岩体渗流与应力分析的数值方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体中普遍存在着断层、节理和裂隙等各种不连续面,这些不连续面往往对岩体的渗流和应力特性起着控制性作用。针对岩体的这一特点,学者们先后提出了多种数值仿真计算方法。归纳起来,这些方法无外乎基于两套体系:以有限元法、有限差分法为代表的基于连续介质力学的方法,以离散元法、块体元法、不连续变形分析方法为代表的基于非连续介质力学的方法。新近发展的无网格法和数值流形法则能同时考虑材料的连续和非连续变形能力。
     以有限元法为代表的连续介质力学方法在岩土工程中应用得非常普遍。然而由于岩土工程本身的复杂性,其前处理工作费时耗力。本文在有限元法的框架下,为降低网格划分的难度,提出了几种新的或改进的数值方法:不连续有限元法、开挖模拟的动态有限单元法和改进的叠单元法。同时,由于基于非连续介质力学的方法能很好的描述岩体有别于其他材料的渗流和应力特性,本文基于块体单元法,对三维随机裂隙岩体的块体识别方法和渗流、应力及耦合特性进行了研究和探讨。
     综合起来,论文主要开展了以下工作:
     (1)提出了大坝/地基系统分析的不连续有限元法。该方法可以将复杂问题的网格划分工作分而治之,系统被分成大坝和地基两个网格独立的部分,通过建基面变形与两侧大坝、基础单元位移的几何相容方程、建基面的本构方程和系统整体的平衡方程来实现不连续网格的耦合。同时,将该方法推广到渗流分析领域,和应力应变分析方法组合成一套完整的计算方法。文中运用一个重力坝的算例说明了本套方法的正确性和有效性。
     (2)针对复杂岩石边坡的开挖问题,借鉴数值流形方法的思路,提出了岩体开挖模拟的动态有限单元法。该方法在模拟岩体开挖时,建立的有限元网格中仅需考虑结构面的构造和复杂地形,而不用考虑复杂开挖面的形状,开挖面仅作为动态参数实时输入,这大幅度降低了前处理的难度。文中给出了该方法应用到小湾孔雀沟料场边坡的开挖仿真计算中,证明了本文方法的正确性和有有效性。
     (3)借鉴坝体/地基系统的不连续有限元法和岩体开挖模拟的动态有限元法的思路,提出了改进的叠单元法,提高了其计算精度。并进一步将叠单元法推广到三维空间,提出了三维叠单元法,并运用该方法完成了对色尔古水电站地下厂房场区仅考虑自重作用的初始应力场的求解计算。通过和常规有限元结果的对比,说明了本文方法的精度较高。
     (4)针对岩体中含有大小各异、数量巨大的裂隙,本文运用蒙特卡罗法完成了岩体中随机裂隙的计算机再现模拟;接着基于矢体的概念,提出了三维随机裂隙岩体的块体识别方法;假定岩块不透水、渗流仅通过裂隙面进行,利用达西定律和变分原理,建立了三维随机裂隙岩体渗流分析的块体单元法。最后通过两个算例分析来表明了本文方法的有效性。
     (5)将断层、节理、裂隙等统称为裂隙,并视岩石裂隙为一种“充填介质”,进而将有填充物和无填充物的裂隙统一处理,推导了裂隙面的刚度系数、导水系数和法向应力之间的关系式。在此基础上,根据块体单元法的应力、渗流分析的基本原理,运用两场交叉迭代法,建立了三维裂隙岩体的渗流与应力耦合分析模型。通过沙沱重力坝的分析,验证了所提方法的准确性和有效性。
Faults, joints and fractures are widely distributed in rock masses. These discontinuous surfaces play a regulatory role on the seepage and stress characteristics of rock masses. Accordingly, some numerical simulation methods had been put forward over the past years. To sum up, these methods are based on two categories: continuum mechanics method and non-continuum mechanics method. The Finite Element Method (FEM) and the Finite Difference Method (FDM) are the representatives of continuum mechanics method. The Discrete Element Method (DEM), Block Element Method (BEM) and the Discontinuous Deformation Analysis Method (DDA) are the representatives of non-continuum mechanics method. The newest method such as Numerical Manifold Method (NMM) and Mesh-Free Method (MFM) can simulate both the continuum and non-continuum deformation.
     The FEM based on continuum mechanics is widely used in the geotechnical engineering. Due to the complex character of the geotechnical engineering, the pre process is a time-consuming and painful job. In this thesis, based on the frame work of finite element method, three kinds of new numerical methods are presented:the discontinuous finite element method for the dam/foundation system, the dynamic finite element method for the excavation simulation, and the improved superposed element method.
     The non-continuum mechanics can describe the seepage and stress characteristics of rock mass well. In this thesis, based on the Block Element Method, the automatic identification method for three dimensional random fracture network is put forward, then, the seepage, stress and coupling characteristics are studied and discussed.
     In conclusion, the mainly innovation points of this thesis are as follows:
     (1) The Discontinuous Finite Element Method (DFEM) for the dam/foundation system is presented. By using this method, the complex domain for the whole system can be divided into two unconcerned domains:the domain of dam and the domain of foundation. The elements connected to the base surface are coupled, using the geometric compatibility equation by the deformation of the dam and foundation connected to the base surface, constitutive equations of the base surface, and the equilibrium equations of the whole system. And the new method is extended into the seepage analysis field for the dam/foundation system too, which can make up as a whole numerical method with the stress analysis method. A gravity dam on complicated foundation is studied, and the results are in accordance with those from the general finite element method, the precision and validity of this method is proved.
     (2) Refer to the Numerical Manifold Method, the dynamic finite element method for the excavation simulation of complex rock slope is presented. By using this new method, because there is no explicit excavated elements, and only the discontinuous surface and complex terrain should be taken into account, the excavated surface just be inputted as a real-time dynamic parameters, the difficulty of the pre process can be significantly deduced. The excavation simulation of peacock slope of Xiao Wan arch dam is studied, which proves the correctness and effectiveness of the method in the thesis.
     (3) Base on the main ideas of discontinuous finite element method for the dam/foundation system and the dynamic finite element method for the excavation simulation, a renew Superposed Element Method (SEM) is presented, which can improve the calculative accuracy. Then, the new SEM is extended to three dimension space. Last, the initial gravity field around the underground powerhouse of SeErGu hydropower station is studied with the three dimensional SEM. And the results are in accordance with those from the finite element method, the precision of SEM is proved.
     (4) Fractures in rock masses are randomly distributed, including the number and size. In this thesis, the Monte Carlo method is adopted to generate the stochastic fracture network first; second, on the base of the theory of directed body, the automatic identification method for three dimensional network with random fractures is realized; thirdly, based on the assumption that the intact rock is impervious and the water flows only along the fractures, the block element method for seepage analysis of three dimensional network with random fractures is established. Finally, two examples are studied to prove the precision and validity of this method.
     (5) All the faults and joint are all treated as fractures and assumed as "filled medium", which enables to treat the rock fractures with or without fillings coincidently. The relationship between the stiffness coefficient, hydraulic conductivity coefficient and the normal effective stress is deduced. Based on the principle of the block element method, seepage-stress coupling model for three dimensional fracture rock mass is built by using the iterative algorithm. The ShaTuo gravity dam is studied to prove the precision and validity of this method.
引文
[1]陈胜宏,王鸿儒.岩体三维弹粘塑性块体理论的初步研究[J].武汉水利电力学院学报,1990,23(006):55-61.
    [2]陈胜宏.岩体的广义弹粘塑体块体理论[J].水利学报,1996(001):78-84.
    [3]任青文,余天堂.边坡稳定的块体单元法分析[J].岩石力学与工程学报,2001,20(001):20-24.
    [4]黄润秋,许强.显式拉格朗日差分分析在岩石边坡工程中的应用[J].岩石力学与工程学报,1995,14(004):346-354.
    [5]朱建明,任天贵.FLAC有限差分程序及其在矿山工程中的应用[J].中国矿业,2000,9(004):78-81.
    [6]寇晓东,周维垣,杨若琼.FLAC-3D进行三峡船闸高边坡稳定分析[J].岩石力学与工程学报,2001,20(1):6-10.
    [7]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(001):42-46.
    [8]Brebbia Ca, Lc Wrobel. The boundary element method [J]. Computer methods in fluids.(A 81-28303 11-34) London, Pentech Press, Ltd.,1980,1980:26-48.
    [9]王元淳.边界元法基础[M].上海交通大学出版社.1988.
    [10]饶寿期.有限元法和边界元法基础[M].北京航空航天大学出版社.1990.
    [11]Chen G, J Zhou. Boundary element methods [M]. Academic Press London.1992.
    [12]朱合华,边界元法及其在岩土工程中的应用[M].1996,同济大学出版社.
    [13]陈清军,杨林德,朱合华.边界元法及其在岩土工程中的应用[M].同济大学出版社.1997.
    [14]Cundall Pa. A computer model for simulating progressive, large-scale movements in blocky rock systems [J].1971.
    [15]Cundall Pa, UDEC-A Generalised Distinct Element Program for Modelling Jointed Rock.1980, CUNDALL (PETER) ASSOCIATES VIRGINIA WATER (ENGLAND).
    [16]Cundall Pa. Formulation of a three-dimensional distinct element model-Part Ⅰ. A scheme to detect and represent contacts in a system composed of many polyhedral blocks [C].1988. Elsevier,107-116.
    [17]Hart R, Pa Cundall, J Lemos. Formulation of a three-dimensional distinct element model--Part Ⅱ. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks [C].1988. Elsevier,117-125.
    [18]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(004):483-490.
    [19]徐泳,孙其诚,张凌,黄文彬.颗粒离散元法研究进展[J].力学进展,2003,33(002):251-260.
    [20]王卫华,李夕兵.离散元法及其在岩土工程中的应用综述[J].岩土工程技术,2005,19(004):177-181.
    [21]Shi G, Re Goodman. Discontinuous Deformation Analysis-A New Method Forcomputing Stress, Strain And Sliding Of Block Systems [C].1988.
    [22]Shi Gh. Discontinuous deformation analysis:a new numerical model for the statics and dynamics of deformable block structures [J]. Engineering Computations,1992,9(2):157-168.
    [23]裴觉民.数值流形方法与非连续变形分析[J].岩石力学与工程学报,1997,16(003):279-292.
    [24]王书法,朱维申.考虑空间影响的两种非连续变形分析方法[J].岩石力学与工程学报,2000,19(3):369-372.
    [25]Shi Gh. Three dimensional discontinuous deformation analysis [J]. Rock Mechanics in the National Interest,2001:1421-1428.
    [26]Belytschko T, Yy Lu, L Gu. Element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering,'1994,37(2):229-256.
    [27]Lu Yy, T Belytschko, L Gu. A new implementation of the element free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering,1994,113(3-4):397-414.
    [28]张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报,2003,20(006):730-742.
    [29]胡云进,朱智兵,周维垣..无单元法对三维不连续面的模拟[J].岩石力学与工程学报,2004,23(018):3127-3131.
    [30]顾元通,丁桦.无网格法及其最新进展[J].力学进展,2005,35(003):323-337.
    [31]张雄,刘岩,马上.无网格法的理论及应用[J].力学进展,2009(01):1-36.
    [32]Shi Gh. Manifold method. Discontinuous deformation analysis (DDA) and simulations of discontinuous media [C].12-14.
    [33]Shi Gh, Manifold method of material analysis.1992, ARMY RESEARCH OFFICE RESEARCH TRIANGLE PARK NC.
    [34]王芝银,李云鹏.数值流形方法中的几点改进[J].岩土工程学报,1998,20(006):33-36.
    [35]朱以文,曾又林,陈明祥.岩石大变形分析的增量流形方法[J].岩石力学与工程学报,1999,18(001):1-5.
    [36]王书法,朱维申.加锚岩体变形分析的数值流形方法[J].岩石力学与工程学报,2002,21(008):1120-1123.
    [37]李树忱,程玉民.基于单位分解法的无网格数值流形方法[J].力学学报,2004,36(004):496-500.
    [38]钱令希,张雄.结构分析中的刚体有限元法[J].计算力学学报,1991,1.
    [39]殷建华,陈健,李焯芬.考虑孔隙水压力的土坡稳定性的刚体有限元上限分析[J].岩土工程学报,2003,25(3).
    [40]殷建华,陈健,李焯芬.岩土边坡稳定性的刚体有限元上限分析法[J].岩石力学与工程学报,2004,23(006):898-905.
    [41]Moes N, J Dolbow, T Belytschko. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
    [42]Sukumar N, T Belytschko. Arbitrary branched and intersecting cracks with the extended finite element method [J]. Int. J. Numer. Meth. Engng,2000,48:1741-1760.
    [43]李录贤,王铁军.扩展有限元法(XFEM)及其应用[J]. ADVANCES IN MECHANICS,2005, 35(1).
    [44]Fries Tp, T Belytschko. The intrinsic XFEM:a method for arbitrary discontinuities without additional unknowns [J]. International Journal for Numerical Methods in Engineering,2006,68(13):1358-1385.
    [45]方修君,金峰,王进廷.基于扩展有限元法的粘聚裂纹模型[J].清华大学学报:自然科学版,2007,47(003):344-347.
    [46]方修君,金峰,王进廷.用扩展有限元方法模拟混凝土的复合型开裂过程[J].工程力学,2007,1.
    [47]陈胜宏,强晟,陈尚法.加锚岩体的三维复合单元模型研究[J].岩石力学与工程学报,2003,22(1):1-8.
    [48]许桂生,陈胜宏.模拟排水孔的复合单元法研究[J].水动力学研究与进展:A辑,2005,20(002):214-220.
    [49]许桂生,陈胜宏.无压渗流分析的复合单元法[J].岩土力学,2005,26(005):745-749.
    [50]冯学敏,陈胜宏.不连续岩体渗流的复合单元法初步研究[J].岩石力学与工程学报,2006,25(001):93-99.
    [51]何则干,陈胜宏.加锚节理岩体的复合单元法研究[J].岩土力学,2007,28(008):1544-1550.
    [52]Belytschko T, J Fish, A Bayliss. The spectral overlay on finite elements for problems with high gradients [J]. Computer Methods in Applied Mechanics and Engineering,1990,81(1):71-89.
    [53]陈尚法,佘成学,陈胜宏.大岩淌滑坡的弹粘塑性自适应有限元分析[J].岩石力学与工程学报,2002,21(002):169-175.
    [54]陈胜宏,王劲松.水工结构的弹粘塑性自适应有限元分析[J].水利学报,1996(002):68-75.
    [55]窦一康.用逐点插入法自动生成全四边形的自适应有限元网络[J].计算力学学报,1997, 14(003):317-323.
    [56]郭书祥.自适应有限元方法及其工程应用[J].力学进展,1997,27(004):479-488.
    [57]Babuska I, Ba Szabo, In Katz. The p-version of the finite element method [J]. SIAM journal on numerical analysis,1981,18(3):515-545.
    [58]Babuska L, M Suri. The optimal convergence rate of the p-version of the finite element method [J]. SIAM journal on numerical analysis,1987,24:750.
    [59]Craig A, J Mandel. Efficient preconditioning for the p-version finite element method in two dimensions [J]. SIAM journal on numerical analysis,1991,28(3):624-661.
    [60]Duster A, E Rank. The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity [J]. Computer Methods in Applied Mechanics and Engineering,2001, 190(15-17):1925-1935.
    [61]Szabo A. Mesh design for the p-version of the finite element method [J]. Computer Methods in Applied Mechanics and Engineering,1986,55(1-2):181-197.
    [62]陈胜宏,程昭.水工结构分析的p—型自适应有限单元法研究[J].水利学报,2001,11:62-69.
    [63]Gui W, I Babuska. The h, p and hp Versions of the Finite Element Method in 1 Dimension. Part 2. The Error Analysis of the H and hp Versions [J]. Numerische Mathematik,1986,48:613-657.
    [64]Guo B, I Babu Ka. The hp version of the finite element method [J]. Computational mechanics,1986, 1(1):21-41.
    [65]Fish J. The s-version of the finite element method [J]. Computers & Structures, 1992,43(3):539-547.
    [66]Fan R, J Fish. The rs-method for material failure simulations [J]. International Journal for Numerical Methods in Engineering,2008,73(11):1607-1623.
    [67]Fish J, V Belsky, M Pandheeradi. Composite grid method for hybrid systems [J]. Computer Methods in Applied Mechanics and Engineering,1996,135(3-4):307-325.
    [68]Fish J, R Guttal. The s-version of finite element method for laminated composites [J]. International Journal for Numerical Methods in Engineering,1998,39(21):3641-3662.
    [69]Fish J, S Markolefas. The s-version of the finite element method for multilayer laminates [J]. International Journal for Numerical Methods in Engineering,1992,33(5):1081-1105.
    [70]Fish J, S Markolefas, R Guttal, P Nayak. On adaptive multilevel superposition of finite element meshes for linear elastostatics [J]. Applied Numerical Mathematics,1994,14(1-3):135-164.
    [71]汪卫明,陈胜宏.一种新的岩体力学数值计算方法——叠单元法[J].岩石力学与工程学报,2005,24(007):1093-1098.
    [72]张有天.岩石水力学与工程[M].中国水利水电出版社.2005.
    [73]王恩志,杨成田.裂隙网络地下水流数值模型及非连通裂隙网络水流的研究[J].水文地质工程地质,1992,19(001):12-14.
    [74]柴军瑞,仵彦卿.岩体多重裂隙网络渗流模型研究[J].煤田地质与勘探,2000,28(002):33-36.
    [75]黄勇,周志芳.岩体渗流模拟的二维随机裂隙网络模型[J].河海大学学报:自然科学版,2004,32(001):91-94.
    [76]宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报,2004,23(012):2015-2020.
    [77]宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅱ):稳定渗流计算[J].岩石力学与工程学报,2004,23(012):2021-2026.
    [78]李新强,陈祖煜.三维裂隙网络渗流计算的边界元法及程序[J].中国水利水电科学研究院学报,2006,4(002):81-87.
    [79]李树忱,李术才,隋斌,朱维申.岩体渗流分析的无网格方法[J].岩土力学,2008,29(001):256-260.
    [80]冯学敏,陈胜宏.含复杂裂隙网络岩体渗流特性研究的复合单元法[J].岩石力学与工程学报,2006,25(005):918-924.
    [81]汪卫明,徐明毅.水工结构的块体元和有限元耦合分析方法[J].岩石力学与工程学报,2001,20(A01):1029-1033.
    [82]张有天,陈平,王镭.有自由面的渗流问题分析的初值流量法[J][J].1989.
    [83]陈胜宏.高坝复杂岩石地基及岩石高边坡稳定分析[M].北京:中国水利水电出版社.2001.
    [84]Louis C. Rock hydraulics [J]. Rock mechanics,1974:287-299.
    [85]Lee Ch, Iw Farmer. Fluid flow in discontinuous rocks [M]. Chapman & Hall.1993.
    [86]毛昶熙.渗流计算分析与控制[M].水利电力出版社.1990.
    [87]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(004):299-308.
    [88]Bellier J, P Londe. The Malpasset Dam [C].1976.76-136.
    [89]柴军瑞,仵彦卿.岩体渗流场与应力场耦合分析的多重裂隙网络模型[J].岩石力学与工程学报,2000,19(6):712-717.
    [90]Noorishad J, Ms Ayatollahi, Pa Witherspoon. A finite-element method for coupled stress and fluid flow analysis in fractured rock masses [C].1982. Elsevier,185-193.
    [91]Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses [J]. Water Resources Research,1986,22(13):1845-1856.
    [92]王媛,徐志英,速宝玉.裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J].水利学报,1998.7:55-59.
    [93]张国新,武晓峰.裂隙渗流对岩石边坡稳定的影响——渗流,变形耦合作用的DDA法[J].岩石力学与工程学报,2003,22(008):1269-1275.
    [94]汪卫明,陈胜宏.三维岩石块体系统的自动识别方法[J].武汉水利电力大学学报,1998,31(005):51-55.
    [95]汪卫明,佘成学.块状结构岩体的无压渗流分析方法[J].武汉水利电力大学学报,1999,32(001):64-67.
    [96]汪卫明,徐明毅.复杂边界条件下的岩体网络渗流分析[J].岩石力学与工程学报,2001,20(004):473-476.
    [97]陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报,2001,23(004):397-402.
    [98]张发明,何传永.基于三维裂隙网络模拟的随机楔体稳定分析[J].水力发电,2002(007):15-18.
    [99]张奇华,邬爱清.随机结构面切割下的全空间块体拓扑搜索一般方法[J].岩石力学与工程学报,2007,26(10).
    [100]邬爱清,周火明.岩体三维网络模拟技术及其在三峡工程中的应用[J].长江科学院院报,1998,15(006):15-18.
    [101]Ikegawa Y, Ja Hudson. A novel automatic identification system for three-dimensional multi-block systems [J]. Engineering Computations,1992,9(2):169-179.
    [102]卢波,陈剑平,王良奎.基于三维网络模拟基础的复杂有限块体的自动搜索及其空间几何形态的判定[J].岩石力学与工程学报,2002,21(8):1.
    [103]张奇华,邬爱清.基于凹形区分类的块体几何形态分析方法[J].岩土工程学报,2005,27(003):299-303.
    [104]张奇华.基于块体加与块体减算法的岩石块体几何形态分析[J].水利学报,2006,37(004):418-424.
    [105]张奇华,邬爱清.边坡及洞室岩体的全空间块体拓扑搜索研究[J].岩石力学与工程学报,2008,27(010):2072-2078.
    [106]张奇华,边智华,余美万.采用全空间块体搜索技术初步研究岩体完整性[J].岩石力学与工程学报,2009,28(003):507-515.
    [107]郑榕明,陈文胜.节理岩体三维块体系统面向对象的数据结构[J].岩土力学,2002,23(001):55-59.
    [108]Dershowitz Ws, Bm Gordon, Jc Kafritsas. A new three-dimensional model for flow in fractured rock [J]. Mem. Int. Assoc. Hydrogeol,1985,17:28-32.
    [109]Long Jcs, Js Remer, Cr Wilson, Pa Witherspoon. Porous media equivalents for networks of discontinuous fractures [J]. Water Resources Research,1982,18(3):645-658.
    [110]陈胜宏,王鸿儒.节理面渗流性质的探讨[J].武汉水利电力学院学报,1989,22(001):53-60.
    [111]Nelson Ra. Fracture permeability in porous reservoirs:an experimental and field approach [M]. Texas A&M University, College Station.1975.
    [112]Snow Dt. Anisotropic permeability of fractured media [J]. Water Resources Research,1969, 5(6):1273-1289.
    [113]王媛.单裂隙面渗流与应力的耦合特性[J].岩石力学与工程学报,2002,21(001):83-87.
    [114]薛娈鸾,陈胜宏.岩石裂隙渗流与法向应力耦合的复合单元模型[J].岩石力学与工程学报,2007,26(A01):2613-2619.
    [115]卓家寿,赵宁.不连续介质静,动力分析的刚体—弹簧元法[J].河海大学学报:自然科学版,1993,21(005):34-43.
    [116]方义琳,卓家寿.具有任意形状单元离散模型的界面元法[J].工程力学,1998,15(002):27-37.
    [117]陈胜宏.计算岩体力学与工程[M].北京:中国水利水电出版社.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700