变压器故障诊断与预测集成学习方法及维修决策模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变压器是电力系统的核心设备之一,其运行状态与电力系统的安全可靠运行具有紧密联系。随着超特高压输变电技术的发展以及电网规模的扩大,变压器故障对电力系统将会造成重大的危害。因此,有效诊断和预测变压器的潜伏性故障,制定科学合理的变压器维修策略,对提高电力系统的安全可靠性具有重要意义。本文在研究电力变压器故障模式分类基础上,对变压器故障特征量与故障模式的相关程度、变压器故障诊断与预测方法的泛化能力以及变压器维修决策中的故障风险评估方法等关键问题进行了深入研究。论文研究工作的主要内容包括:
     ①研究了以可信度量化表征故障特征量与故障模式的相关程度的方法,提出了分析变压器故障特征量可信度的相关规则分析方法,研究了提取变压器故障特征量与故障模式关联规则的Apriori算法,并对样本数据的多值离散化方法进行了研究,分析了样本数据多值离散化方法对关联规则分析的作用和影响。实例分析结果表明,经过多值离散化处理,关联规则分析具有量化分析变压器故障特征量与故障模式关系的能力。
     ②研究了以变压器故障特征量可信度作为先验知识的多特征量变压器故障诊断方法,提出了聚类算法与支持向量机结合的变压器故障诊断组合模型,分析了组合模型中的故障分类决策树的建立方法。实例表明,多特征量的变压器故障诊断,采用组合模型比单一的聚类或支持向量机的准确率更高。
     ③研究了变压器故障诊断集成学习方法,阐述了采用样本信息熵表征样本参考价值的方法,通过样本重采样建立了多个训练样本子集,提出了基于样本信息熵的Bagging(IE-Bagging)算法,用以集成单一故障诊断模型。实例分析结果表明,IE-Bagging提高了单一故障诊断模型的泛化能力和诊断准确性。
     ④研究了变压器故障特征量的预测模型的提高泛化能力的方法,分析了用结合样本熵和样本主观信息计算样本采样概率的方法,提出了基于综合样本熵的改进Bagging算法(E-Bagging),阐述了E-Bagging算法集成支持向量回归机,组合预测算法的过程,实例表明,E-Bagging集成算法能提高单一或组合预测模型的准确度和泛化能力。
     ⑤研究了基于贝叶斯信息标准(BIC)故障特征量预测模型评价方法,分析了评价预测模型的准确性和复杂性指标以及样本数量与复杂性因素的关系,比较不同样本条件下的集成算法的BIC评价指标。实例表明,大样本条件下,E-Bagging算法集成组合预测模型最优;而在小样本条件下, E-Bagging算法集成支持向量回归机预测模型最优。
     ⑥研究了变压器故障风险评估所需的故障后果评估和故障概率估计的方法,分析了故障情况下变压器自身损失、人身损失、电力系统损失和社会损失等四个货币损失因素,提出采用货币损失作为变压器故障后果的量化评估指标的方法;研究了采用信息熵作为先验知识表征样本数据分布情况并改进模糊聚类算法的目标函数的方法,提出了改进的变压器故障概率估计模糊聚类算法。实例表明,上述方法比由专家打分评估故障后果和威布尔仿真估计故障概率更准确。
     ⑦研究了建立基于风险评估的变压器维修决策模型的基本过程和基本功能单元,分析了用维修费用期望量化维修策略的方法,提出了以维修费用的数学期望最小为维修决策目标函数建立变压器维修决策模型的方法。最后,通过实例阐述了该维修决策模型的建立过程。
The transformer is one of the core equipments of the power system, which operating state has close contact with power system safe and reliable operation. With the development of UHV/EHV and the expansion of interconnected power system, the transformer faults will cause great damage and impact on the power system. Therefore, it is significant for improving the safety and reliability of power system to effectively predict and diagnose the potential faults of transformers and develop scientific and rational transformer maintenance strategy. In this dissertation, based on the classification of the main transform fault modes, the key issues are researched in depth including the relevance amount between transformer features and failure modes, the generalization ability of transformer fault prediction models and fault diagnosis models, and the failure impact assessment and the failure probability estimate required by the risk assessment for the transformer faults. The main research work in this dissertation includes:
     ①The method to quantify the relevance between the failure modes and the fault features of transformers is researched, and the association rules analysis method to obtain the confidence value of fault features of transformers is proposed. The Apriori algorithm for extracting the association rules between the failure modes and the fault features of transformers is studied. The multi-valued discretization method of sample data is researched. Then the role and influence of the multi-valued discretization method for the association rules analysis are analyzed. Example results show that, after the multi-valued discrete processing, association rules analysis has the capacity to quantify the relationship between the failure modes and the fault features of transformers.
     ②The faults diagnosis methods for transformer of multi-features by regarding the confidence values of the fault features of the transformer as a priori knowledge is studied. Then a transformer fault diagnosis model is proposed integrated the clustering analysis with the support vector machine. The method to construct the decision-making tree for the faults classification is analyzed. Examples show that, for the fault diagnosis of multi-features on the transforms, the accuracy of diagnosis based on the combination model is higher then the single clustering or support vector machine.
     ③The ensemble learning algorithm for fault diagnosis of transformers is researched. The method for representing the reference value of the samples by sample information entropy is described. A number of training samples subsets are constructed by the resampling process and the Information Entropy-Based Bagging algorithm is proposed for ensembling those single fault diagnosis models. Example results show that, IE-Bagging is able to improve the generalization ability and diagnostic accuracy of the single fault diagnosis models.
     ④Methods to improve the generalization ability of the feature prediction model for fault features are studied. Sample probability is calculated by combining the sample entropy with its subjective information; then, an improved Bagging algorithm (E-Bagging) is proposed based on comprehensive sample entropy. Moreover, E-Bagging integrated with both support vector regression machine and combinatorial forecasting algorithms are also presented. Results indicate that this E-Bagging integration strategy can improve accuracy and generalization ability of solo or combinatorial forecasting models.
     ⑤An evaluation method for fault features prediction model is proposed based on the Bayesian information criterion (BIC). Model accuracy and its complexity index as well as the relationship between sample number and complexity factors are then analyzed, followed by comparative study of BIC evaluation index for integrated algorithm in different sample scenarios. Experiments indicate that the E-Bagging integrated with combinatorial forecasting is the optimal model for large sample sets whereas the E-Bagging incorporated with SVRM outperforms other forecasting models for small sample sets.
     ⑥Aiming at risk evaluation of transformer faults, methods to estimate faults’consequence and probabilities are studied. The fault loss is classified into four kinds of monetary loss including transformer’s own damage, personnel loss, grid loss and social loss; total loss is used to evaluate the fault consequence quantitatively. Information entropy is introduced as the priori-knowledge to measure distributions of samples and objective function of fuzzy clustering is refined, then an improved fuzzy clustering algorithm for fault probability estimation is proposed accordingly. Examples show that the above methods for consequence and probability estimation can obtain more accurate results than that of expert score and Weibull distribution, respectively.
     ⑦Based on risk evaluation, fundamental procedure and functional units of a decision-making model for transformer maintenance are established. First, strategy of using expectation of maintenance expense to quantitatively guide the maintenance plan is analyzed; then, this expected maintenance expense is used as the objective function of decision-making to establish the optimal maintenance model. Finally, examples illustrate the detailed steps of model establishment.
引文
[1]孙才新.输变电设备状态在线监测与诊断技术的现状与前景[J].中国电力, 2005, 38(2): 1-6.
    [2]鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化, 2005, 29(12): 93-97.
    [3]许婧,王晶,高峰,束洪春.电力设备状态检修技术研究综述[J].电网技术, 2000, 24(8): 48-52.
    [4]中华人民共和国电力工业部. DL/T596-1996电力设备预防性试验规程[S].北京:中国电力出版社, 1997.
    [5]中国南方电网有限责任公司企业标准. Q/CSG 1 0007-2004电力设备预防性试验规[S].北京:中国电力出版社, 2004.
    [6]程志华,章剑光.状态检修技术及其辅助分析系统的应用[J].电网技术, 2003, 27(7): 16-18, 24.
    [7]国家电网公司企业标准. Q\GDW168-2008输变电设备状态检修试验规程[S].北京:中国电力出版社, 2008.
    [8]中华人民共和国电力工业部. GB/T 7252-2001《变压器油中溶解气体分析和判断导则》[S].北京:中国电力出版社, 2001.
    [9]张皓阳,蔡志远,张军阳.变压器油中溶解气体含量在线监测技术综述[J].东北电力技术, 2006, 8: 48-50.
    [10]王少华,叶自强,梅冰笑.输变电设备在线监测及带电检测技术在电网中的应用现[J].高压电器, 2011, 47(4): 84-90.
    [11]邱建军.在线监测变压器局部放电[J].农村电气化, 2007, 4: 13-14.
    [12]陈卫中,李清波,刘沛.大型变压器铁芯接地在线监测技术的研究[J].广东输电与变电技术, 2007,(2): 29-31.
    [13]诸兵,曾雪梅,黄晓艳.变压器绕组变形监测的研究现状综述[J].四川电力技术, 2009,32(3): 48-53.
    [14]黄盛杰,姚文捷,马治亮,等.电气设备绝缘在线监测和状态维修[M].北京:中国水利水电出版社,2004:1-12.
    [15]董琴,关永刚,扬威等.变压器有载分接开关的在线状态检测[J].电气时代,2005,(12): 88-89.
    [16]梁曦东,陈昌渔,周远翔.高电压工程[M].北京:清华大学出版社,2003.
    [17]陈伟根,甘德刚,刘强.变压器油中水分在线监测的神经网络计算模型[J].高电压技术, 2007,33(5): 73-78.
    [18]陈培伟,陈涛.变压器绕组温度计的原理及其应用[J].华电技术, 2008,30(10): 14-15,21.
    [19]柳亮,柳青,尹雪梅,等.基于SOFM神经网络的变压器油中溶解气体的故障分析[J].电力科学与工程,2005, (4): 15-18.
    [20]潘翀,陈伟根,云玉新,等.基于遗传算法进化小波神经网络的电力变压器故障诊断[J].电力系统自动化, 2007, 31(13): 88-92.
    [21]陈伟根,潘翀,云玉新,等.基于改进小波神经网络算法的电力变压器故障诊断方法[J].仪器仪表学报, 2008, 29(7): 1489-1493.
    [22]熊浩,孙才新,廖瑞金.基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究[J].中国电机工程学报, 2005, 25(20): 162-166.
    [23]江润林.刍议电力变压器故障类型分析及其诊断方法[J].硅谷, 2011, 10.
    [24]张哲,朱永利,武中利等.基于SVM多分类法的变压器油中溶解气体故障诊断[J].变压器, 2010, 47 (3) : 59-62.
    [25]张蕊,郭瑞君,李华等.基于变压器故障分类的DGA特征提取[J].变压器, 2005, 31(4): 32-33.
    [26]梁博渊,刘宏亮.变压器绕组变形的综合诊断分析[J].江苏电机工程, 2011, 30(1):16-19.
    [27]王昌长,李福祺,高胜友.电力设备的在线监测与故障诊断[M].北京:清华大学出版社,2006.
    [28]王永强,律方成,李和明.基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法[J].中国电机工程学报, 2006, 26(8):137-141.
    [29]许培德.聚类分析在电力变压器不良数据识别中的应用[J].湖南工业职业技术学院学报, 2011, 11(2):10-13.
    [30]何清.模糊聚类分析理论与应用研究进展[J].模糊系统与数学, 1998, 12(2): 89-94.
    [31] Wang Yongqiang, Lu Fangcheng, Li Heming. The fault diagnosis method for electrical equipment based on Bayesian network[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems: Nanjing, China, 2005: 2259-2261.
    [32]项新建.基于粗糙集理论的变压器故障诊断专家系统研究[J].仪器仪表学报, 2005, 26(1): 93-96.
    [33] Sharkawy R. M., Mangoubi R. S., Abdel-Galil, T. K., et al. SVM Classification of contaminating particles in liquid dielectrics using higher order statistics of electrical and acoustic PD measurements[J]. IEEE transactions on dielectrics and electrical insulation, 2007, 14(3): 669–678.
    [34]熊浩,孙才新,陈伟根,等.电力变压器故障诊断的人工免疫网络分类算法[J].电力系统自动化. 2006, 3(6): 57-60.
    [35]胡青,杜林,杨丽君,等. Kernel PCA与BP神经网络相结合的变压器故障诊断[J].计算机应用研究, 2010, 27(2): 580-581.
    [36]廖瑞金,廖玉详,杨丽君,等.多神经网络与证据理论融合的变压器故障综合诊断方法研究[J].中国电机工程学报, 2006, 26(3): 119-125.
    [37] Xiao Y.C., Zhang X.Y., Yang J.T., Chen X.H. Application of multivariable grey model in power transformer gas-in-oil prediction. Proceedings of CICED'2006, Beijing, 17-20, September, 2006.
    [38]龚灯才.基于支持向量机的电力短期负荷预测研究[D].江苏:河海大学, 2006.
    [39]赵文清,朱永利,张小奇.应用支持向量机的变压器故障组合预测[J].中国电机工程学报, 2008, 28(25): 14-19.
    [40]王有元,廖瑞金,孙才新等.变压器油中溶解气体浓度灰色预测模型的改进[J].高电压技术,2003,29(4):24-26.
    [41]周利军,吴广宁,张星海,等.基于加权模糊度时间序列分析的大型变压器故障预报[J].电力系统自动化, 2005, 29(13): 53-56.
    [42] Fei S. W., Liu C. L., Miao Y. B. Support vector machine with genetic algorithm for forecasting of key-gas ratios in oil-immersed transformer[J]. Expert systems with applications, 2009, 36(3): 6326-6331.
    [43] Tan S. C., Lim C. P., Rao M. V. C. A hybrid neural network model for rule generation and its application to process fault detection and diagnosis[J]. Engineering applications of artificial intelligence, 2007, 20(2): 203-213.
    [44] He Q., Si J. N., Tylavsky D. J. Prediction of top-oil temperature for transformers using neural networks[J]. IEEE transactions on power delivery, 2000, 15(4): 1205-1211.
    [45]李文沅.电力系统风险评估:模型、方法和应用[M].北京:科学出版社, 2006.
    [46]董明,李元,周建国,等.输变电设备状态检修系统的开发与应用[J].华东电力, 2009, 37(7): 1070-1074
    [47]贾胜希.以可靠性为中心的维修决策模型[M].北京:国防工业出版社, 2007.
    [48] Arshad M., Islam S. M., Khaliq, A. Power transformer insulation response and risk assessment[C]. 2004 International Conference on Probabilistic Methods Applied to Power Systems: Ames, IA, USA, 2004, 502-505.
    [49] Herman H., Shenton M. J., Stevens G.C., et al. A new approach to condition assessment and lifetime prediction of paper and oil used as transformer insulation[C]. Proceedings of the 2001 IEEE 7th International Conference on Solid Dielectrics: Eindhoven, Netherlands, 2001, (1): 473-476.
    [50]王有元,周婧婧,陈伟根,等.基于模糊决策的电力变压器风险评估方法[J].仪器仪表学报, 2009, 30(8): 1662-1667.
    [51]白翠粉,高文胜,丁登伟.利用小世界网络的电力变压器风险评估方法[J].高电压技术, 2010, 36(4): 869-872.
    [52] Hjartarson T., Jesus B., Hughes D. T., et al. Development of health indices for asset condition assessment[C]. Transmission and Distribution Conference and Exposition, 2003, 2: 541-544.
    [53]戴荣,康锐. RCM决断流程与风险评估[J].航空维修,2001, (6): 10-11.
    [54]王品刚,卓华.基于风险评估的设备维修方法的研究与应用[J].应用技术, 2004, 2(11): 87-88.
    [55] Backlund, F. Managing the introduction of RCM experiences from a Swedish hydropower company[C]. IEEE Power Engineering Society General Meeting. 2005, 6(3): 2646-2648.
    [56] Hardwick, G.M. Reliability centered maintenance at Florida Power Corporation[C] IEEE Power Engineering Society Summer Meeting, 1999, 6(2): 1169-1170.
    [57] Pasi Y. S. Experience of RCM for substation equipment at Fingrid[C]. IEEE Power Engineering Society General Meeting. 2005,6(3): 2641-2642.
    [58]陈志林.以可靠性为中心的维修体系在大亚湾核电站的应用[J]中国设备工程, 2006, 6: 13-14.
    [59]王爱华,李志刚.以可靠性为中心的检修在淄博供电公司的应用[J]山东电力技术, 2006,4:11-13.
    [60]杨杰以可靠性为中心的检修在电力系统的应用[J]山西电力技术, 1999,10:34-36.
    [61]余绍峰,胡文堂,陈金法,等.输变电设备风险评估与维修决策[J].浙江电力, 2009, 3: 1-5.
    [62]李常有,徐敏强,郭耸,等.维修决策的研究现状与展望[J].热力透平, 2008, 37(1): 46-50.
    [63]王有元,徐海霞,陈伟根,等.电力变压器状态维修策略的灰局势决策方法[J].重庆大学学报, 2009, 32(12): 1419-1424.
    [64] Bevilacqua M., Braglia M. The Analytic Hierarchy Process Applied to Maintenance Strategy Selection[J]. Reliability Engineering and System Safety, 2000, 70: 71-83.
    [65]谢庆华,梁剑,左洪福.基于变精度粗糙集的航空发动机送修等级决策[J].系统工程理论方法应用, 2006, 15(4): 380-384.
    [66]左洪福,张海军,戎翔.基于比例风险模型的航空发动机视情维修决策[J].航空动力学报, 2006, 21(4): 716-721.
    [67]赵昔.高风险不确定性维修决策方法[J].中国设备工程, 2004: 7-9.
    [68] Adiel Teixeira de Almeida. Multicriteria Decision Making on Maintenance: Spares and Contracts Planning[J]. European Journal of Operational Research, 2001, 129(2): 235-241.
    [69] Eisinger S., Rakowsky U. K. Modeling of Uncertainties in Reliability Centered Maintenance aProbabilistic Approach [J]. Reliability Engineering and System Safety, 2001, 71(2): 159-164.
    [70] Procaccia H., Cordier R., Muller S. Application of Bayesian Statistical Decision Theory for a Maintenance Optimization Problem[J]. Reliability Engineering and System Safety, 1997, 55(2):143-149.
    [71] Kallen M. J., van Noortwijk J. M.. Optimal maintenance decisions under imperfect Inspection[J]. Reliability Engineering and System Safety, 2005, 90(2): 177-185.
    [72] Chen D. Y., Kishor S., Trivedi. Optimization for condition-based maintenance with semi - markovdecision process [J]. Reliability Engineering and System Safety, 2005, 90(1): 25-29.
    [73] Najjara B. A., Alsyouf I. Selecting the Most Efficient Maintenance Approach Using Fuzzy Multiple Criteria Decision Making[J]. International Journal of Production Economics, 2003, 84: 85-100.
    [74]袁志坚,孙才新,李爱华,等.模糊多属性决策方法评价变压器状态维修策略[J].高电压技术, 2004, 30(8): 33-35.
    [75] Jardine A., Banjevic D. Optimization a mine haul truckwheel motors' condition monitoring program use for propor-tional hazards modeling[J]. Journal of Quality in Maintenance Engineering,2001,7(4):286-301.
    [76]李果,高建民,陈富民.基于可靠性的设备维修优化方法研究[J].中国机械工程, 2007, 18(4): 419-423.
    [77]葛伟,樊东.基于多目标决策的维修分队抽组优化模型[J].计算机工程, 2007, 33(11): 261-263.
    [78]陆志强,王佳跃,周炳海.带缓冲区的可修复设备多目标预防性维护决策模型[J].计算机集成制造系统, 2010, 16(10): 2124-2128.
    [79]董其国.电力变压器故障与诊断[M].北京:中国电力出版社, 2000.
    [80]曹姣赛.变压器常见故障的诊断[J].科技情报开发与经济, 2006, 16(11): 263-264.
    [81]王有元.基于可靠性和风险评估的电力变压器状态维修决策方法研究[D].重庆大学, 2008.
    [82]刘娜,高文胜,等.大型电力变压器故障树的构建及分析[J].中国电力, 2003,11(36): 33-36.
    [83] Rakesh Agrawal, Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases[C] Proceedings of the 20th International Conference on Very Large Data Bases, VLDB. Santiago, Chile: Morgan Kaufmann Publishers, 1994: 487-499
    [84]马盈仓.挖掘关联规则中Apriori算法的改进[J].计算机应用与软件, 2004, 21(11): 82-83.
    [85] David Hand, et al. Principles of Data Mining[M]. Massachusetts: Massachusetts Institute of Technology, 2001.
    [86]梁红旗.数值属性离散化方法研究[J].信息技术, 2008 (5): 99-101.
    [87]赵静娴,倪春鹏,詹原瑞,等.一种高效的连续属性离散化算法[J].系统工程与电子技术, 2009, 31(1): 195-199.
    [88] Kerber R. Chimerge: Discretization of numeric attributes [J]. Proceedings 10th national conference on artificial intelligence: Chongqing, China, 1992: 123-128.
    [89]章剑光,周浩,盛晔.基于RPROP神经网络算法的主变DGA故障诊断模型[J].电力系统自动化, 2004, 28(14): 63-66.
    [90]董明,孟源源,徐长响,等.基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究[J].中国电机工程学报, 2003, 23(7): 88-92.
    [91]李刚,邢书宝,薛惠锋.基于RBF核的SVM及RVM模式分析性能比较[J].计算机应用研究, 2009, 26(5): 1782-1784.
    [92]周涓,熊忠阳,张玉芳,等.基于最大最小距离法的多中心聚类算法[J].计算机应用, 2006, 26(6): 1425-1428.
    [93]马笑潇,黄席樾,柴毅.基于SVM的二叉树多类分类算法及其在故障诊断中的应用[J].控制与决策, 2003, 18(3): 272-276.
    [94]刘娜,高文胜,谈克雄.基于组合神经网络模型的电力变压器故障诊断方法[J].电工技术学报, 2003, 18(2): 83-86.
    [95]雷亚国,何正嘉,訾艳阳,等.混合聚类新算法及其在故障诊断中的应用[J].机械工程学报, 2006, 42(12): 117-121.
    [96] Breiman L. Bagging Predictors[J]. Machine Learning, 1996, 26(2): 123-140.
    [97] Ratsch, G.; Onoda, T.; Muller, K.R. Soft Margins for Adaboost[J]. Machine Learning 2001, 3, 287-320.
    [98] Masoumi B., Meybodi M.R. Speeding up learning automata based multi agent systems using the concepts of stigmergy and entropy[J]. Expert Systems with Applications, 2010, 38(7): 8105-8118.
    [99]孙才新,陈伟根,李俭,等.电气设备油中气体在线监测与故障诊断技术[M].北京:科学出版社, 2003.
    [100]陈伟根,潘翀,云玉新,等.基于小波网络及油中溶解气体分析的电力变压器故障诊断方法[J].中国电机工程学报, 2008, 28(5): 121-126.
    [101]孙才新,郭俊峰,廖瑞金,等.变压器油中溶解气体分析中的模糊模式多层聚类故障诊断方法的研究[J].中国电机工程学报, 2001, 21(2): 37-41.
    [102]李剑,王小维,金卓睿,等.变压器局部放电超高频信号多尺度网格维数的提取与识别[J].电网技术, 2010, 34(2): 159-163.
    [103] Melgani F., Bazi Y. Classification of electrocardiogram signals with support vector machinesand particle swarm optimization. IEEE Transaction on Information Technology in Biomedicine, 2008, 12(5): 667-677.
    [104]李洋流,赵学增,郭春志,等.基于膜分离的变压器在线监测系统中气体体积分数的预测算法[J].电力自动化设备, 2010, 30(12): 36-41.
    [105] Wahab M.A.A., Hamada M.M., Mohamed A. Artificial neural network and non-linear models for prediction of transformer oil residual operating time[J]. Electric Power Systems Research, 2011(1): 219-227.
    [106] Mokhnache L., Boubakeur A., Verma P, et al. A neurofuzzy system for thermal ageing prediction of paper/oil transformer insulation properties[J]. International Journal of COMADEM, 2009, 12(4): 21-25.
    [107]毛国君.数据挖掘原理与算法(第2版)[M]:北京,清华大学出版社, 2007.
    [108] Vapnik, Vladimir Naumovich. The nature of statistical learning theory [M]. New York: Springer Verlag, 1999.
    [109]邓乃扬,田英杰.数据挖掘中的新方法--支持向量机[M].北京:科学出版社, 2004.
    [110]韩力,韩学山,贠志皓,等.多节点超短期负荷预测方法[J].电力系统自动化, 2007, 31(21): 30-34.
    [111]刘华富,王仲.核函数对v-支持向量机的泛化能力影响分析[J].计算机工程与科学, 2007, 29(7): 77-79.
    [112]阎威武,常俊林,邵惠鹤.一种贝叶斯证据框架下支持向量机建模方法的研究[J].控制与决策, 2004, 19(5): 525-528.
    [113] Chih-Chung Chang, Chih-Jen Lin. LIBSVM -- A Library for Support Vector Machines[EB/OL]. [2008-11-02]. http://www.csie.ntu.edu.tw/~cjlin/libsvm/
    [114] Molodtsov D. Soft set theory First results[J]. Computers & Mathematics with Applications, 1999, 37(4-5): 19-31.
    [115] Maji P. K., Roy A. R. An application of soft sets in a decision making problem[J]. Computers & Mathematics with Applications, 2002, 44(8-9): 1077-1083.
    [116] Maji P. K., Biswas R., Roy A. R. Soft set theory[J]. Computers & Mathematics with Applications, 2003, 45(4-5): 555-562.
    [117] Pei D., Miao D. From soft sets to information systems[C]. 2005 IEEE International Conference on Granular Computing: Beijing, China, 2005, 2: 617-621.
    [118] Aktas H, Cagman N. Soft sets and soft groups[J]. Information Sciences, 2007, 177(13): 2726-2735.
    [119] Kovkov D. V., Kolbanov V. M., Molodtsov D. A. Soft sets theory-based optimization[J]. Journal of Computer and Systems Sciences International, 2007, 46(6): 872-880.
    [120] Yang X. B., Lin T. Y., Yang J. Y., et al. Combination of interval-valued fuzzy set and soft set[J]. Computers & Mathematics with Applications, 2009, 58(3): 521-527.
    [121] Chen D. G., Tsang E. C. C., Yeung D. S., et al. The parameterization reduction of soft sets and its applications[J]. Computers & Mathematics with Applications, 2005, 49(5-6): 757-763.
    [122] Kong Z,. Gao L. Q., Wang L. F., et al. The normal parameter reduction of soft sets and its algorithm[J]. Computers & Mathematics with Applications, 2008, 56(12): 3029-3037.
    [123] Roy A R, Maji P K. A fuzzy soft set theoretic approach to decision making problems[J]. Journal of Computational and Applied Mathematics, 2007, 203(2): 412-418.
    [124] Zou Y., Xiao Z. Data analysis approaches of soft sets under incomplete information[J]. Knowledge-Based Systems, 2008, 21(8): 941-945.
    [125] Xiao Z., Gong K., Zou Y. A combined forecasting approach based on fuzzy soft sets[J]. Journal of Computational and Applied Mathematics, 2009, 228(1): 326-333.
    [126]孟令启,张洛明,韩丽丽,等.基于MATLAB的Elman神经网络在中厚板轧机宽展预测中的应用[C].第二届中国CAE工程分析技术年会:青岛,山东, 2006: 286-289.
    [127]蔡维由,漆为民,等.改进Elman网络及其在水轮发电机组故障诊断中的应用[J].水电自动化与大坝监测, 2005, 6: 31-34.
    [128]刘洋,冯玉强,邵真.基于Bagging与决策树算法的在线拍卖成交价格预测模型[J].系统工程理论与实践, 2009, 12(29): 134-140.
    [129]汪泽焱,顾红芳,益晓新,等.一种基于熵的线性组合赋权法[J].系统工程理论与实践, 2003, 3: 112-116.
    [130]王美义,张凤鸣,刘智.模糊信息的熵权多属性决策方案评估方法[J].系统工程与电子技术, 2006, 10(28): 1523-1525.
    [131] Richman J.S.; Moorman J.R. Physiological Time-series Analysis Using Approximate Entropy and Sample Entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology 2000, 278(6): H2039-H2049.
    [132] Wang Y.Y., Liao R. J., Sun C.X., et al. A GA-based grey prediction model for predicting the gas-in-oil concentrations in oil-filled transformer[C]. Conference of the 2004 IEEE International Symposium on Electrical Insulation, Indianapolis, IN, USA, 2004: 74-77.
    [133] Sencan A., Kizilkan O., Bezir, N.C., et al. Different methods for modeling absorption heat transformer powered by solar pond [J] Energy Conversion and Management 2007, 48(3): 724-735.
    [134]胡文堂,高胜友,鲁宗相,等.利用设备风险评估的检修策略优化[J].高电压技术, 2010, 36(11): 2699-2704.
    [135] Allan D M. Asset management challenges in ageing power systems[C].Proceedings of 2005International Symposium on Electrical Insulating Materials. Kitakyushu, Japan: 2005: 265-268.
    [136]微软公司. MS风险管理指南[M].美国:微软公司, 2004.
    [137] Moubray J.以可靠性为中心的维修[M].石磊,译.北京:机械工业出版社, 1995.
    [138] Allan D M. Asset management challenges in ageing power systems[C].Proceedings of 2005 International Symposium on Electrical Insulating Materials. Kitakyushu, Japan: 2005: 265-268.
    [139]姜益民,马骏.变压器的全寿命周期成本分析[J].变压器, 2006, 43(12): 30-35.
    [140] Makis V., Jardine A. Optimal replacement in the proportional hazards model[J]. Infor, 1992, 30(2): 172-183.
    [141]邢婷,邢治国,王凤领.基于信息熵的FCM聚类算法[J].计算机工程与设计, 2010, 31(23): 5092-5095.
    [142]雷亚国,何正嘉,訾艳阳,等.混合聚类新算法及其在故障诊断中的应用[J].机械工程学报, 2006, 42(12): 117-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700