螺旋波纹结构超声导波传播特性及典型缺陷检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,83%以上的电力是由火力发电厂提供的。火力发电厂的高压加热器和凝汽器大都采用黄铜管、碳钢或不锈钢管作热交换管。这些管材除了在生产和安装时留下的隐性缺陷并在运行过程继续扩展外,在管道使用过程还会产生各种新的缺陷,如管内沉积物引起的点腐蚀、化学气体诱发形成的管外环形槽状腐蚀坑以及管内流水冲击磨蚀等,从而导致泄漏。
     工业管道的超声导波无损检测技术与健康状况评价方法日趋成熟,超声传感器在工程实际中得到了一定的应用,取得了良好效果。而针对大型火电站锅炉管网这种特殊的检测对象,将无损检测技术用于波纹管这类具有复杂外壁结构的热交换管损伤检测则相对较少。本文基于经典的线弹性理论,针对螺旋波纹管这类具有复杂外壁结构的板管结构,从理论推导、数值计算、有限元仿真、传感器参数设计与性能优化、试验系统搭建、缺陷识别与定位、检测精度评估、影响因素分析等方面开展研究工作,具体研究内容如下:
     (1)基于经典的自由平板中导波频散方程的推导方法,将波纹板的波纹参数引入到频散方程中,得到了波纹板中SH波和Lamb波的频散方程。采用二分法数值求解了频散方程,并将得到的相速度和群速度频散曲线与平板中导波的传播特性进行了比较,研究了导波的群速度随波纹参数的变化规律。
     (2)基于经典的自由空心圆柱中导波频散方程的推导方法,得到了波纹管中扭转模态和纵向模态导波的频散方程,比较了各导波模态对波纹参数的敏感程度。同时在Abaqus软件平台上对超声导波在波纹结构中的传播特性进行了有限元仿真,分析了波纹结构中导波的实际传播距离随波纹参数的变化规律。
     (3)分析了材料的纵波波速和横波波速发生变化时,超声导波相速度和群速度频散曲线的变化趋势。对于相同程度的波纹参数改变量而言,比较了波纹板和波纹管中不同模态导波对波纹变化的敏感程度。
     (4)通过分析磁致伸缩效应及超声导波的特性,提出了磁致伸缩传感器的优化方案即多层绕线线圈传感器,实现了纵向模态超声导波的激励及接收,并与未进行优化的传感器实验结果进行了对比。通过对磁致伸缩传感器中螺线管结构的特别设计,实现了高阶模态超声导波的激励和接收,研究了激励信号周期数对人工凹槽缺陷检测结果的影响。
     (5)在Abaqus仿真软件中构建螺旋波纹管的计算模型,模拟超声导波在螺旋波纹管中的传播特性,并得到了含有环向裂纹缺陷时的仿真结果。而后采用自主研制的电磁声换能器在螺旋波纹管中激励和接收纵向模态导波,实现了对螺旋波纹管中人工裂纹缺陷的识别和定位。选用多物理场耦合分析软件对圆管的磁场分布规律进行有限元仿真,而后采用通过均匀包裹一层镍合金薄带的方式,提高了传感器的工作效率。
     (6)温度的变化会改变一些材料参数的数值,进而影响到超声导波在波导结构中的传播特性。首先从温度系数得到导波相速度和群速度随波纹参数的变化曲线,而后采用有限元仿真和试验两种方法来研究环境温度对超声导波传播特性的影响规律。
In our country, more than83%of the electricity is supplied by the thermal powerplants. High pressure heater and condenser in power plant mostly use brass, carbonsteel or stainless steel tube as the heat exchange tube. Except hidden defects in theproduction and installation of these pipes and continuing to expand in the runningprocess, the use of the process can produce a variety of new defects in the pipelinewhich will be resulting to leakage, such as sediment induced corrosion, chemical gasinduced tube outer annular groove corrosion pits and pipe water impact abrasion.
     Nondestructive testing and evaluation in industrial pipeline using ultrasonicguided wave is becoming more and more mature. Ultrasonic sensor has been appliedin engineering practice and achieved good results. While contraposing boiler pipenetwork in large thermal power station which is the special detection object, thenondestructive testing technology for corrugated pipe which has complex structure ofthe heat exchange tube outer wall damage detection is relatively small. The influenceof ultrasonic guided wave propagation characteristics in the corrugated structure hasbeen researched based on theoretical analysis, numerical simulation and experiments.The main research contents are as follows.
     (1) Based on the classical wave dispersion equation in the free plate, corrugatedparameters in the corrugated plate has been imported into the dispersion equation, andthen the SH wave and Lamb wave dispersion equation of corrugated plate can beobtained. The dispersion equation is solving using the method of dichotomy, and thephase velocity and group velocity dispersion curves of guided wave propagationcharacteristics in flat and corrugated plate has been compared. The variation rules ofguided wave group velocity with corrugated parameters has been researched.
     (2) Derivation of free hollow cylindrical guided wave dispersion equation isobtained based on the classic, the bellows of torsional mode and longitudinal modeguided wave dispersion equation has been ratiocinated, and the sensitivity of theguided wave modes of wave parameters are compared. At the same time, the finiteelement simulation of propagation characteristics in corrugated structure has beenresearched on the platform of Abaqus software, and the actual changes of guidedwave propagation distance in corrugated structure are analyzed.
     (3) Analysis of ultrasonic guided wave phase velocity and group velocity dispersion curves when the material of longitudinal velocity and shear wave velocitiesare changed. For the change of wave parameters to the same degree, compareddifferent sensitivity to changes in corrugated board and corrugated pipe.
     (4) Through the analysis of relevant concepts of the magnetostrictive effect andultrasonic guided wave characteristics, magnetostrictive sensor are putting forwardoptimization scheme by multi-layer winding coil sensor on the basis of the existing.The longitudinal modes of ultrasonic guided wave excitation and reception, andcompared with past experimental results. Through the special design of the solenoidstructure of magnetostrictive sensors, the high order modes of ultrasonic guided waveexcitation and reception can be realized, and the artificial defects were detected.
     (5) Constructing the calculation model of spiral corrugated pipe in the Abaqussimulation software, and the simulation of guided wave propagation characteristics inspiral corrugated pipe with a crack has been shown. Then the electromagnetic acoustictransducer is developed in the spiral corrugated tube. The identification and locationof the artificial crack defects in spiral corrugated pipe by excitation and receivinglongitudinal mode guided waves. Analysis software for finite element simulation ofmagnetic field distribution of pipe selection multi-physics coupling, and the workingefficiency of sensor has been improved by coated with a layer of nickel alloy ribbons.
     (6) Changing temperature will inflect some material parameters, and then thepropagation characteristics of ultrasonic guided waves will affect in the waveguidestructure. The variation curve of guided wave phase velocity and group velocity withcorrugated parameters has been calculated from the temperature coefficient, and thenthe influence of environmental temperature on the propagation characteristics ofultrasonic guided wave has been researched by using the method of finite elementsimulation and experiments.
引文
[1]严宏强,程钧培.发展中的中国火力发电装备.发电设备,2008,1:1-6.
    [2]张业圣.我国火力发电用高压锅炉管现状与需求分析.钢管,2008,37(5):1-10.
    [3] Nasiruddin, M.H. Kamran Siddiqui. Heat transfer augmentation in a heat exchanger tubeusing a baffle. International Journal of Heat and Fluid Flow,2007,28(2):318-328.
    [4] W. Pirompugd, C. C. Wang, S. Wongwises. Correlations for wet surface ratio of fin-and-tubeheat exchangers. International Journal of Heat and Mass Transfer,2010,53(1-3):568-573.
    [5] B. Sahin, N. A. Ozturk, C. Gurlek. Horseshoe vortex studies in the passage of a modelplate-fin-and-tube heat exchanger. International Journal of Heat and Fluid Flow,2008,29(1):340-351.
    [6] B. ahin, A. Akkoca, N. A. Ozturk, et al. Investigations of flow characteristics in a plate finand tube heat exchanger model composed of single cylinder. International Journal of Heatand Fluid Flow,2006,27(3):522-530.
    [7] J. Jeong, C. N. Kim, B. Youn. A study on the thermal contact conductance in fin–tube heatexchangers with7mm tube. International Journal of Heat and Mass Transfer,2006,49(7-8):1547-1555.
    [8] H. Shokouhmand, M. R. Salimpour, M. A. Akhavan-Behabadi. Experimental investigation ofshell and coiled tube heat exchangers using wilson plots. International Communications inHeat and Mass Transfer,2008,35(1):84-92.
    [9]雷中黎.电站锅炉管道无损检测技术展望.无损检测.1995,17(6):164-165.
    [10]商福民,毕庆生,张志正等.波纹管与光管流体传热特性对比实验研究.长春工程学院学报(自然科学版),2003,4(3):33-35.
    [11]肖金花,钱才富,黄志新.波纹管传热强化效果与机理研究.化学工程,2007,35(1):12-15.
    [12] M. R. Jafari Nasr, A. H. Khalaj. Heat Transfer Coefficient and Friction Factor Prediction ofCorrugated Tubes Combined With Twisted Tape Inserts Using Artificial Neural Network.Heat Transfer Engineering,2010,31(1):59-69.
    [13] M. Yu, Y. Guo, M. Yang, et al. Effect of helix angle of spirally corrugated tube oncondensation heat transfer characteristics. Heat Transfer-Asian Research,2008,37(5):275-282.
    [14] P. G. Vicente, A. Garcia, A. Viedma. Experimental investigation on heat transfer andfrictional characteristics of spirally corrugated tubes in turbulent flow at different Prandtlnumbers. International Journal of Heat and Mass Transfer,2004,47:671–681.
    [15]刘新斌,罗仕发.波纹管补偿器的配管设计与应用.南方金属,2002,126:21-23.
    [16]邓方义,刘巍,郭宏新等.波纹管换热器的研究及工业应用.炼油技术与工程,2005,35(8):28-32.
    [17] Z. Lu, J. Jin, Z. Gao. Effects of Axial Deformation Load on In-Plane Instability of U-ShapedBellows. Journal of Pressure Vessel Technology,2003,125:475-477.
    [18] Z. W. Wang. Non-linear analysis of U-shaped bellows using integral equation method.Communications in Numerical Methods in Engineering,1996,12:521-529.
    [19] Y. Z. Zhu, H. F. Wang, Z. F. Sang. The effect of environmental medium on fatigue life foru-shaped bellows expansion joints. International Journal of Fatigue,2006,28:28-32.
    [20]中华人民共和国国家标准GB16749-1997,压力容器波纹膨胀节.
    [21]中华人民共和国国家标准GB/T12777-2008,金属波纹管膨胀节通用技术条件.
    [22] M. Bakhshi-Jooybari, M. Elyasi, A. Gorji. Numerical and experimental investigation of theeffect of the pressure path on forming metallic bellows. J. Engineering Manufacture,2009,224:95-101.
    [23] R. Hashemi, G. Faraji, K. Abrinia, et al. Application of the hydroforming strain-andstress-limit diagrams to predict necking in metal bellows forming process. Int J Adv ManufTechnol,2010,46:551-561.
    [24] G. Faraji, M. M. Mashhadi, V. Norouzifard. Evaluation of effective parameters in metalbellows forming process. Journal of materials processing technology,2009,209:3431-3437.
    [25] S.W. Lee. Study on the forming parameters of the metal bellows. Journal of MaterialsProcessing Technology,2002,130-131:47-53.
    [26] B. H. Kang, M. Y. Lee, S. M. Shon, et al. Forming various shapes of tubular bellows using asingle-step hydroforming process. Journal of Materials Processing Technology,2007,194:1-6.
    [27] M. Radhakrishna, C. K. Rao. Axial vibrations of U-shaped bellows with elastically restrainedend conditions. Thin-Walled Structures,2004,42:415-426.
    [28] J. F. Wilson. Mechanics of fluid-activated, clustered satellite bellows. International Journalof Solids and Structures,2008,45:4173-4183.
    [29] S. Igi, H. Katayama, M. Kawahara. Evaluation of mechanical behavior of new type bellowswith two-directional convolutions. Nuclear Engineering and Design,2000,197:107-114.
    [30]钱伟长.半圆弧波纹管的计算_细环壳理论的应用.清华大学学报,1979,1:84-99.
    [31]钱伟长,郑思樑.半圆弧波纹管的计算_环壳一般解的应用.应用数学和力学,1981,2(1):97-111.
    [32] W. Zhu, Q. Huang. General solution of the overall bending of flexible circular ring shellswith moderately slender ratio and applications to the bellows(IV)——Calculation forU-shaped bellows. Applied Mathematics and Mechanics,2002,23(10):1164-1169.
    [33] W. Zhu, P. Guo, Q. Huang. General solution for U-shaped bellows overall-bending problems.Applied Mathematics and Mechanics,2000,21(4):371-382.
    [34] R. Liu, Z. Wang. Nonlinear deformation analysis of a U-shaped bellows with varyingthickness. Archive ofApplied Mechanics,2000,70:366-376.
    [35] Z. Wang. Influence of wall-thickness variation on non-linear behaviour of U-shaped bellows.CommunicAtions in Numerical Methods in Engineering,1999,15:203-218.
    [36]吕晨亮,周勇,叶庆泰.波纹管的扭转屈曲.上海交通大学学报,2007,41(6):1017-1020.
    [37]吕晨亮,于建国,叶庆泰. U型波纹管的扭转刚度计算.机械科学与技术,2003,22(增刊):121-125.
    [38]童亮,张俊杰,王飞等.高压加热器解剖试验及热交换管缺陷原因分析.广东电力,2004,17(4):74-77.
    [39]李喜孟.无损检测.北京:机械工业出版社,2001.
    [40] A. S. Birrring. Selection of NDT techniques for inspection of heat exchanger tubing. ASNTInternational Conference,1999:1-14.
    [41] Y. Inagaki, Y. Miyamoto, T. Nakajima, et al. Inspection performance of eddy current probefor in-service inspection of HTTR intermediate heat exchanger tubes. Journal of JSNDI,1993,35(3):227-236.
    [42] T. Sakamoto, H. Fujiwara, Y. Arita. Eddy current examination using inner coil forferromagnetic heat exchanger tubes. Journal of JSNDI,1992,41(12):685-693.
    [43] T. Sakamoto. Remote field eddy current examination for U-shape ferromagnetic heat-exchanger tubes. Journal of JSNDI,1993,42(10):563-569.
    [44] L.S. Ohrutsky, V.S. Cecco, S.P. Sullivan, et al. Transmit-receive eddy current probes forcircumferential cracks in heat exchanger tubes. Materials Evaluation,1996,54(1):93-98.
    [45] S. P. Sullivan, V. S. Cecco, J. R. Carter, et al. Applying computer modeling to eddy currentsignal analysis for steam generator and heat exchanger tube inspections. American Instituteof Physics,2000:401-408.
    [46] B. P. C. Rao, C. Babu Rao, T. Jayakumar, et al. Simulation of eddy current signals frommultiple defects. NDT&E International,1996,29(5):269-273.
    [47] G. Chen, A. Yamaguchi, K. Miya. A Novel Signal Processing Technique for Eddy-CurrentTesting of Steam Generator Tubes. IEEE,1998,34(3):642-648.
    [48]李明,任爱,薛飞.铁磁性材料热交换管的远场涡流检测探讨.无损检测,2005,37(1):6-8.
    [49]童亮,刘红文,林介东.高压加热器热交换管远场涡流检测技术的实验研究.广东电力,2005,18(2):25-28.
    [50] J. L. Rose, M. J. Avioli, P. Mudge, et al. Guided wave inspection potential of defects in rail.NDT&E International2004,37:153-161.
    [51] S. Chaki, G. Bourse. Guided ultrasonic waves for non-destructive monitoring of the stresslevels in prestressed steel strands. Ultrasonics,2009,49:162-171.
    [52] J. L. Rose, Y. Cho, M. J. Avioli. Next generation guided wave health monitoring for longrange inspection of pipes. Journal of Loss Prevention in the Process Industries,2009,22:1010-1015.
    [53]何存富,吴斌,范晋伟.超声柱面导波技术及其应用研究进展.力学进展,2001,31(2):203-214.
    [54] F. L. Scaleaa, S. Salamone. Temperature effects in ultrasonic Lamb wave structural healthmonitoring systems. Acoustical Society ofAmerica,2008,124(1):161-174.
    [55] P. Wilcox, M. Lowe, P. Cawley. The effect of dispersion on long-range inspection usingultrasonic guided waves. NDT&E International,2001,34:1-9.
    [56] M. J. S. Lowe, D. N. Alleyne, P. Cawley. Defect detection in pipes using guided waves.Ultrasonics,1998,36:147-154.
    [57] A. Demma, P. Cawley, M. Lowe, et al. The reflection of guided waves from notches in pipes:a guide for interpreting corrosion measurements. NDT&E International,2004,37:167-180.
    [58] F. Treyssede. Elastic waves in helical waveguides. Wave Motion,2008,45:457-470.
    [59] H. Nishino, K. Yoshida, H. Cho, et al. Propagation phenomena of wideband guided waves ina bended pipe. Ultrasonics,2006,44:1139-1143.
    [60] W. Luo, X. Zhao, J. L. Rose. A guided wave plate experiment for a pipe. Journal of PressureVessel Technology,2005,127:345-350.
    [61] J. Barshinger, J. L. Rose, M. J. Avioli. Guided wave resonance tuning for pipe inspection.Journal of Pressure Vessel Technology,2002,124:303-310.
    [62] C. M. Lee, J. L. Rose, Y. Cho. A guided wave approach to defect detection under shelling inrail. NDT&E International,2009,42:174-180.
    [63] Z. Sun, L. Zhang, J. L. Rose. Flexural torsional guided wave mechanics and focusing in pipe.Journal of Pressure Vessel Technology,2005,127:471-478.
    [64] L. Zhang, B. J. Gavigan, J. L. Rose. High frequency guided wave natural focusing pipeinspection with frequency and angle tuning. Journal of Pressure Vessel Technology,2006,128:433-438.
    [65] T. Hayashi, K. Kawashima, Z. Sun, et al. Guided wave focusing mechanics in pipe. Journalof Pressure Vessel Technology,2005,127:317-321.
    [66] T. Hayashi, K. Kawashima, Z. Sun, et al. Guided wave propagation mechanics across a pipeelbow. Journal of Pressure Vessel Technology,2005,127:322-327.
    [67] J. H. Lee, S. J. Lee. Application of laser-generated guided wave for evaluation of corrosionin carbon steel pipe. NDT&E International,2009,42:222-227.
    [68] L. Satyarnarayan, J. Chandrasekaran, B. Maxfield. Circumferential higher order guided wavemodes for the detection and sizing of cracks and pinholes in pipe support regions. NDT&EInternational,2008,41:32-43.
    [69] M. N. Ichchou, S. Akrout, J. M. Mencik. Guided waves group and energy velocities via finiteelements. Journal of Sound and Vibration,2007,305:931-944.
    [70] L. Laguerre, J. C. Aime, M. Brissaud. Magnetostrictive pulse-echo device fornon-destructive evaluation of cylindrical steel materials using longitudinal guided waves.Ultrasonics,2002,39:503-514.
    [71] J. Li, J. L. Rose. Natural beam focusing of non-axisymmetric guided waves in large-diameterpipes. Ultrasonics,2006,44:35-45.
    [72] A. Marzani. Time-transient response for ultrasonic guided waves propagating in dampedcylinders. International Journal of Solids and Structures,2008,45:6347-6368.
    [73] K. R. Lohr, J. L. Rose. Ultrasonic guided wave and acoustic impact methods for pipe foulingdetection. Journal of Food Engineering,2003,56:315-324.
    [74]他得安,刘镇清,田光春.超声导波在管材中的传播特性.声学技术,2001,20(3):131-134.
    [75]他得安,刘镇清.超声导波频散特性与管材内径-壁厚比的关系.复旦学报(自然科学版),2003,42(1):7-13.
    [76]王悦民,沈立华,申传俊等.管道导波无损检测频率选择与管材特征关系.机械工程学报,2009,45(8):243-248.
    [77]王悦民,康宜华,武新军.磁致伸缩效应在圆管中激励纵向导波的理论和试验研究.机械工程学报,2005,41(10):174-179.
    [78]刘增华,何存富,杨士明等.充水管道中纵向超声导波传播特性的理论分析与试验研究.机械工程学报,2006,42(3):171-178.
    [79]刘增华,何存富,吴斌等.带粘弹性包覆层管道中的纵向模态.机械工程学报,2007,43(4):188-192.
    [80]汪毅,蔡红生.导波检测在电站锅炉管道中的应用.华电技术,2008,30(10):34-36.
    [81]牛晓光,刘长福,张彦新等.换热器管超声导波检测.无损检测,2009,31(9):685-688.
    [82] J. E. Michaels, T. E. Michaels. Guided wave signal processing and image fusion for in situdamage localization in plates. Wave Motion,2007,44:482-492.
    [83]吴斌,邓菲,何存富.超声导波无损检测中的信号处理研究进展.北京工业大学学报,2007,33(4):342-348.
    [84]申传俊,王悦民,徐海成等.改进的子空间匹配追踪导波信号识别方法.华中科技大学学报(自然科学版),2012,40(8):39-43.
    [85] V. Madenga, D. H. Zou, C. Zhang. Effects of curing time and frequency on ultrasonic wavevelocity in grouted rock bolts. Journal ofApplied Geophysics,2006,59:79-87.
    [86] R. T. Rato, M. D. Ortigueira, A. G. Batista. One the HHT, its problems, and some solutions.Mechanical Systems and Signal Processing,2008,22:1374-1394.
    [87] O. Adam. The use of the Hilbert-Huang transform to analyze transient signals emitted bysperm whales. AppliedAcoustics,2006,67:1134-1143.
    [88] J. Grabowska, M. Palacz, M. Krawczuk. Damage identification by wavelet analysis.Mechanical Systems and Signal Processing,2008,22:1623-1635.
    [89] A. Apostoloudia, E. Douka, L. J. Hadjileontiadis, et al. Time-frequency analysis of transientdispersive waves. AppliedAcoustics,2007,68:296-309.
    [90] L. Ambrozinski, T. Stepinski, P. Packo, et al. Self-focusing Lamb waves based on thedecomposition of the time-reversal operator using time-frequency representation.Mechanical Systems and Signal Processing.2012,27:337-349.
    [91]孙雅欣,吴斌,何存富等.时频分析在杆中导波传播特性研究中的应用.仪器仪表学报,2006,27(6):1316-1318.
    [92]周正干,冯占英,高翌飞等.时频分析在超声导波信号分析中的应用.北京航空航天大学学报,2008,34(7):833-837.
    [93] M. H. S. Siqueira, C. E. N. Gatts, R.R. da Silva, et al. The use of ultrasonic guided wavesand wavelets analysis in pipe inspection. Ultrasonics,2004,41:785-797.
    [94] I. Lyutak. Wavelet Analysis of Ultrasonic Guided Waves in Pipeline Inspection. IEEE,2005:517-523.
    [95]何存富,刘溯,刘增华等.小波降噪在钢绞线缺陷检测中的应用.机械工程学报,2008,44(7):118-122.
    [96]周知进,文泽军,卜英勇.小波降噪在超声回波信号处理中的应用.仪器仪表学报,2009,30(2):237-241.
    [97] A. L. Shuvalov, E. L. Clezio, G. Feuillard. The state-vector formalism and the Peano-seriessolution for modelling guided waves in functionally graded anisotropic piezoelectric plates.International Journal of Engineering Science,2008,46:929-947.
    [98] V. T. Rathod, D. RoyMahapatra. Ultrasonic Lamb wave based monitoring of corrosion typeof damage in plate using a circular array of piezoelectric transducers. NDT&E International,2011,44:628-636.
    [99] A. L. Shuvalov, E. L. Clezio. Low-frequency dispersion of fundamental waves in anisotropicpiezoelectric plates. International Journal of Solids and Structures,2010,47:3377-3388.
    [100] V. Walia, J. N. Sharma, P. K. Sharma. Propagation characteristics of elastic waves inpiezoelectric rotating plate. European Journal of Mechanics,2009,28:569-581.
    [101] C. M. Yeum, H. Sohn, J. B. Ihn. Lamb wave mode decomposition using concentric ringand circular piezoelectric transducers. Wave Motion,2011,48:358-370.
    [102] D. H. Cortes, S. K. Datta, O. M. Mukdadi. Elastic guided wave propagation in a periodicarray of multi-layered piezoelectric plates with finite cross-sections. Ultrasonics,2010,50:347-356.
    [103] J. Jin, Q. Wang, S. T. Quek. Lamb wave propagation in a metallic semi-infinite mediumcovered with piezoelectric layer. International Journal of Solids and Structures,2002,39:2547-2556.
    [104] L. Yu, V. Giurgiutiu. In situ2-D piezoelectric wafer active sensors arrays for guidedwave damage detection. Ultrasonics,2008,48:117-134.
    [105] D. H. Cortes, S. K. Datta, O. M. Mukdadi. Dispersion of elastic guided waves inpiezoelectric infinite plates with inversion layers. International Journal of Solids andStructures,2008,45:5088-5102.
    [106] K. Mirkhani, C. Chaggares, C. Masterson, et al. Optimal design of EMAT transmitters.NDT&E International,2004,37:181-193.
    [107]王淑娟,康磊,赵再新等.电磁超声换能器的研究进展综述.仪表技术与传感器,2006(5):47-50.
    [108] S. Dixon, S. B. Palmer. Wideband low frequency generation and detection of Lamb andRayleigh waves using electromagnetic acoustic transducers (EMATs). Ultrasonics,2004,42:1129-1136.
    [109] S. Huang, W. Zhao, Y. Zhang, et al. Study on the lift-off effect of EMAT. Sensors andActuators A,2009,153:218-221.
    [110] X. Jian, S. Dixon, R. S. Edwards, et al. Coupling mechanism of an EMAT. Ultrasonics,2006,44:653-656.
    [111] R. Dhayalan, K. Balasubramaniam. A hybrid finite element model for simulation ofelectromagnetic acoustic transducer (EMAT) based plate waves. NDT&E International,2010,43(6):519-526.
    [112] R. S. Edwards, A. Sophian, S. Dixon. Dual EMAT and PEC non-contact probeapplications to defect testing. NDT&E International,2006,39:45-52.
    [113] H. Gao, S. Ali, B. Lopez. Efficient detection of delamination in multilayered structuresusing ultrasonic guided wave EMATs. NDT&E International,2010,43:316-322.
    [114] B. Dutton, S. Boonsang, R. J. Dewhurst. Modelling of magnetic fields to enhance theperformance of an in-plane EMAT for laser-generated ultrasound. Ultrasonics,2006,44:657-665.
    [115] J. L. Rose. Ultrasonic waves in solid media. Cambridge University Press,1999.
    [116]费业泰.误差理论与数据处理(第5版).北京:机械工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700