modulated three-phase to three-phase matrix converter with input power factor correction". IEEE Trans. Industry Application, pp. 1234-1246, vol. 31, Nov. 1995.
    [103] D. G. Holmes, and T. A. Lipo. "Implementation of a controlled rectifier using AC-AC matrix converter theory". IEEE Trans Power Electronics, pp. 240-250, vol.7, Jan. 1992.
    [104] 李辉,杨顺昌,廖勇,何蓓.变速恒频双馈发电机励磁控制策略综述.电工技术杂志,2002(12):5-8.
    [105] R. Pena, J. C. Clare, and G. M. Asher. "Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation", in IEE Proc. Electr. Power Appl. vol. 143, May 1996.
    [106] 高景德,王祥珩,李发海著.交流电机及其系统的分析.北京:清华大学出版社,2005年1月.
    [107] O. A. Mohammed, Z. Liu, and S. Liu. "Starer power factor adjustable direct torque control of doubly-fed induction machines". in Proc. of IEEE Electric Machines and Drives, pp. 572-576, May 2005.
    [108] Rajib Datta, and V. T. Ranganathan. "Direct power control of grid-connected wound rotor induction machine without rotor position sensors". IEEE Trans Power Electronics, pp. 390-399, vol. 16, May 2001.
    [109] Lie Xu, and Phillip Cartwright. "Direct active and reactive power control of DFIG for wind energy generation". IEEE Trans. Energy Conversion, vol. 21, Sept. 2006.
    [110] A. Geniusz, and Z. Krzeminski. "Control system based on the modified multiscalar model for the double fed machine" in Proc. of international Conference for Power Electronics-Intelligent Motion-Power Quality, June 2005, Nurnberg.
    [111] 王涛,肖建,李冀昆.感应电机非线性反馈补偿控制.中国电机工程学报,2006(5):461-464.
    [112] 张春朋,林飞,宋文超,焦连伟.基于直接反馈线性化的异步电动机非线性控制,中国电机工程学报,2003(2):99-107.
    [113] 廖勇,杨顺昌.交流励磁发电机双通道励磁系统反馈系数的选取原则.中国电机工程学报,1999(1):52-55.
    [114] 廖勇,杨顺昌.交流励磁发电机励磁控制.中国电机工程学报,1998(2):87-90.
    [115] 杨顺昌.,廖勇,漆小龙.动态同步轴系及其应用.电工技术学报,1999(4):42-46.
    [116] J. Jang, Y. Kim, and D. Lee. "Active and reactive power control of DFIG for wind energy conversion under unbalanced grid voltage", in Proc. of 5th IEEE IPEMC, pp. 1487-1491, vol. 1, Aug. 2006, Shanghai, China.
    [117] Ted Kermit Anderson Brekken. "A novel control scheme for a doubly-fed induction wind generator under unbalanced grid voltage conditions". Ph. D. Thesis, the University of Minnesota, July 2005.
    [118] 闫耀民,范瑜,汪至中.无速度传感器的双馈电机在风力发电系统中的应用研究.太阳能学报,2003(3):432-436.
    [119] 刘丛伟,李崇坚,苏鹏声,李发海.双馈电机无速度传感器矢量控制调速系统的研究.清华大学学报(自然科学版),1999(5):54-57.
    [120] O. A. Mohammed, Z. Liu, and S. Liu. "A novel sensorless control strategy of doubly fed inductin motor and its examination with the physical modeling of machines". IEEE Trans. Magnetics, vol. 41, May 2005.
    [121] R. Cardenas, R. Pena, J. Proboste, G. Asher, and J. Clare. "MARS observer for sensorless control of standalone doubly fed induction generators". IEEE Trans. Energy Conversion, pp. 710-718, vol. 20, Dec. 2005.
    [122] S. Y. Yang, X. Zhang, C. W. Zhang, and R. X. Cao. "Test-bed of doubly fed induction generator for variable-speed constant-frequency wind power generation", in Proc. of 5th IEEE IPEMC, pp. 510-514, vol. 1, Aug. 2006, Shanghai, China.
    [123] M. Yamamoto, and O. Motoyoshi. "Active and reactive power control for doubly-fed wound rotor induction generator". IEEE Trans. Power Electronics, pp. 624-629, vol. 6, Oct. 1991,
    [124] S. Peresada, A. Tilli, and A. Tonielli. "Power control of a doubly fed induction machine via output feedback", available online at www.sciencedirect.com, Control Engineering Practice 12, pp. 41-57, 2004.
    [125] Song Wang, and Yunshi Ding. "Stability analysis of field oriented doubly-fed induction machine drive based on computer simulation". Electric Machines and Power Systems, pp. 11-24, vol.21,1993.
    [126] 李永东主编.交流电机数字控制系统.北京:机械工业出版社,2002年5月.
    [127] M. Jovanovic, J. Yu, and E. Levi. "A direct torque controller for limited speed range applications of brushless doubly-fed reluctance motors", in Proc. of IEEE 39th IAS, pp. 2403-2410, Oct. 2004.
    [128] M. G. Jovanovic, J. Yu, and E. Levi. "Encoderless direct torque controller for limited speed range applications of burshless doubly fed reluctance motors". IEEE Trans. Industry Applications, pp.712-722, vol.42, May/June 2006.
    [129] 王亮,林成武,姚鹏.双馈风力发电机的直接转矩控制技术.沈阳工业大学学报,2006(2):206-229.
    [130] Lie Xu, and Phillip Cartwright. "Direct active and reactive power control of DFIG for wind energy generation". IEEE Tran. Energy Conversion, pp. 750-758, vol. 21, Sept. 2006.
    [131] Zbigniew Krzeminski. "Sensorless multiscalar control of double fed machine for wind power generator", in Proc. of PCC, pp.334-339, vol.1, April 2002, Osaka Japan.
    [132] A. Geniusz, and S. Muller-Engelhardt. "Riding through grid faults with modified multiscalar control of doubly fed asynchronous generators for wind power systems", in Proc. of International Conference for Power Electronics-Intelligent Motion-Power Quality, May/June 2006, Numberg.
    [133] 廖勇,杨顺昌.交流励磁发电机双通道励磁系统反馈系数的选取原则.中国电机工程学报,1999(1):52-55.
    [134] A. Perdana, O.Carlson, and J.Persson. "Dynamic response of grid-connected wind turbine with doubly fed induction generator during disturbances", in Proc. of Nordic Workshop on Power and Industrial Electronics, pp. 1-7, 2004, Trondheim.
    [135] S. Seman, J. Niiranen, S. Kanerva, A. Arkkio, and J. Saitz, "Performance study of a doubly fed wind-power induction generator under network disturbances". IEEE Trans Energy Conversion, pp. 1-8, 2005.
    [136] J. Morren, S. W. H. de Haan, P. Bauer, and J. T. G. Pierik. "Comparison of complete and reduced models of a wind turbine using doubly-fed induction generator", in Proc. of 10th European Conference on Power Electronics and Applications, pp. 1-10, 2003, Toulouse.
    [137] J. B. Ekanayake, L. Holdsworth, X. Wu, and N. Jenkins. "Dynamic modeling of doubly fed induction generator wind turbines". IEEE Trans. Power Systems, pp. 803-809, vol. 18, May 2003.
    [138] H. M. Jabr, and N. C. Kar. "Effects of main and leakage flux saturation on the transient performances of doubly-fed wind driven induction generator". Electr. Power Syst. Res.(2006), doi:10.1016/j.epsr.2006.08.0.34.
    [139] 张兴.PWM整流器及其控制策略的研究.合肥工业大学博士学位论文,2003年6月.
    [140] Y. Liao, L. Ran, G. A. Putrus, and K. S. Smith. "Evaluation of the effects of rotor harmonics in a doubly-fed induction generator with harmonic induced speed ripple". IEEE Trans. Energy Conversion, pp. 508-515, vol. 18, Dec. 2003.
    [141] S. K. Salman, and A. L. J. Ten. "Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator". IEEE Trans. Power Systems, pp. 793-802, vol.18, May 2003.
    [142] Pedro Rosas. "Dynamic influences of wind power on the power system". Ph. D. Thesis, Technical University of Denmark, Denmark, Mar. 2003.
    [143] W. Hofmann, and Okafor F. "Doubly-fed full-controlled induction wind generator for optimal power utilization", in Proc. of IEEE PEDS'01, pp. 355-361, 2001.
    [144] B. Rabelo, W. Hofmann, and L. Pinheiro. "Loss reduction methods for doubly-fed induction generator drives for wind turbines", in Proc. of IEEE SPEEDAM, pp. 1217-1222, May 2006.
    [145] B. Rabelo, and W. Hofmann. "Optimal active and reactive power control with the doubly-fed induction generators in the MW-class wind-turbines", in Proc. of IEEE PEDS, pp. 53-58, 2001, Indosesia.
    [146] Chad Abbey, and Geza Joos. "Optimal reactive power allocation in a wind powered doubly-fed induction generator", in Proc. of IEEE Power Engineering Society General Meeting, pp. 1491-1495, Feb. 2004.
    [147] J. Niiranen. "Voltage dip ride through of a doubly-fed generator equipped with an active crowbar", in Proc. of Nordic Wind Power Conference, pp. 1-4, Mar. 2004, Chalmers University of Technology, Sweden.
    [148] S. D. Rubira, and M. D. McCulloch. "Control method comparison of doubly fed wind generators connected to the grid by asymmetric transmission lines". IEEE Trans. Industry Applications, pp. 986-991, vol.36, Jul./Aug. 2000.
    [149] L. Xu, and Y. Wang. "Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions". IEEE Trans. Power Systems, pp. 314-323, vol. 22, Feb. 2007.
    [150] T. Thiringer, and J. Linders. "Control by variable rotor speed of a fixed-pitch wind turbine operating in wide speed range". IEEE Trans. Energy Conversion, pp. 520-526, vol.8, Sept. 1993.
    [151] 王志华,李亚西,赵栋利等.变速恒频风力发电机最大功率跟踪控制策略的研究,可再生能源,2005(2):16-19.
    [152] S. Bhowmik, R. Spee, and J. H. R. Enslin. "Performance optimization for doubly fed wind power generation systems". IEEE Trans. Industry Application, pp. 949-957, vol.35, Jul./Aug. 1999.
    [153] 刘其辉,资益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化,2003(20):62-67.
    [154] S. Morimoto, T. Nakamura, and Y. Takeda. "Power maximization control of variable-speed wind generation system using permanent magnet synchronous generator". Electrical Engineering in Japan, pp. 11-19, vol. 150, 2005.
    [155] Geng Hun, and Yang Geng. "A novel control strategy of MPPT traking dynamics of wind turbine into account", in Proc. of 37th IEEE PESC, pp.3050-3085, Jun. 2006, Jeju, Korea.
    [156] M. Ermis, H. B. Ertan, E. Akpinar, and F. Ulgut. "Autonomous wind energy conversion system with a simple controller for maximum-power transfer" in IEE Proc., pp.421-428, vol. 139, Sept. 1992.
    [157] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda. "Sensorless output maximization control for variable-speed wind generation system using IPMSG". IEEE Trans. Industry Applications, pp.60-67, vol.41, Jan./Feb. 2005.
    [158] R. Datta, and V. T. Ranganathan. "A method of tracking the peak power points for a variable speed wind energy conversion system". IEEE Trans. Energy Conversion, pp. 163-168, vol. 18, Mar. 2003.
    [159] 贾要勤,曹秉刚,杨仲庆.风力发电机模拟平台的MPPT快速响应控制方法.太阳能学报,2004(3):364—370.
    [160] Q. Wang, and L. Chang. "An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems". IEEE Trans. Power Electronics, pp. 1242-1249, vol. 19, Sept.2004.
    [161] X. Zhang, X. Z. Cheng, Z. Xie, S. Y. Yang, and R. X. Cao. "A MPPT control strategy for grid connected variable speed wind turbine systems based on maximum power curve fitting", in Proc. of 5th IEEE IPEMC, pp. 637-641, vol. 1, Aug. 2006, Shanghai, China.
    [162] R. Cardenas, R. Pena, J. Proboste, G. Asher, and J. Clare. "MRAS observer for sensorless control of standalone doubly fed induction generators". IEEE Trans. Energy Conversion, pp.710-718, vol.20, Dec. 2005.
    [164] R. Karki, P. Hu, and R. Billinton. "A simplified wind power generation model for reliablility evaluation". IEEE Trans. Energy Conversion, pp. 533-540, vol.21, Jun. 2006.
    [165] A. G. Abo-Khalil, and D. Lee. "Dynamic modeling and control of wind turbines for grid-connected wind generation system", in Proc. of IEEE PESC, pp. 2755-2760, Jun. 2006, Jeju Korea.
    [166] A. E. Feijoo, J. Cidras, and J. L. G. Dornelas. "Wind speed simulation in wind farms for steady-state security assessment of electrical power systems". IEEE Trans. Energy Conversion, pp. 1582-1588, vol. 14, Dec. 1999.
    [167] I. Abouzahr, and R. Ramakumar. "An approach to assess the performance of utility-interactive wind electric conversion systems". IEEE Trans. Energy Conversion, pp. 627-636, vol. 6, Dec. 1991.
    [168] 李自应,王明,陈二永,顾本文.云南风能可开发地区风速的韦布尔分布参数及风能特征值研究.太阳能学报:1998(3):248-253.
    [169] 李东东,陈陈.风力发电系统动态仿真的风速模型.中国电机工程学报,2005(21):41—44.
    [170] Changhong Shao, Xingjun Chen, and Zhonghua Ling. "Application research of maximum wind-energy tracing controller based adaptive control strategy in WECS", in Proc. of 5th IEEE IPEMC, pp. 607-611, vol. 1, Aug. 2006, Shanghai, China.
    [171] P. M. Anderson, and A. Bose. "Stability simulation of wind turbine systems". IEEE Trans Power Apparatus and Systems, pp. 3791-3795, vol.102, 1983.
    [172] 柴建云,苑国锋,杨凯,伍小杰等.变速恒频风力发电机组动态模拟系统.21世纪太阳能新技术.
    [173] 张兴,司媛媛,张强,李维华等.基于Labview的虚拟风场算法的研究.合肥工业大学学报(自然科学版),2005(9):1062—1064.
    [174] J. G. Slootweg, H. Polinder, and W. L. Kling. "Dynamic modeling of a wind turbine with doubly fed induction generator", in Proc. of IEEE Power Engineering Society Summer Meeting, pp. 644-649, vol. 1, July 2001.
    [175] F. Iov, A. D. Hansen, P. Sorensen, and F. Blaabjerg. "Wind turbine blockset in Matlab/Simulink, general overview and description of the models". Aalborg University, Mar. 2004, available online www.iet.auc.dk.
    [176] 李东东,靳希,束峻峰.并网风力发电机组轴系动态仿真研究.微计算机信息,2006(4-1):278-280.
    [177] G. R. Slemon. "Modeling of induction machines for electric drives". IEEE Trans. Industry Application, pp. 1126-1130, vol. 20, Nov. 1989.
    [178] Y. Lei, A. Mullane, G. Lightbody, and R. Yacamini. "Modeling of wind turbine with a doubly fed induction generator for grid integration studies". IEEE Trans. Energy Conversion, pp. 1-8, 2005.
    [179] J. B. Ekanayake, L. Holdsworth, and N. Jenkins. "Comparison of 5th order and 3rd order machine models for doubly fed induction generator(DFIG)wind turbines". Electr. Power Syst. Res.(2003), doi: 10.1016/S0378-7796(03)00109-3.
    [180] T. Thiringer, and J. Luomi. "Comparison of reduced-order dynamic models of induction machines". IEEE Trans. Power Systems, pp.119-126, vol. 16, Feb. 2001.
    [181] P. Ledesma, and J. Usaola. "Effect of neglecting stator transients in doubly fed induction generators models". IEEE Trans. Energy Conversion, pp. 459-461, vol.19, Jun. 2004.
    [182] F. Koch, F. Shewarega, and I. Erlich. "Alternative models of the doubly-fed induction machine for power system dynamic analysis" in International Conference on New and Renewable Energy Technologies for Sustainable Development, pp. 1-15, 28 June-1 July 2004, Evora, Portugal.
    [183] K. Hirayama. "Practical detailed model for generators". IEEE Trans. Energy Conversion, pp.105-110, Mar. 1995.
    [184] 张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003年.
    [185] 高频功率电子学——直流—直流变换部分.
    [186] 赵仁德,贺益康,黄科元,卞松江.变速恒频风力发电机用交流励磁电源的研究.电工技术学报,2004(6):1-6.
    [187] 汤蕴璆,张弈黄,范瑜编著.交流电机动态分析.北京:机械工业出版社,2005年1月.
    [188] 陈宏,胡育文.逆变电源并联技术.电工技术学报.2002(5):55-59.
    [189] 邱关源主编.电路.北京:高等教育出版社,1989年.
    [190] 陈崇源主编.高等电路.武汉:武汉大学出版社,2000年3月.
    [191] A. Petersson, L. Harnefors, and T. Thiringer". "Evaluation of current centrol methods for wind turbines using doubly-fed induction machines". IEEE Trans. Power Electronics, pp. 227-235, vol.20, Jan. 2005.
    [192] 刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制.中国电机工程学报,2004(3):6-11.
    [193] 顾绳谷主编.电机及拖动基础(上册).北京:机械工业出版社,1998年10月.
    [194] 李华德主编.交流调速控制系统.北京:电子工业出版社,2003年3月.
    [195] 胡崇岳主编.现代交流调速技术.北京:机械工业出版社,2001年7月.
    [196] C. Chompoo-inwai, C. Yingvivatanapong, K. Methaprayoon, and W. Lee. "Reactive compensation techniques to improve the ride-through capability of wind turbine during disturbance". IEEE Trans. Industry Application, pp.666-672, vol. 41, May/Jun. 2005.
    [197] 赵争鸣,袁立强,孟朔,李崇坚.通用变频器矢量控制与直接转矩控制特性比较.电工技术学报,2004(4):81-85.
    [198] D. Seyoum, D, McKinnon, M. F. Rahman, and C. Grantham. "Offset compensation in the estimation of flux in induction machines", in Proc. of IEEE 38th IAS Annual Meeting, pp. 1715-1720, 2003, USA.
    [199] A. Petersson, L. Hamefors, and T. Thiringer. "Comparison between stator-flux and grid-flux-oriented rotor current control of doubly-fed induction generators", in Proc. of 35th Annual IEEE PESC, pp.482-486, 2004, Aachen, Germany.
    [200] Liu Congwei, Weng Haiqing, Sun Xudong, and Li Fahai. "Research of stability of double fed induction motor vector control system", in Proc. of ICEMS, pp.1203-1206, vol. 2, Aug. 2001.
    [201] 杨淑英,张兴,张祟巍,谐振.基于自适应谐振调节器的变速恒频风力发电双馈驱动研究.中国电机工程学报,2007(14):96—101.
    [202] Guofeng Yuan, Jianyun Chai, and Yongdong Li. "Vector control and synchronization of doubly fed induction wind generator system", in Proe of the 4th IEEE IPEMC, pp.886-890, 2004, Xi'an, China.
    [203] 胡寿松主编.自动控制原理.北京:科学出版社,
    [204] J. Marques, and H. Pinheiro. "Dynamic behavior of the doubly-fed induction generator in stator flux vector reference frame", in Proc. of the 36th IEEE PESC, pp.2104-2110, 2005.
    [205] Dawei Xiang, Li Ran, Peter J. Tavner, and Shunchang Yang. "Control of a doubly fed induction generator in a wind turbine during grid fault ride-through". IEEE Trans. Energy Conversion, pp. 652-662, vol.21, Sept. 2006.
    [206] T. Brekken, and N. Mohan. "A novel doubly-fed induction wind generator control scheme for reactive power control and torque pulsation compensation under unbalanced grid voltage conditions", in Proc. of IEEE PESC, vol.2, pp.760-764, 2003.
    [207] T. Brekken, and N. Mohan. "Control of a doubly fed induction wind generator under unbalanced grid voltage conditions". IEEE Trans. Energy Conversion, pp. 129-135, vol. 22, Mar. 2007.
    [208] 林海雪编著.电力系统的三相不平衡.1998年5月.
    [209] M. R. Rathi, P. P. Jose, and N. Mohan. "A novel H_∞ based controller for wind turbine applications operating under unbalanced voltage conditions", in Proc. of 13th intelligent Systems Applications to Power System, pp.355-360, Nov. 2005.
    [300] P. Rioual, and H. Pouliquen. "Regulation of a PWM rectifier in the unbalanced network state", in Proc. of 24th IEEE PESC, pp. 641-647, June 1993.
    [301] M. Chomat, and L. Schreier. "Control method for DC-link voltage ripple cancellation in voltage source inverter under unbalanced three-phase voltage supply conditions", IEE Proc-Eleetr. Power Appl., pp.494-500, vol. 152, May 2005.
    [302] 季建强.电压型PWM整流器(VSR)不平衡控制策略研究.合肥工业大学硕士学位论文,2004年4月.
    [303] 郑国华,张丽.电力系统电压的不平衡度讨论.交通运输工程与信息学报,2005(3):45-49.
    [304] M. H. J. Bollen. "Definitions of voltage unbalance". IEEE Power Engineering Review, pp.49-50, Nov. 2002.
    [305] P. Pillay, and M. Manyage. ""Definitions of voltage unbalance". IEEE Power Engineering Review, pp. 50-51, May. 2001.
    [306] 顾绳谷主编.电机及拖动基础(下册).北京:机械工业出版社,2006年4月.
    [307] H. Song, and K. Nam. "Dual current scheme for PWM converter under unbalanced input voltage conditions". IEEE Trans. Industrial Electronics, pp. 953-959, vol. 46, Oct. 1999.
    [308] 陈伯时,杨耕.无速度传感器高性能交流调速控制的三条思路及其发展建议.电气传动,2006(1):3-8.
    [309] R. Datta, V. T. Ranganathan. "A simple position-sensorless algorithm for rotor-side field-oriented control of wound-rotor induction machine". IEEE Trans Industrial Electronics, vol.48, pp.786-793, Aug. 2001.
    [310] L. Morel, H. Godfroid, A. Mirzaian and J. M. Kauffmarm, "Double-fed induction machine: converter optimization and field oriented control without position sensor," in IEE Proc.-Electr. Power Appl. vol. 145, pp. 360-36, Jul. 1998.
    [311] R. Datta, and V. T. Ranganathan. "Decoupled control of active and reactive power for a grid-connected doubly-fed wound rotor induction machine without position sensors", in Proc. of 34th IEEE IAS, pp.2623-2630, vol. 4, Oct. 1999.
    [312] Huang Hui, Qiu Ruichang and Jiang Xuedong, "Research on rotor EMF-oriented doubly fed motor without position sensors for wind-energy generation," in Proc. of the Eighth International Conf. on Electrical Machines and Systems ICEMS, pp. 1042-1045, Sept. 2005.
    [313] Longya Xu and Wei Cheng, "Torque and reactive power control of a doubly-fed induction machine by position sensorless scheme,"IEEE Trans. Ind. Appl. vol. 31, pp.636-642 May/Jun. 1995.
    [314] E. Bogalecka, "Power control of a double fed induction generator without speed or position sensor," in Proc. of 15th European Power Electronics and Application Conf., pp. 224-228, 1993.
    [315] Krzeminski Z., Popenda A., Melter M. and Ladaeh P., "Sensorless control system of double fed induction machine with predictive current controller, in Proc. EPE, pp. p3-p9, 2001.
    [316] B. Shen, B. Ooi. "Novel sensorless decoupled P-Q control of doubly-fed induction generator (DFIG) based on phase locking to γ-δ frame," in Proc. IEEE PESC, pp. 2670-2675, Sept. 2005.
    [317] R. Cardenas, R. Pena, G. Asher, J. Clare and J . Cartes, "MRAS observer for doubly fed induction machines," IEEE Trans. Energy Conversion, vol. 19, pp.467-468, Jun. 2004.
    [318] R. Cardenas, R. Pena, J. Proboste, G. Asber and J. Clare, "Sensorless control of a doubly-fed induction generator for stand alone operation," in Proc. IEEE PESC, pp. 3378-3383, Jun. 2004.
    [319] S. Carmeli, F. C. Dezza, R. Perini. "Double fed induction machine drive: proposal era speed sensorless control based on a MRAS", in Proc. IEEE Electric Machines and Drives, May 2005, pp.404-410.
    [320] R. Cardenas, R. Pena, J. Proboste, G. Asher and J. Clare, "Rotor current based MRAS observer for doubly-fed induction machines,"IEE Electronics Letters, vol. 40, no. 12, 10th, Jun. 2004.
    [321] R. Pena, R. Cardenas, J. Proboste, G. Asber and J. Clare, "Sensoriess control of a slip ring induction generator based on rotor current MRAS observer," in Proc. of IEEE Power Electronics Specialists Conf., 2005, pp. 2508-2513.
    [322] 孟岳勇,谢少军.基于DSP的异步风力发电机阻软并网控制器的设计.电气开关,2003,41(6):27-30.
    [323] 刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机并网控制策略.电力系统自动化,2006,30(3):51-70.
    [324] 苑国锋,李永东.变频技术在变速恒频异步风力发电系统中的应用.变频器世界,2005(9):6-11.
    [325] 林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究.中国电机工程学报,2003,23(11):122-125.
    [326] 苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究.中国电机工程学报,2005,25(8):90-94.
    [327] 赵栋利,许洪华,赵斌,等.变速恒频风力双馈发电机并网电压控制研究.太阳能学报,2004,25(5):587-591.
    [328] 刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真.中国电机工程学报,2006,26(5):43-50.
    [329] 杨淑英,张兴,张崇巍等.变速恒频双馈风力发电机投切控制策略.中国电机工程学报,2007(17):103-108.
    [330] 赵斌,许洪华.大型风力发电机组的软并网控制系统.新能源,2000(12):45-47.
    [331] S. Peresada, A. Tilli, and A. Tonielli. "Indirect stator flux-oriented output feedback control of a doubly fed induction machine". IEEE Trans. Control Systems Technology, pp. 875-888, vol. 11, Nov. 2003.
    [332] 李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105.
    [333] S. Peresada, A. Tilli, and A. Tonielli. "Robust active-reactive power control of a doubly-fed induction generator", in Proc. of 24th IEEE IECON, pp. 1621-1625, vol.3, 31 Aug.-4 Sept. 1998.
    [334] I. Erlich, W. Winter, and A. Dittrich. "Advanced grid requirements for the integration of wind turbines into the German transmissions system", in Proc. of IEEE Power Engineering Society General Meeting, pp. 1-7, June, 2006.
    [335] B. Xie, B. Fox, and D. Flynn. "Study of fault ride-through for DFIG based wind turbines", in Proc. of IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, pp. 411-416, April 2004, Hong Kong,
    [336] A. Petersson, S. Lundberg, and T. Thiringer. "A DFIG wind-turbine ride-through system influence on the energy production", in Proc. of Nordic Wind Power Conference, pp. 1-7, Mar. 2004, Chalmers University of Technolgy, Sweden.
    [337] M. R. Rathi, and N. Mohan. "A novel robust low voltage and fault ride through for wind turbine application operating in weak grids", in Proc. of 32nd IEEE IECON pp. 2481-2486, Nov. 2005.
    [338] O. Anaya-Lara, F. M. Hughes, N. Jenkins, and G. Strbac. "Contribution of DFIG-based wind farms to power system short-term frequency regulation", in IEE. Proc.-Gener. Transm. Distrib, pp.164-170, vol. 153, Mar. 2006.
    [339] G. Tsourakis, and C. D. Voumas. "Simulation of low voltage ride through capability of wind turbines with doubly fed induction generator", in Proc. of European Wind Energy Conference (EWEC), March 2006, Athens, Greece.
    [340] C. Jauch. "Stability and control of wind farms in power systems". Ph. D. dissertation, Riso National Laboratory, Aalborg University, Denmark, Oct. 2006.
    [341] C. Sasse. "Connecting wind farms to the grid-what you need to know", AREVA T&D Technology Centre, Stafford, UK, Mar. 2006.
    [342] W. Erdman, and M. Behnke. "Low wind speed turbine project phase Ⅱ: the application of medium-voltage electrical apparatus to the class of variable speed multi-megawatt low wind speed turbines". Behnke, Erdman & Whitaker (BEW) Engineering San Ramon, California, Subcontract Report, Nov. 2005,
    [343] M. Kezunovic, and Y. Liao. "A new method for classification and characterization of voltage sags". Electric Power Systems Research, pp.27-35, 2001, Available online www.elsevier.com.
    [344] G. Saccomando, J. Svensson, and A. Sannino. "Improving voltage disturbance rejection for variable-speed wind turbines". IEEE Trans. Energy Conversion, pp.422-428, vol. 17, Sept. 2002.
    [345] M. H. J. Bollen, and L. D. Zhang. "Different methods for classification of three-phase unbalanced voltage dips due to faults". Electric Power Systems Research, pp.59-69, 2003, Available online www.elsevier.com.
    [346] K. Stockman, F. Dhulster, K. Verhaege, M. Didden, and R. Belmans. "Ride-through of adjustable speed drives during voltage dips". Electric Power Systems Research, pp.49-58, 2003, Available online www.elsevier.com
    [347] T. Thiringer, A. Petersson, and T. Petru. "Grid disturbance response of wind turbines equipped with induction generator and doubly-fed induction generator", pp. 1542-1547, vol.3, July 2003.
    [348] C. Abbey, and G. Joos. "Energy management strategies for optimization of energy storage in wind power hybrid system", in Proc. of 36th IEEE PESC, pp.2066-2072, 2005.
    [349] C. Abbey, and G. Joos. "Effect of low voltage ride through (LVRT) characteristic on voltage stability", in Proc. of IEEE Power Engineering Society General Meeting, pp. 1901-1907, June 2005.
    [350] S. Seman, J. Niiranen, and A. Arkkio. "Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance". IEEE Trans. Power Systems, pp. 1782-1789, vol.21, Nov. 2006.
    [351] I. Erlich, H. Wrede, and C. Feltes. "Dynamic behavior of DFIG-based wind turbines during grid faults", in Proc. of Power Conversion Conference, pp. 1195-1200, April 2007.
    [352] T. Sun, Z. Chen, F. Blaabjerg. "Transient analysis of grid-connected wind turbines with DFIG after an external short-circuit fault", in Proc. of Nordic Wind Power Conference, pp. 1-6, Mar. 2004, Chalmers University of Technology, Sweden.
    [353] T. Sun, Z. Chen, and F. Blaabjerg. "Voltage recovery of grid-connected wind turbines after a short-circuit faul", in Proc. of 35th IEEE PESC, pp.2723-2728, 2004, Aachen, Germany.
    [354] S. Seman, J. Niiranen, S. Kanerva, and A. Arkkio. "Analysis of a 1.7MVA doubly fed wind-power induction generator during power systems disturbances", in Proc. of Nordic Workshop on Power and Industrial Electronics, June 2004, Trondheim, Norway.
    [355] 胡家兵,孙丹,贺益康,赵仁德.电网电压骤降故障下双馈风力发电机建模与控制.电力系统自动化,2006(8):21-26.
    [356] Mustafa Kayikci, and Jovica V. Milanovic. "Reactive power control strategies for DFIG-based plants". IEEE Trans. Energy Conversion, pp.389-396, vol.22, Jun. 2007.
    [357] S. Y. Yang, C. W. Zhang, X. Zhang, R. X. Cao, and W. X. Shen. "Study on the control strategy for parallel operation of inverters based on adaptive droop method", in Proc. of IEEE ICIEA, pp. 1-5, May 2006, Singapore.
    [358] 杨淑英,张兴,张崇巍.基于下垂特性的逆变器并联技术研究.电工电能新技术,2006(2):7-10.
    [359] H. M. Kojabadi, L. Chang, and T, Boutot. "Development of a novel wind turbine simulator for wind energy conversion systems using an inverter-controlled induction motor". IEEE Trans Energy Conversion, pp.547-552, vol. 19, Sept. 2004.
    [360] B. Rabelo, W. Hofmann, and M. Gluck. "Emulation of static and dynamic behaviour of a wind-turbine with a DC-Machin", in Proc of 35th IEEE PESC, pp.2107-2112, 2004, Aachen, Germany.
    [361] 刘其辉,贺益康,赵仁德.基于直流电动机的风力机特性模拟.中国电机工程学报,2006(7):134-139.
    [362] D. S. L. Dolan, and P. W. Lehn. "Real-time wind turbine emulator suitable for power quality and dynamic control studies", in Proc. of IPST, pp. 1-6, Jun. 2005, Montreal, Canada.
    [363] C. Dufour, and J. Belanger. "A real-time simulator for doubly fed induction generator based wind turbine application", in Proc. of 35th IEEE PESC, pp. 3579-3603, 2004, Aachen, Germany.
    [364] 吴捷,许燕灏.基于异步电动机的风力机风轮动态模拟方法.华南理工大学学报(自然科学版),2005(6):46-49.
    [365] 郑康,潘再平.变速恒频风力发电系统中的风力机模拟.电机工程,2003(6):40-43.
    [366] 黄海,康勇,柳彬.风力机特性的直流电机模拟.电机电器技术,2005(2):50-51.
    [367] 卞松江,潘再平,贺益康.风力机特性的直流电机模拟.太阳能学报,2003(3):360-364.
    [368] L. A. C. Lopes, J. Lhuiler, A. Mukerjee, and M. F. Khokhar. "A wind turbine emulator that represents the dynamics of the wind turbine rotor and drive train", in Proe. of 36th IEEE PESC, pp. 2092-2097, 2005.
    [369] M. Arifujjaman, M. T. Iqbal, and J. E. Quaicoe. "An isolated small wind turbine emulator", in Proc. of IEEE CCECE/CCGEI, pp. 1854-1857, May, 2006, Ottawa, Canda.
    [370] M. Chinchilla, S. Arnaltes, and J. L. Rodriguez-Amenedo. "Laboratory set-up for wind turbine emulation", in Proc. of IEEE ICIT, pp. 553-557, 2004.
    [371] S. Song, B. Jeong, J. Oh, and G. Venkataramanan. "Emulation of output characteristics of rotor blades using a hardware-in-loop wind turbine simulation", in Proc. of APEC, pp. 1791-1796, March 2005, Austin, Texas, USA.
    [372] 贾要勤.风力发电实验室勇模拟风力机.太阳能学报,2004(6):735-739.
    [373] F. J. Lin, L. T. Teng, P. H. Shieh, and Y. F. Li. "Intelligent controlled-wind-turbine emulator and induction-generator system using RBFN", in IEE Proc.-Electr. Power Appl., pp.608-618, vol. 153, July 2006.
    [374] T. Thiringer, and J. Dahlberg. "Periodic pulsations from a three-bladed wind turbine". IEEE Trans. Energy Conversion, pp.128-133, vol.16, June 2001.
    [375] Dale S. L. Dolan, and P. W. Lehn. "Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow". IEEE Trans. Energy Conversion, pp.717-724, vol.21, Sept. 2006.
    [376] T. Sun, Z. Chen, and F. Blaabjerg. "Flicker study on variable speed wind turbines with doubly fed induction generators". IEEE Trans. Energy Conversion, pp. 905, vol. 20, Dec. 2005.
    [377] S. Seman, F. Iov, J. Niiranen, and A. Arkkio. "Comparison of simulators for variable speed wind turbine transient analysis", International Journal of Energy Research, pp. 713-728, vol. 30, July 2006.
    [378] M. H. Hansen, A. Hansen, T. J. Larsen, S. φye, P. Sorensen, and P. Fuglsang. "Control design for a pitch-regulated, variable speed wind turbine" Risφ National Laboratory, Roskilde, Denmark, January 2005, available online www.risoe.dk.
    [379] 陈严,张锦源,王楠,叶枝全.风力机风场模型的研究及紊流风场的MATLAB数值模拟.太阳能学报,2006(9):955-960.
    [380] B. Gu, and K. Nam. "A dc link capacitor minimization method through direct capacitor current control". IEEE Trans. Industry Applications, pp. 573-581, vol.42, March-April 2006.
    [381] A. M. Leon. "Advanced power electronic for wind-power generation buffering". Ph. D. dissertation, Graduate School of the University of Florida, University of Florida, USA, 2005.
    [382] "IEEE recommended practices and requirements for harmonic control in electrical power systems". IEEE Std. 519-1992, April 1993.
    [383] M. Liserre. "Innovative control techniques of power converters for industrial automation". Ph. D. dissertation, Department of Electrotechnic and Electronic, Politecnico di Bari, Italy, Dec. 2001.
    [384] H. R. Karshenas, and H. Saghafi. "Basic criteria in designing LCL filters for grid connected converters", in Proc. of IEEE ISIE, pp. 1996-2000, July 2006, Montreal, Quebec, Canada.
    [385] M. Liserre, F. Blaabjerg, and S. Hansen. "Design and control of an LCL-filter-based three-phase active rectifier". IEEE Trans. Industry Applications, pp. 1281-1290, vol.41, Sept./Oct. 2005.
    [386] Y. Lang, D. Xu, S. R. Hadianamrei, and H. Ma. "A novel design method of LCL type utility interface for three-phase voltage source rectifier", in Proc. of 36th IEEE PESC pp. 313-317, 2005.
    [387] E. Twining, and D. G. Holmes. "Grid current regulation of a three-phase voltage source inverter with an LCL input filter". IEEE Trans. Power Electronics, pp.888-895, vol. 18, May 2003.
    [388] M. Liserre, A. D. Aquila, and F. Blaabjerg. "Stability improvements of an LCL-filter based three-phase active rectifier", in Proc. 33rd IEEE PESC, pp.1195-1201, vol. 3, June, 2002.
    [389] M. Liserre, R. Teodorescu, and F. Blaabjerg. "Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values". IEEE Trans. Power Electronics, pp. 263-272, vol.21, Jan. 2006.
    [390] E. Wu, and P. W. Lehn. "Digital current control of a voltage source converter with active damping of LCL resonance". IEEE Trans. Power Electronics, pp. 1364-1373, vol.21, Sept. 2006.
    [391] B. Bolsens, K. D. Brabandere, J. V. den Keybus, J. Druesen, and R. Belmens. "Model-based generation of low distortion currents in grid-coupled PWM-inverters using an LCL output filter". IEEE Trans. Power Electronics, pp.1032-1040, vol.21, July 2006.
    [392] Pradeep V., A. Kolwalkar, and R. Teichmann. "Optimized filter design for IEEE 519 compliant grid connected inverters", in Proc. of International Conference on Power Electronics, pp.1-7, 2004, India.
    [393] R. M. Hudson, T. Thome, F. Mekanik, M. R. Behnke, etc. "Implementation and testing of anti-islanding algorithms for IEEE929-2000, compliance of single phase photovoltaic inverters", in Proc. of IEEE Photovoltaie specialists conference, pp.1414-1419, May 2002.
    [394] T. CY Wang, Z. Ye, G. Sinha, and X. Yuan. "Output filter design for a grid-interconnected three-phase inverter", in Proc. of 34th IEEE PESC, pp.779-784, June 2003, Acapulco Mexico.
    [395] S. Lee, and K. Nam. "An overvoltage suppression scheme for AC motor drives using a half DC-link voltage level at each PWM transition". IEEE Trans. Industrial Electronics, pp.549-557, vol.49, June 2002.
    [396] P. T. Finlayson. "Output filters for PWM drives with induction motors". IEEE Industry Application Magazine, pp. 46-52, Jan./Feb. 1998.
    [397] Y. Sozer, D. A. Torrey, and S. Reva. "New inverter output filter topology for PWM motor drives". IEEE Trans. Power Electronics, pp. 1007-1017, vol. 15, Nov. 2000.
    [398] Avon Jouanne, P. Enjeti, and W. Gray. "The effect of long motor leads on PWM inverter fed AC motor drive systems", in Proc. of APEC, pp. 592-597, March 1995.
    [399] A. von Jouanne, H. Zhang, and A. K. Wallace. "An evaluation of mitigation techniques for bearing currents, EMI and overvoltages in ASD application". IEEE Trans. Industry Application, pp. 1113-1122, vol.34, Sept./Oct. 1998.
    [400] A. von Jouanne, and P. N. Enjeti. "Design considerations for an inverter output filter to mitigate the effects of long motor leads in ASD applications". IEEE Trans. Industry Application, pp. 1138-1145, vo.33, Sept./Oct. 1997.
    [401] 马洪飞,徐殿国,陈希有,姜艳妹.PWM逆变器驱动异步电动机采用长线电缆时电压反射现象的研究.中国电机工程学报,2001(11):109-113.
    [402] 姜艳妹,徐殿国.刘宇,赵洪.新型PWM逆变器输出无源滤波器的研究.电机与控制学报,2005(1):5-10.
    [403] 高强,徐殿国.PWM逆变器输出端共模与差模电压dv/dt滤波器设计.电工技术学报,2007(1):79-84.
    [404] 郭宇婕,黄立培,姜建国.PWM变频器供电对异步电机绝缘的影响.大电机技术,2001(1):25-29.
    [405] 邓文,姜建国,玉井伸三.PWM逆变器感应电机系统中的过电压抑止滤波器研究.电工电能新技术,2002(3):28-32.
    [406] 万健如,禹华军,王显明,刘洪池.PWM逆变器高频脉冲输出对电机的负面效应及其对策.电力系统自动化,2002(6):59-63.
    [407] 倪嘉.浅析双馈式风力发电系统中的长线传输问题.中国风能,2007(1):53-57.
    [408] 王昕,汪至中.高速电路设计中的终端匹配技术.北方交通大学学报,2002(8):92-96.
    [409] A. vol Jouanne, P. Enjeti, and W. Gray. "Application issues for PWM adjustable speed AC motor dirves". IEEE Industry Applications Magazine, pp. 10-18, Sept./Oct. 1996.
    [410] N. Aoki, K. Satoh, and A. Nabae. "Damping circuit to suppress motor terminal overvoltage and ringing in PWM inverter-fed AC motor drive systems with long motor leads". IEEE Trans. Industry Applications, pp.1014-1019, vol.35, Sept./Oct. 1999.
    [411] S. Lee, and K. Nam. "Overvoltage suppression filter design methods based on voltage reflection theory". IEEE Trans. Power Electronics, pp. 264-271, vol. 19, March 2004.
    [412] A. yon Jouanne, D. Rendusara, P. Enjeti, and W. Gray. "Filtering techniques to minimize the effect of long motor leads on PWM inverter fed AC motor drive systems", in Proc. of 30th IEEE IAS, pp. 37-44, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700