高精度气体压力源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前气动技术广泛应用于国民经济各部门,人们对气动位置和速度伺服控制系统研究得较多,但是关于压力伺服控制的研究却不多见。考虑到某些半实物仿真系统中需要,即要求产生高精度高响应气体压力信号,本文针对气动压力伺服控制系统的特点,在理论上研究了系统的性能和相应的控制策略,最后通过实验,实现了气体压力的高精度高响应伺服控制。
    首先,阐述气体压力源的工作原理,建立其非线性数学模型,并通过仿真技术研究了系统性能,讨论了气源压力、气源温度以及密闭容腔容积大小等系统参数对系统特性的影响。
    其次,对气体压力源的控制策略进行了研究。由于系统具有严重的非线性和弱阻尼的特性,采用经典控制方法(如PID控制)虽然在某些情况下可以获得较好的控制效果,但其具有难以适应系统参数的变化、控制参数整定困难的缺点。Fuzzy-PID复合控制不需要系统精确的数学模型,对系统参数变化的适应能力强,适合于压力伺服控制系统。本文设计出Fuzzy-PID复合控制器,并进行仿真研究,结果表明该控制系统具有良好的动静态特性。
    最后,建立了压力伺服控制实验系统,在实验中采用流量伺服阀作为电-气转换元件构成压力闭环控制系统,并编制出相应的计算机控制软件和人机交互界面。实验结果表明,本文建立的数学模型合理、理论特性分析正确,所采用的控制策略有效,控制系统具有良好的鲁棒性、较高的响应特性和控制精度。系统跟踪阶跃信号时,响应曲线的超调不超过2%,压力控制误差不超过1kPa。
    本文的工作为进一步研究高精度气体压力源打下了良好的基础。
Nowadays pneumatics is more and more used in various industrial and civil fields. Recently people make a lot of researches on pneumatic servocontrol system of position or velocity. But research on pneumatic pressure servocontrol system is rare. A pressure signal with high precision and response is required to generate in some simulation of practicality. In this dissertation in light of characteristics of pneumatic pressure servocontrol system performances of the system and different control methods are theoretically researched on. At last a pneumatic pressure source with high precision and response is achieved through experiments.
    Firstly, working principle of pneumatic pressure source is expatiated and a nonlinear mathematical model of the system is founded. By means of simulation effects on system characteristics of system parameters such as pressure of air supply, temperature of air supply and volume of closed chamber are discussed.
    Secondly, three control algorithms applied to the system are studied. Though a classic control algorithms (e.g. PID control) can attain good control effect under some circumstance it has drawbacks that it is difficult to adapt to change of system parameters and to tune control parameters. It is because of the serious nonlinearity of pneumatic system. A hybrid of Fuzzy and PID has advantages of not knowing accurate model of system and good adaptive ability to the change of system parameters, which is suitable for the pressure servocontrol system. A Fuzzy-PID controller is successfully designed in the dissertation and simulation results suggest that the system with the Fuzzy-PID controller can obtain good static and dynamic behavior.
    Finally, the pressure servocontrol system is set up. In experiments a flow servovalve as electric-pneumatic transducer is adopted to compose pressure control system with closed loop. At the same time software that not only implements the control algorithm but also provides an interface between the user and the system is programmed. The experimental results show the hybrid of Fuzzy and PID controller can attain high accurate and responsive control effects in pneumatic pressure servocontrol system. It is proved that the founded model can describe the system, characteristic analysis in theory is correct and the control
    
    
    strategy has feasibility and strong robustness. When adopted Fuzzy-PID control the overshoot of system response of step signal is no more than 2% and steady-state pressure error is no more than 1kPa.
    The researches of the dissertation lay down a good foundation for studying further pneumatic pressure source with high precision.
引文
吴振顺.气压传动与控制.哈尔滨:哈尔滨工业大学出版社,1995
    郑洪生.气压传动及控制(第2版).北京:机械工业出版社,1994
    徐炳辉.气动技术基础知识(1).液压与气动,1994(1):39~41
    李建藩.气压传动系统动力学.广州:华南理工大学出版社,1991
    Zhou Hong. Intelligent pneumatics-the latest trend in pneumatic actuators and control systems. in: Lu Yongxiang, Ge Yiyuan. Proceedings of the 4th International Conference on Fluid Power Transmission and Control. Hangzhou, China. 1997. Beijing: International Academic Publishers, 1997. 348~355
    葛宜远.流体传动及控制技术的新成就.液压与气动,1998(2):1~3
    王意.流体技术和电子技术的结合与竞争.液压与气动,1998(5):1~5
    邱志成,谈大龙,王宣银等.气压伺服及气液连动控制发展概况综述.机床与液压,1999(4):3~6
    韩建海,张河新.气动比例/伺服控制技术及应用.机床与液压,2001(1):3~6
    裘华徕.气动技术的近期发展及其影响因素.液压气动与密封,2002(3):1~3
    袁南儿.计算机控制策略的发展、渗透和复合.工业仪表和自动化装置,1998(6):7~12
    诸静.模糊控制原理与应用.北京:机械工业出版社,1995
    曲以义.气压伺服系统.上海:上海交通大学出版社,1987
    陶国良,毛文杰,王宣银.气动伺服系统机理建模的实验研究.液压气动与密封,1999(5):26~31
    霍尔曼.热力学.曹黎明译.北京:科学出版社,1986
    金英子,李军,包钢等.气动系统充放气过程中传热系数的测定及其影响.哈尔滨工业大学学报,1998,30(1):15~19
    李军,王祖温,包钢.气动充放气系统中的水蒸汽凝结现象及其影响因素.哈尔滨工业大学学报,1999,31(2):92~96
    
    李军,王祖温,包钢.气动系统内部结露的机理研究.机械工程学报,2001,37(10):54~58
    陈汉超,盛永才.气压传动与控制.北京:北京工业学院出版社,1987
    荒木献次.压缩气体的高压化.液压与气动,1990(2):53~55
    Astrom K. J. Direction in intelligent control. IFAC International Symposium, ITAC’91 (Intelligent Tuning and Adaptive Control),1991(1):15~17
    Astrom K. J. Expert control. Automatics, 1986, 22(3):277~286
    Hung J. Y. Variable structure control: A survey. IEEE Trans. On Ind. Electr. 1993, 40(1):2~22
    李宝仁,杜经民,张庆先.负压伺服控制系统的建模与仿真.华中理工大学学报,1999(11):62~64
    李宝仁,张庆先,杜经民.基于模糊控制的负压伺服控制系统研究.华中理工大学学报,1999(11):65~67
    张庆先.负压伺服控制系统研究:[硕士学位论文].武汉:华中科技大学图书馆,2000
    王福生,孟晓风.一种气体压力控制方法及应用.测控技术,2001,20(4):26~28
    Li Xiao, Guan Xin, Tang Jinshan. Research on the pneumatic pressure signal generator for the analogue test system of engine inlet of airplane. in: Li Zhuangyun, Zhu Yuquan, Li Baoren. Proceedings of the 4th International Symposium on Fluid Power Transmission and Control. Wuhan, China. 2003. Beijing: International Academic Publishers, 2003. 380~383
    薛阳,彭光正,范萌等.气动位置伺服系统的带α因子的非对称模糊PID控制.北京理工大学学报,2003,23(1):71~74
    李玉翔,李修仁,李学贵.气动位置伺服的自适应模糊控制.天津纺织工业学院学报,2000,19(4):21~24
    孟宪超,包钢,王祖温等.基于开关阀的气动位置控制系统的模糊+PID控制.液压与气动,2003(7):56~59
    李士勇.模糊控制·神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1996
    Zadeh. L.A. Fuzzy sets. Information and Control, 1965(8):338~353
    
    Zadeh. L.A. Fuzzy Algorithm. Information and Control, 1968(12):94~102
    Zadeh. L.A. A Rationale for Fuzzy Control. Trans. ASME, J. Dynam. Syst. Measur. Control, 1972(94):3~4
    Mamdani E. H., Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 1975,7(1):1~13
    李士勇.模糊控制和智能控制理论与应用.哈尔滨:哈尔滨工业大学出版社,1990
    易继锴,侯媛彬.智能控制技术.北京:北京工业大学出版社,1999
    陶永华.新型PID控制及其应用(第2版).北京:机械工业出版社,2002
    Sugeno M. An introductory survey of fuzzy control. Information Science,1985(36):59~83
    Yager R.R., Zadeh L. A. An Introduction to Fuzzy Logic Applications in Intelligent Systems. London:Kluwer Academic, 1992. 69~93
    胡包钢,应浩.模糊PID控制技术研究发展回顾及其面临的若干重要问题.自动化学报,2001,27(4):568~584
    Parnichkun M., Ngaecharoenkul C. Hybrid of fuzzy and PID in kinematics control of a pneumatic system. Industrial Electronics Society, IECON 2000. 26th Annual Conference of the IEEE, 2000, 2:1485~1490
    Chan S.W., Lilly J.H., Repperger D.W. et al. Fuzzy PD+I learning control for a pneumatic muscle. Fuzzy Systems. FUZZ '03. The 12th IEEE International Conference, 2003, 1:278~283
    范萌,彭光正,薛阳等.新型气动位置伺服控制系统的实验台设计.液压与气动,2003(4):28~30
    陆鑫盛,周洪.气动自动化系统的优化设计.上海:上海科学技术文献出版社,2000
    周洪.气动伺服定位技术及其应用.液压与气动,1999(1):18~21
    邓振杰,齐建玲,李广川等.基于LabVIEW构建虚拟仪器系统.华北航空工业学院学报,2001,11(3):10~17
    金孚安.计算机控制系统中采样周期的选择.基础自动化,1995,3:39~42
    马善凯.选择采样周期的一种新方法.自动化学报,1995,21(4):481~486
    
    黄振平.采样频率的合理选择.世界地震工程,1998,14(3):63~67
    卢文祥,杜润生.机械工程测试·信息·信号分析(第二版).武汉:华中理工大学出版社,1999
    江秀汉. 计算机控制原理及其应用.西安:西安电子科技大学出版社,1995
    张耀明.测量结果的数据处理.上海计量测试,2001,28(4):27~30
    俞忠原.实验设计与数据分析.哈尔滨:哈尔滨船舶工程学院出版社,1991
    王正光.数据采集与处理.北京:国防工业出版社,1985
    Lin Y., Cunningham III G.A. A new approach to Fuzzy-Neural system modeling. IEEE Trans. On Fuzzy Systems,1995,3(2):190~197
    喻宗泉.模糊神经系统研究综述.自动化与仪表,1998,13(6):3~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700