不对称有机催化合成反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不对称合成(Asymmetric synthesis),也称手性合成,是指向反应中引入一个或多个手性元素的合成方法,广泛应用于有机合成特别是手性药物的合成中。目前最有效的不对称合成方法是以有机金属催化为代表的手性催化法。然而,随着有机分子催化效能的不断发掘,有机分子催化的不对称合成因其反应条件温和、经济、环保等优点引起了越来越多的关注。目前发现的有机分子催化剂包括手性咪唑啉酮及其衍生物、毗咯烷衍生物和硫脲衍生物等。
     最近,实验上发现两种有机分子催化剂N-杂化卡宾(N-Heterocyclic carbenes)和布朗斯特酸(Brφnsted acid)可以分别催化Staudinger反应(烯酮与亚胺[2+2]环加成)和喹啉加氢反应,并得到高立体选择性的p-内酰胺和1,2,3,4-四氢喹啉。两种产物都具有非常重要的合成意义,前者是抗生素药物的核心药效团;后者普遍存在于生物碱中,常用于药物和农用化学品的合成。虽然实验上取得了满意效果,但目前为止两个体系的催化机制以及影响反应立体选择性的因素还不清楚,相关的实验和理论研究也十分有限。为了能够对反应有一个更加深刻的认识,以便更好地控制反应的立体选择性和设计新型的催化剂,本文通过理论化学方法对两个不对称催化反应的机理以及立体选择性进行了较为系统的理论研究,并取得了一些有意义的结果,具体如下:
     (1)N-杂环卡宾催化的Staudinger反应机理研究:所谓Staudinger反应是指烯酮和亚胺通过[2+2]环加成合成β-内酰胺的反应。虽然自1907年以来,人们利用Staudinger反应合成了多种类型的β-内酰胺类化合物,且在合成药物方面取得了非常广泛的应用,但对于N-杂环卡宾催化的Staudinger反应机理并未真正搞清楚。目前在实验结果的基础上,人们提出了两种可能的反应机理。一是N-杂环卡宾催化剂首先与烯酮反应,然后再与烯胺反应,称为“先烯酮”机理;二是N-杂环卡宾催化剂首先与烯胺反应,然后再与烯酮反应,称为“先亚胺”机理。两者的根本区别在于哪一种反应物先与卡宾催化剂反应。由于反应的中间体较活泼、难于检测,所以仅从实验结果难以断定反应的具体机理。因此,本文通过密度泛函理论(DFT)方法对N-杂环卡宾催化Staudinger反应的催化机理进行了研究,并对反应产物β-内酰胺的立体选择性做了初步探讨。计算表明,“先烯酮”机理比“先亚胺”机理的势垒低得多。这个结果表明在N-杂环卡宾催化的Staudinger反应中,“先烯酮”机理为最可能的反应路径,即卡宾催化剂首先与烯酮反应,生成的两性离子中间体再与亚胺反应得到最终的产物,而且反应的机理不会随着亚胺取代基的改变而改变。但亚胺取代基的改变会影响催化剂与两种反应物反应速率常数的相对大小,使实验呈现出不同的现象。另外,我们发现通过对亚胺取代基的体积或者极性做适当的修饰,可以达到调控产物立体选择性的目的。
     (2)N-杂环卡宾催化Staudinger反应的立体选择性研究:催化剂N-杂环卡宾结构的灵活性使反应呈现出多样的立体选择。例如,对称取代的N-杂环卡宾催化的Staudinger反应是反式选择性,而不对称取代的N-杂环卡宾催化的体系则是顺式选择性。另外,在不对称取代的N-杂环卡宾催化体系中,改变催化剂取代基的相对大小能够导致不同的对映选择性。很显然,上一章所用的简化催化剂模型不能够反映催化剂结构与体选择性之间的这种关系,但常规的计算方法又很难胜任比较大的体系,因此在这一部分我们选用了ONIOM方法对对完整结构的催化剂体系进行了研究。ONIOM方法允许对不同的区域选用不同计算方法,适用于比较大的研究体系。通过对几个不同的体系的计算,我们发现这种方法预测的结果跟试验结果相一致。在此基础上我们深入地探讨了影响反应立体选择性的因素。我们发现中间体“催化剂-烯酮”与亚胺之间的这步反应决定了产物的立体选择性,反应过程中的两种影响因素(静电效应和空间效应)共同作用控制反应的立体选择性,但在不同的催化剂体系中,催化剂的结构会影响这两种效应之间的作用方式,从而导致不同的反应立体选择性。
     (3) Brensted酸催化喹啉氢转移反应的机理研究:近年来,催化转移加氢法越来越多地应用于不饱和化合物的加氢反应中。与传统的加氢反应相比,这种方法不需要高浓度的氢气作为氢源,因而具有反应温和、安全性高和对设备要求低等优点。虽然这个方法在酮和亚胺等许多不饱和化合物的加氢反应中取得了很好的效果,但在芳香族和杂环化合物加氢方面的应用还比较少。最近,试验上发现Brensted酸能够有效的催化喹啉氢转移反应,但反应的机理目前还不清楚。反应存在两种可能的反应路径:先1,4号位加氢再2,3号位加氢(1,4-2,3)和先1,2号位加氢再3,4号位加氢(1,2-3,4)。实验上没有给出确定反应机理的足够信息。因此本文采用密度泛函理论方法(DFT)方法对布朗斯特酸(Brφnsted acid)不对称催化喹啉氢转移反应两种可能的催化机理进行了计算。结果表明Brφnsted酸与反应物通过氢键形成的三元分子络合物网络结构有利于氢的转移,并倾向于通过“1,4-2,3”机理进行反应。
     本文的创新点主要表现在以下三个方面:
     1.系统地研究了N-杂环卡宾不对称催化Staudinger反应的机理,确定了“先烯酮”机理为最可能的反应路径,即卡宾催化剂首先与烯酮反应,生成的两性离子中间体再与亚胺反应得到最终的产物;并且反应的机理不会随着亚胺取代基的改变而改变。另外,因为催化剂N-杂环卡宾是典型的亲电试剂,因此我们认为由此体系得到的关于反应机理的结论同样适用于其他亲电试剂催化的Staudinger反应。
     2.在第一章结论的基础上对N-杂环卡宾不对称催化Staudinger反应的立体选择性进行了深入研究,发现中问体“催化剂-烯酮”与亚胺之间的反应决定了产物的立体选择性;二者反应过程中存在两种影响反应立体选择性的因素(静电效应和空间效应),不同的催化剂的结构会影响这两种效应之间的作用方式,从而导致不同的反应立体选择性。
     3.系统地研究了Brφnsted酸催化喹啉氢转移反应的机理,确定了先1,4号位加氢再2,3号位加氢(“1,4-2,3”)的反应机理,并且发现Brφnsted酸与反应物通过氢键形成的三元分子络合物网络结构有利于氢的转移。
Asymmetric synthesis, also called chiral synthesis, is organic synthesis that introduces one or more new and desired elements of chirality into the final product. It is of great significance in the realm of organic synthesis, especially for the synthesis of chiral drugs, because the different enantiomers or diastereomers of a drug molecule often behavior different biological activity. At present, chiral organometallic asymmetic catalytic synthesis might be the most dominant one among the various asymmetric synthetic methods duo to its notable versatility and efficient stereoselectivities. However, recently organocatalytic asymmetric synthesis has been attracting more and more attention as in many cases it can be performed under safe and mild conditions, and compared with the chiral metal complexes-catalyzed asymmetric synthesis, this metal-free method is more economical and environmentally friendly, which makes it an attractive and rapidly developing asymmetric synthesis.
     Recently, N-Heterocyclic carbenes and Brφnsted acid have been experimentally proven to be efficient enantioselective catalysts for Staudinger reaction ([2+2] cycloaddition of a ketene with an imine) and transfer hydrogenation of quinolines, respectively. The final productsβ-lactams and 1,2,3,4-tetrahydroquinolines are of great synthetic importance in the pharmaceutical industry. The former have being used as the traditional antibiotics for several decades, and the latter are commonly present in alkaloids and are required in pharmaceutical and agrochemical synthesis. However, in contrast to the successful practical application, synchronous mechanistic investigations are quite insufficient. The catalytic mechanism and the origin of stereoselectivities are not readily apparent, which has prevented further improvement and development of the two systems from to some extent. To get an in-depth understanding of the chemical basis of catalytic mechanisms and divergent stereoselectivities, we carried out a series of theoretical investigations on these issues and obtained some valuable results, which were mainly summarized as follows:
     (1) Mechanical investigations toward N-Heterocyclic carbene-catalyzed
     Staudinger reaction:The catalytic mechanism of N-Heterocyclic carbene-catalyzed Staudinger reaction was investigated by emplying density functional theory (DFT) method. According to different experimental results, the "ketene-first" and "imine-first" mechanisms arguing which reactant should be initially activated by NHC catalyst have been proposed. Our calculations reveal that the catalytic mechanism of NHCs-catalyzed Staudinger reaction is exclusively the "ketene-first" mechanism (A), but the competitive reactions of NHC catalysts with ketenes or imines will lead to different experimental observations. Based on this conclusion, we found that the NHCs-catalyzed Staudinger reaction would exhibit different stereoselectivities by appropriate choice of the nitrogen substitute of imines. In addition, these results are supposed to be applicable for other nucleophile-catalyzed Staudinger reactions.
     (2) Computational predictions of stereoselectivity in N-heterocyclic carbene catalyzedβ-lactams synthesis:The stereoselectivities of NHCs-catalyzed Staudinger reaction has been theoretically explored by using ONIOM method. Calculations using a combination of B3LYP/6-31G(d) and PM3 levels of theory for transitions-state optimization and M06 2X/6-31+G(d,p) level for single point calculation make predictions of stereoselectivities in accordance with the experimental observations. The origins of divergent stereoselectivities related to different NHCs were further identified:the concomitant electrostatic and steric effects involved in the reaction of imines with NHC-ketene intermediates cooperate in controlling the stereoselectivities of N-Heterocyclic carbenes (NHCs) catalyzed Staudinger reaction, but the structural features including symmetrically-substituted or asymmetrically-substituted and the relative size of substitutes will affect the cooperation manner of the two effects, subsequently, leading to divergent stereoselectivites. Based on the calculations, some useful information for further improvement of NHCs-catalyzed Staudinger reaction was obtained. Firstly, the imines with electron-rich N substituents, such as the experimentally reported N-sulfonyl and N-carbonyl imines, are found necessary for the asymmetric NHCs-catalyzed Staudinger reaction. Secondly, the size of bulky substituent of the unsymmetrical disubstituted NHCs is crucial to the enantioselectivity. Finally, our calculations also suggest that if the electronically-preferential re face reaction of (Z)-INTN-k could be effectively shielded by the bulky substituent of the catalysts, the control of the divergent cis/trans stereoselectivites through the appropriate choice of N tosyl/triflyl imines is possible.
     (3) Mechanical investigations into Brφnsted acid catalyzed transfer hydrogenation of quinoline:Two possible catalytic mechanisms have been proposed for transfer hydrogenation of quinoline including "2C position first" or "4C position first", which differ in the position of the first hydride transfer to iminium ion derived from the initial protonation of quinoline. There is no relevant information from the experiments. The two possible mechanisms have been calculated by employing density functional theory (DFT). The calculated results show that the "three point interaction model" established by Brφnsted acid catalyst hydrogen-bonded with other two reactants facilitates the "4C position first" mechanism. But the result could not preclude the possibility of "2C position first" mechanism for other catalytic system in which the "three point interaction model" can not well-established.
引文
[1]林国强, 陈耀全, 陈新滋, 李月明著,手性合成[M].北京科学出版社,2000,1-5.
    [2]尤天耙.《手性化合物的现代研究方法》.中国科学技术大学出版社,1993,pp6-10.
    [3]Stinson, S. L. Chem. Eng. News.1997,10,20:38-42.
    [4]Blaschke, G.; Kraft, H. P.; Markgrat, H. J. Chem. Ber.1980,13,2318.
    [5](a) Katsuki, T; Sharpless, K. B. Am. Chem. Soc.1980,102,5974-5976. (b)Cory, E. J.; Kim, S.S,; Zhang, H.Y. Am. Chem. Soc.1991,113,728-729. (c) Huang, H. H.; Thomas, F.S.; James, S. P. Am. Chem. Soc.2003,125.626-627. (d) Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G. Angew. Chem.2002.41,4236.
    [6]Knowles, W. S. Angew. Chem. Int. Ed.2002,41,1998-2007.
    [7](a) Dallko, P. I.; Moisan, L. Angew. Chem. Int. Ed.2001.40,3726-3748. (b) Jarvo, E. R.; Miller, S. J. Tetrahedron 2002.58,2481-2495. (c) Groger, H.; Wilken,. Angew. Chem. Int. Ed.2001.40.529-532.
    [8]Langenbeck, W. Angew. Chem.1932,45,97-99.
    [9]Berkessel, A; Groger, H.赵刚,译.不对称有机催化上海:华东师范大学出版社,2006,pp2.
    [10]Arduengo, A. J., Ⅲ; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.1991,113, 361-363.
    [11](a) Hahn, F. E. Angew. Chem., Int. Ed.2006,45,1348. (b) Cheng, Y.; Meth-Cohn, O. Chem. Rev.2004,104,2507. (c) Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem., Int. Ed.2004,43,5130. (d) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev.2000,100,39.
    [12](a) N-Heterocyclic Carbenes in Transition Metal Catalysis; Glorius, F., Ed.; Topics in Organometallic Chemistry, Vol.28; Springer-Verlag:Berlin/Heidelberg, 2007. (b) N-Heterocyclic Carbenes in Synthesis; Nolan, S. P., Ed.; Wiley-VCH: Weinheim, Germany,2006. (c) Ce sar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev.2004,33,619.
    [13]For reviews, see:(a) Marion, N.; Diez-Gonzalez, S.; Nolan, S.P. Angew. Chem., Int. Ed.2007,46,2988. (b) Zeitler, K. Angew. Chem., Int. Ed.2005,44.7506. (c) Enders, D.; Balensiefer, T. Acc. Chem. Res.2004,37,534.
    [14]Turner, N. J. Curr. Opin. Biotechnol.2000,11,527-531.
    [15]Stryer, L. Biochemistry,4th ed.; Freedman and Company:New York 1995.
    [16]Ugai, T.; Tanaka, S.; Dokawa, S.J. Pharm. Soc. Jpn.1943,63,296. (Chem. Abstr.1951,45,5148).
    [17]Breslow, R. J. Am. Chem. Soc.1957,79, 1762-1763.
    [18]Wanzlick, H.W.; Schikora, E. Angew. Chem.1960,72,494.
    [19]Schonherr, H. J.; Wanzlick, H. W. Chem. Ber.1970,103,1037-1046.
    [20]Baceiredo, A.; Trinquier, G.; Bertrand, G. Angew. Chem.1989,101,617-618.
    [21](a) Zhang, Y. R.; He, L.; Wu, X.; Shao, P. L.; Ye, S. Org. Lett.2008,10,277-280. (b) Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem.2008,6,1108-1113.
    [22]The optical activity of β-lactams is critical to their clinic uses because the biological activity of drugs is often related to their chirality, see:(a) Agrawal, Y. K.; Bhatt, H. G; Raval, H. G; Oza P. M.; Gogoi, P. J. Mini Rev. Med. Chem. 2007,7,451-460. (b) Coren, S. Laterality.1998,3,161-172. (c) Gorlin, R. J. Am J Med Genet 2001,101,290-291. (d) Brocks, D. R.; Jamali, F. Pharmacotherapy 1995,15,551-564. (e) Hutt, A. J.; Tan, S. C. Drugs 1996,52,1-12. (f) Lamzin, V. S.; Dauter, Z.; Wilson, K. S. Curr Opin Struct Biol 1995,5,830-836.
    [23](a) Alcaide, B.; Almendros, P. Curr. Med.Chem.2004,11,1921-1949. (b) Kingston, D. I. Chem. Commun.2001,10,867-880.(c) Singh, G. S. Tetrahedron 2003,59,7631-7649. (d) Palomo, C; Aizpurua, J. M.; Ganboa, I.; Oiarbide,M. Synlett 2001,12,1813-1826.
    [24](a) Haley, T. M.; Angier, S. J.; Borthwick, A. D.; Singh, R.; Micetich, R. G.I Drugs 2000,3,512-517. (b) Skiles, J. W.; Sorcek, R.; Jacober, S.; Miao, C.; Mui, P. W.; McNeil, D.; Rosenthal, A. S. Bioorg. Med. Chem. Lett.1993,3,773-778. (c) Ogilvie, W. W.; Yoakim, C.; Do, F.; Hache, B.; Lagace, L.; Naud, J.; O'Meara, J. A.; Deziel, R. Bioorg. Med. Chem.1999,7,1521-1531. (d) Borthwick, A. D.; Weingarten, G.; Haley, T. M.; Tomaszewski, M.; Wang, W.; Hu, Z.; Bedard, J.; Jin, H.; Yuen, L.; Mansour, T. S. Bioorg. Med. Chem. Lett.1998,8,365-370. (e) Han, W. T.; Trehan, A. K.; Wright, J. J. K.; Federici, M. E.; Seiler, S. M.; Meanwell, N. A. Bioorg. Med. Chem.1995,3,1123-1143. (f) Adlington, R. M.; Baldwin, J. E.; Chen, B.; Cooper, S. L.; McCoull, W.; Pritchard, G. J.; Howe, T. J. Bioorg. Med. Chem. Lett.1997,7,1689-1694.
    [25]Staudinger, H. Liebigs Ann. Chem.1907,356,51-123.
    [26]Chemistry and Biology of β-Lactam Antibiotics; Morin, R. B.,Gorman, M., Eds.; Academic Press:New York,1982; Vols.1-3.
    [27]Bacteria Versus Antibacterial Agents: An Integrated Approach. Oreste A. Mascaretti. American Society Microbiology.2003; pp.144.
    [28]Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc,1989,111,931.
    [29](a) Gilman, H.; Speeter, M. J. Am. Chem. Soc.1943,65,2255-2256.
    [30]For other notable methods such as the Gilman-Speeter reaction, photoinduced rearrangements and radical cyclizations, see:(b) Kobayashi, S.; Iimori, T.; Izawa, T.; Ohno, M. J. Am. Chem. Soc.1981,103,2406-2047. (c) Ishibashi, H.; Kameoka, C.; Kodama, K.; Ikeda, M. Tetrahedron 1996,52,489-502. (d) M. Miura, M. Enna, K. Okuro and M. Nomura, J. Org. Chem.,1995,60,4999; (e) Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.; Tomioka, K. A. J. Am. Chem. Soc. 1997,119,2060-2061. (f) Toda, F.; Miyamoto, H.; Inoue, M.; Yasaka, S.; Matijasic, I. J. Org. Chem.2000,65,2728-2732. (e) M.-C. Lo and G. C. Fu, J. Am. Chem. Soc.,2002,124,4572.
    [31](a) Evans, D. A.; Sjogren, E. B. Tetrahedron Lett.1985,26,3783-3786. (b) Bose, A. K.; Manhas, M. S.; van der Veen, J. M.; Bari, S. S.; Wagle, D. R. Tetrahedron 1992,48,4831-4844.
    [32](a) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Eur. J. Org. Chem. 1999,12,3223-3235. (b) Cooper, R. D. G.; Daugherty, B. W.; Boyd, D. B. Pure Appl. Chem.1987,59,485-492.
    [33](a) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc.1989,111,931-934. (b) Davoli, P.; Moretti, I.; Prati, F.; Alper, H. J. Org. Chem.1999,64,518-521. (c) Fujieda, H.; Kanai, M.; Kambara, A. I.; Tomioka, K. J. Am. Chem. Soc.1997, 119,2060-2061. (d) Doyle, M. P.; Kalinin, A. V. Synlett 1995,10,1075-1076.
    [34]Taggi, A. E.; Hafez, A. M; Wack, H.; Young, B.; Drury, W. J., Ⅲ; Lectka, T. J. Am. Chem. Soc.2000,122,7831-7832. (b) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J. Am. Chem. Soc.2002,124,6626-6635.
    [35](a) Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G.C.J. Am. Chem. Soc. 2005,127,11586-11587. (b) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc.2002, 124,1578-1579.
    [36](a)Taggi, A. E.; Hafez, A. M.; Dudding, T.; Lectka, T. Tetrahedron 2002,58, 8351-8356. (b) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka, T. Acc. Chem. Res.2004,37,592-600.
    [37]Katritzky, A. R.; Rachwal,; Rachwal, S. B. Tetrahedron 1996,52,15031-15070.
    [38](a) Rakotoson, J. H.; Fabre, N.; Jacquemond-Collet, I.; Hannedouche, S.; Fouraste, I.; Moulis, C. Planta Med.1998,64,762-763. (b) Jacquemond-Collet, I.; Hannedouche, S.; Fabre, N.; Fouraste, I.; Moulis, C. Phytochemistry 1999,51, 1167-1169. (c) Houghton, P. J.; Woldemariam, T. Z.; Watanabe, Y.; Yates, M. Planta Med.1999,65,250-254.
    [39]For reviews, see:(a) Noyori, R. Angew. Chem. Int. Ed.2002,41,2008-2022. (b) Knowles, W. S. Angew. Chem. Int. Ed.2002, 41,1998-2007. (c) Blaser, H. U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal.2003, 345,103-151. (d) Tang, W.; Zhang, X. Chem. Rev.2003,103,3029-3069. (e) Ohkuma, T.; Kitamura, M.; Noyori R. in Catalytic Asymmetric Synthesis,2nd ed. (Ed.:I. Ojima), Wiley-VCH, New York,2000, chap.1; (f) Ohkuma, T.; R. Noyori in Comprehensive Asymmetric Catalysis, Suppl.1 (Eds.:E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, New York,2004, p.43. (g) Nishiyama, H.; K. Itoh in Catalytic Asymmetric Synthesis,2nd ed. (Ed.:I. Ojima), Wiley-VCH, New York,2000, chap.2.(h) Kadyrov, R.; Riermeier, T. H. Angew. Chem. Int. Ed. 2003,42,5472-5474. (i) Moessner, C.; Bolm, C. Angew. Chem. Int. Ed.2005,44, 7564-7567. (j) Malkov, A. V.; Mariani, A.; MacDougall, K. N.; Kocovsky, P. Org. Lett.2004,6,2253-2256. (k) Iwasaki, F.; Omonura, O.; Mishima, K. Kanematsu, T.; Maki, T.;.Matsumura, Y. Tetrahedron Lett.2001,42,2525-2527.
    [40]For selected reviews, see (a) Glorius, F. Org. Biomol. Chem.2005,3,4171-4175. (b) Comprehensive Asymmetric Catalysis, Vol.2 (Eds.:E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin,1999. (c) Principles and Applications of Asymmetric Synthesis (Eds.:G.-Q. Lin, Y.-M. Li, A. S. C. Chan), John Wiley & Sons, New York,2001. (g) Legault, C. Y.; Charette, A. B.; J. Am. Chem. Soc. 2005,127,8966-8967. (h) Kuwano, R.; Kashiwabara, M. Org. Lett.2006,8, 2653-2655. (i) Lu, S. M.; Wang, Y Q.; Han, X. W.; Zhou, Y.G. Angew. Chem. Int. Ed.2006,45,2260-2263.
    [41]Murata, S.; Sugimoto, T.; Matsuura, S. Heterocycles 1987,26,763-766.
    [42]Bianchini, C.; Barbaro, P.; Scapacci, G.; Farnetti, E.; Graziani, M. Organometallics 1998,17,3308-3310.
    [43]Fujita, K.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R. Tetrahedron Lett.2004,45, 3215-3217.
    [44](a) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed.2006, 45,3683-3686. (b) Guo, Q. S.; Du, D. M.; Xu, J. X. Angew. Chem., Int. Ed.2008, 47,759-762. (c) Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W. Adv. Synth.Catal.2008,350,1001-1006.
    [45]For recent reviews for mechanistic investigations of Staudinger reaction, see:(a) Cossio, F. P.; Arrieta, A.; Sierra, M. A. Acc. Chem. Res.2008,41,925-936. (b) Fu, N. Y.; Tidwell, T. T. Tetrahedron 2008,64,10465-10496. (c) Liang, Y.; Jiao, L.; Zhang, S. W.; Yu, Z. X.; Xu, J. X. J. Am. Chem. Soc.2009,131,1542-1549. (d) Jiao, L.; Liang, Y.; Xu, J. X. J. Am. Chem. Soc.2006,128,6060-6069. (e) Venturini, A.; Gonzalez, J. J. Org. Chem.2002,67,9089-9092. (g) Arrieta, A.; Lecea, B.; Cossio, F. P. J. Org. Chem.1998,63,5869-5876.
    [46]Zdetsis, A. D. Ab initio phonon quantities of simple metals from Hartree-Fock cluster techniques. Phys. Rev. B Condens Matter.1987,35, 5868-5871.
    [47]Brand, H. V. Ab initio all-electron periodic Hartree-Fock study of hydrostatic compression of pentaerythritol tetranitrate. J. Phys. Chem. B 2005,109,13668-13675.
    [48]Avci, D.; Comert, H.; Atalay, Y. Ab initio Hartree-Fock calculations on linear and second-order nonlinear optical properties of new acridine-benzothiazolylamine chromophores. J. Mol. Model.2008,14,161-169.
    [49](a) Becke, A. D. Phys. Rev.1986, A33,2786-2788. (b)Lee, C.; Yang, W.; Parr. G. Phys. Rev.1988, B37,785-789. (c)Perdew,J. P. Electron structure of solids. Akademie Verlag, Berlin,1991.
    [50]朱维良; 蒋华良; 陈凯先; 嵇汝运; [J].化学进展.1999,11,247.253.
    [51](a) Becke, A. D. J. Chem. Phys.1993,98,5648-5652. (b) Lee, C., Yang, W.; Parr, R. G. Phys. Rev.B 1988,37,785-789.
    [52](a) Zhao, Y.; Truhlar, D. G. Acc Chem Res 2007,41,157. (b) Pieniazek,S. N.; Clemente,F. R.; Houk; K. N. Angew. Chem. Int. Ed.2008,47,7746-7749.
    [53](a) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem.1990,94,5523-5527. (b) Ishida, K.; Morokuma, K.; Kormornicki, A. J. Chem. Phys.1977,66,2153-2156. (c) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys.1989,90,2154-2161.
    [54](a)Vreven, T.; Morokuma, K. J. Comput. Chem.2000,21,1419-1432. (b) Dapprich, S.; Komaromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. J. Mol. Struct. (THEOCHEM) 1999,1,461-462. (c) Svensson, M.; Humbel, S.; Morokuma, K. J. Chem. Phys.1996,105,3654-3661. (d) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K. J. Phys. Chem. 1996,100,19357-19363. (e) Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys.1996,105,1959-1967. (f) Matsubara, T.; Sieber, S.; Morokuma, K.; Matsubara, T.; Sieber, S.; Morokuma, K. Int. J. Quantum Chem.1996,60, 1101-1109. (g) Maseras, F.; Morokuma, K. J. Comput. Chem.1995,16, 1170-1179.
    [55](a) Simon, L.; Goodman, J. M. J. Am. Chem. Soc.2009,131,4070-4077. (b) Simon, L.; Goodman, J. M. J. Am. Chem. Soc.2008,130,8741-8747. (c) Dudding, T.; Houk, K. N. PNAS 2004,101,5770-5775. (d) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am. Chem. Soc.2003,125,2475-2479. (e) Bahmanyar, S.; Houk, K. N. Org. Lett.2003,5,1249-1251. (f) Kozlowski, M. C.; Panda, M. J. Org. Chem.2003,68,2061-2076.
    [56](a) Barone, V.; Cossi, M. J. Phys. Chem. A 1998,102,1995-2001. (b) Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Comput. Chem.2003,24,669-681.
    [57](a) Cances, M. T.; Mennucci, B.; Tomasi, J. J. Chem. Phys.1997,107, 3032-3037. (b) Mennucci, B.; Tomasi, J. J. Chem. Phys.1997,106,5151-5158. (c) Cances, M. T.; Mennucci, B.; Tomasi, J. J. Phys. Chem. B 1997,101, 10506-10517. (d) Tomasi, J.; Mennucci, B.; Cances, E. J. Mol. Struct (Theochem) 1999,464,211-226.
    [1](a) Holten, K. B.; Onusko, E. M. American family physician 2000,62,611-620. (b) Kasten, B.; Reski, R. Journal of Plant Physiology 1997,150,137-140. (c) The β-Lactamases:A Major Cause of Resistance of β-Lactam Antibiotics and β-Lactamase Inhibitors; Masc-aretti, O. A., Ed.; Bentham: Hilversum, Netherlands,1999.
    [2](a) Alcaide, B.; Almendros, P. Curr. Med.Chem.2004,11,1921-1949. (b) Kingston, D. I. Chem. Commun.2001,10,867-880.(c) Singh, G. S. Tetrahedron 2003,59,7631-7649. (d) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide,M. Synlett 2001,12,1813-1826.
    [3]Staudinger, H. Liebigs Ann. Chem.1907,356,51-123.
    [4]Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc.,1989,111,931.
    [5](a) Gilman, H.; Speeter, M. J. Am. Chem. Soc.1943,65,2255-2256.
    [6]For other notable methods such as the Gilman-Speeter reaction, photoinduced rearrangements and radical cyclizations, see:(b) Kobayashi, S.; Iimori, T.; Izawa, T.; Ohno, M. J. Am. Chem. Soc.1981,103,2406-2047. (c) Ishibashi, H.; Kameoka, C.; Kodama, K.; Ikeda, M. Tetrahedron 1996,52,489-502. (d) M. Miura, M. Enna, K. Okuro and M. Nomura, J. Org. Chem.,1995,60,4999; (e) Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.; Tomioka, K. A. J. Am. Chem. Soc.1997,119, 2060-2061. (f) Toda, F.; Miyamoto, H.; Inoue, M.; Yasaka, S.; Matijasic, I. J. Org. Chem.2000,65,2728-2732. (e) M.-C. Lo and G. C. Fu, J. Am. Chem. Soc,2002, 124,4572.
    [7]For reviews of the Staudinger reaction, see:(a) Paull, D. H.; Weatherwax, A.; Lectka, T. Tetrahedron 2009,65,6771-6803. (b) Tidwell, T. T. Angew. Chem. Int. Ed.2008,47,1016-1020. (c) Palomo, C; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Curr. Med. Chem.2004,11,1837-1872. (d) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Eur. J. Org. Chem.1999,12,3223-3235. (e) Cooper, R. G. D.; Daugherty, B. W.; Boyd, D. B. Pure Appl. Chem.1987,59,485-492.
    [8]The optical activity of β-lactams is critical to their clinic uses because the biological activity of drugs is often related to their chirality, see:(a) Agrawal, Y. K.; Bhatt, H. G.; Raval, H. G.; Oza P. M.; Gogoi, P. J. Mini Rev. Med. Chem.2007, 7,451-460. (b) Coren S. Laterality.1998,3,161-172. (c) Gorlin, R. J. Am J Med Genet 2001,101,290-291. (d) Brocks, D. R.; Jamali, F. Pharmacotherapy 1995, 15,551-564. (e) Hutt, A. J.; Tan, S. C. Drugs 1996,52,1-12. (f) Lamzin, V. S.; Dauter, Z.; Wilson, K. S. Curr Opin Struct Biol 1995,5,830-836.
    [9](a) Evans, D. A.; Sjogren, E. B. Tetrahedron Lett.1985,26,3783-3786. (b) Bose, A. K.; Manhas, M. S.; van der Veen, J. M.; Bari, S. S.; Wagle, D. R. Tetrahedron 1992,48,4831-4844.
    [10]Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., Ⅲ; Lectka, T. J. Am. Chem. Soc.2000,122,7831-7832. (b) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J. Am. Chem. Soc.2002,124,6626-6635.
    [11](a) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc.1989,111,931-934. (b) Davoli, P.; Moretti, Ⅰ.; Prati, F.; Alper, H. J. Org. Chem.1999,64,518-521. (c) Fujieda, H.; Kanai, M.; Kambara, A. I.; Tomioka, K. J. Am. Chem. Soc.1997, 119,2060-2061. (d) Doyle, M. P.; Kalinin, A. V. Synlett 1995,10,1075-1076.
    [12](a) Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G C. J. Am. Chem. Soc. 2005,127,11586-11587. (b) Hodous, B. L.; Fu, G C. J. Am. Chem. Soc.2002, 124,1578-1579.
    [13]Arduengo, A. J., Ⅲ; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.1991,113, 361-363.
    [14](a) Hahn, F. E. Angew. Chem., Int. Ed.2006,45,1348. (b) Cheng, Y.; Meth-Cohn, O. Chem. Rev.2004,104,2507. (c) Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem., Int. Ed.2004,43,5130. (d) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G Chem. Rev.2000,100,39.
    [15](a) N-Heterocyclic Carbenes in Transition Metal Catalysis; Glorius, F., Ed.; Topics in Organometallic Chemistry, Vol.28; Springer-Verlag:Berlin/Heidelberg, 2007. (b) N-Heterocyclic Carbenes in Synthesis; Nolan, S. P., Ed.; Wiley-VCH: Weinheim, Germany,2006. (c) Ce sar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev.2004,33,619.
    [16]For reviews, see:(a) Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed.2007,46,2988. (b) Zeitler, K. Angew. Chem., Int. Ed.2005,44.7506. (c) Enders, D.; Balensiefer, T. Acc. Chem. Res.2004,37,534.
    [17](a) Zhang, Y. R.; He, L.; Wu, X.; Shao, P. L.; Ye, S. Org. Lett.2008,10,277-280. (b) Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem.2008,6,1108-1113.
    [18]For recent reviews for mechanistic investigations of Staudinger reaction, see:(a) Cossio, F. P.; Arrieta, A.; Sierra, M. A. Acc. Chem. Res.2008,41,925-936. (b) Fu, N. Y.; Tidwell, T. T. Tetrahedron 2008,64,10465-10496. (c) Liang, Y.; Jiao, L.; Zhang, S. W.; Yu, Z. X.; Xu, J. X. J. Am. Chem. Soc.2009,131,1542-1549. (d) Jiao, L.; Liang, Y.; Xu, J. X. J. Am. Chem. Soc.2006,128,6060-6069. (e) Venturini, A.; Gonzalez, J. J. Org. Chem.2002,67,9089-9092. (g) Arrieta, A. Lecea, B.; Cossio, F. P. J. Org. Chem.1998,63,5869-5876.
    [19](a)Taggi, A. E.; Hafez, A. M.; Dudding, T.; Lectka, T. Tetrahedron 2002,58, 8351-8356. (b) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka, T. Acc. Chem. Res.2004,37,592-600.
    [20]For other examples of the simplified templates as NHC catalysts, see:(a) Hawkes, K. J.; Yates, B. F. Eur. J. Org. Chem.2008,35,5563-5570. (b) Goldfuss, B.; Schumacher, M. J. Mol. Model.2006,12,591-595. (c) Maki, B. E.; Patterson, E. V.; Cramer, C. J.; Scheidt, K. A. Org. Lett.2009,11,3942-3945. (d) Kausamo, A.; Tuononen, H. M.; Krahulic, K. E.; Roesler, R. Inorg. Chem.2008,47, 1145-1154.
    [21](a) Bjorgo, J.; Boyd, D. R.;Watson, C. G.; Jennings, W. B.; Jerina, D. M. J. Chem. Soc, Perkin Trans. Ⅱ1974,9,1081-1084. (b) Jiao, L.; Liang, Y.; and Xu, J. X. J. Am. Chem. Soc.2006,128,6060-6069.
    [22](a) Becke, A. D. J. Chem. Phys.1993,98,5648-5652. (b) Hertwig, R. H.; Koch, W. Chem. Phys. Lett.1997,268,345-351. (c) Stephens, P. J.; Devlin, J. F.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem.1994,98,11623-11627.
    [23](a) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem.1990,94,5523-5527. (b) Ishida, K.; Morokuma, K.; Kormornicki, A. J. Chem. Phys.1977,66,2153-2156. (c) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys.1989,90,2154-2161.
    [24](a) Barone, V.; Cossi, M. J. Phys. Chem. A 1998,102,1995-2001. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.2003,24,669-681. (c) Takano, Y.; Houk, K. N. J. Chem. Theory Comput.2005,1,70-77.
    [25]To conform the obtained reaction model does not depend on the treatment of non-covalent interactions of densely substituted reactants and zwitterionic intermediates, the calculations with additional diffuse function has been carried out at the CPCM-B3LYP/6-31+G(d)//B3LYP/6-31G(d) level. The calculated potential energy profiles of the most energetically favored reaction patterns for both mechanisms is very similar to that of CPCM-B3LYP/6-31G(d) level (see Supporting Information, Figure S1). The energy barrier difference between the two mechanisms is 29.6 kcal/mol, which close to that at CPCM-B3LYP/6-31G(d) level (30.5 kcal/mol). This indicates that the 6-31G(d) basis set is suitable for investigating the present reactions.
    [26](a) M. He, J. W. Bode, Org. Lett.,2005,7,3131-3134; b) D. Enders, O. Niemeier, A. Henseler, Chem. Rev.2007,107,5606-5655.
    [27](a) T. Dudding, K. N. Houk, PNAS 2004,101,5770-5775. (b) M. C. Kozlowski, M. Panda, J. Org. Chem.2003,68,2061-2076. (c) S. Bahmanyar, K. N. Houk, H. J. Martin, B. List, J. Am. Chem. Soc.2003,125,2475-2479.
    [1]The optical activity of β-lactams is critical to their clinic uses because the biological activity of drugs is often related to their chirality, see:(a) Agrawal, Y. K.; Bhatt, H. G.; Raval, H. G.; Oza P. M.; Gogoi, P. J. Mini Rev. Med. Chem.2007, 7,451-460. (b) Coren, S. Laterality.1998,3,161-172. (c) Gorlin, R. J. Am J Med Genet 2001,101,290-291. (d) Brocks, D. R.; Jamali, F. Pharmacotherapy 1995, 15,551-564. (e) Hutt, A. J.; Tan, S. C. Drugs 1996,52,1-12. (f) Lamzin, V. S.; Dauter, Z.; Wilson, K. S. Curr Opin Struct Biol 1995,5,830-836.
    [2](a) Alcaide, B.; Almendros, P. Curr. Med.Chem.2004,11,1921-1949. (b) Kingston, D. I. Chem. Commun.2001,10,867-880.(c) Singh, G.S. Tetrahedron 2003,59,7631-7649. (d) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide,M. Synlett 2001,12,1813-1826.
    [3](a) Haley, T. M.; Angier, S. J.; Borthwick, A. D.; Singh, R.; Micetich, R. G.I Drugs 2000,3,512-517. (b) Skiles, J. W.; Sorcek, R.; Jacober, S.; Miao, C.; Mui, P. W.; McNeil, D.; Rosenthal, A. S. Bioorg. Med. Chem. Lett.1993,3,773-778. (c) Ogilvie, W. W.; Yoakim, C.; Do, F.; Hache, B.; Lagace, L.; Naud, J.; O'Meara, J. A.; Deziel, R. Bioorg. Med. Chem.1999,7,1521-1531. (d) Borthwick, A. D.; Weingarten, G.; Haley, T. M.; Tomaszewski, M.; Wang, W.; Hu, Z.; Bedard, J.; Jin, H.; Yuen, L.; Mansour, T. S. Bioorg. Med. Chem. Lett.1998,8,365-370. (e) Han, W. T.; Trehan, A. K.; Wright, J. J. K.; Federici, M. E.; Seiler, S. M.; Meanwell, N. A. Bioorg. Med. Chem.1995,3,1123-1143. (f) Adlington, R. M.; Baldwin, J. E.; Chen, B.; Cooper, S. L.; McCoull, W.; Pritchard, G J.; Howe, T. J. Bioorg. Med. Chem. Lett.1997,7,1689-1694.
    [4]For reviews on β-lactams antibiotics, see:(a) Morin, R. B., Gorman, M., Eds.; Chemistry and Biology of Beta-Lactam Antibiotics; Academic:New York,1982, Vols 1-3. (b) Georg, G I., Ed.; The Organic Chemistry ofβ-Lactams; VCH:New York,1993, pp 295-368.
    [5](a) Evans, D. A.; Sjogren, E. B. Tetrahedron Lett.1985,26,3783-3786. (b) Bose, A. K.; Manhas, M. S.; van der Veen, J. M.; Bari, S. S.; Wagle, D. R. Tetrahedron 1992,48,4831-4844.
    [6](a) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc.1989,111,931-934. (b) Davoli, P.; Moretti, I.; Prati, F.; Alper, H. J. Org. Chem.1999,64,518-521. (c) Fujieda, H.; Kanai, M.; Kambara, A. I.; Tomioka, K. J. Am. Chem. Soc.1997,119,2060-2061. (d) Doyle, M. P.; Kalinin, A. V. Synlett 1995,10,1075-1076.
    [7](a) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc.1989,111,931-934. (b) Davoli, P.; Moretti, I.; Prati, F.; Alper, H. J. Org. Chem.1999,64,518-521. (c) Fujieda, H.; Kanai, M.; Kambara, A. I.; Tomioka, K. J. Am. Chem. Soc.1997,119, 2060-2061. (d) Doyle, M. P.; Kalinin, A. V. Synlett 1995,10,1075-1076.
    [8](a) Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. J. Am. Chem. Soc. 2005,127,11586-11587. (b) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc.2002, 124,1578-1579.
    [9](a) Zhang, Y. R.; He, L.; Wu, X.; Shao, P. L.; Ye, S. Org. Lett.2008,10,277-280. (b) Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem.2008,6,1108-1113.
    [10](a)Taggi, A. E.; Hafez, A. M.; Dudding, T.; Lectka, T. Tetrahedron 2002,58, 8351-8356. (b) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka, T. Acc. Chem. Res.2004,37,592-600.
    [11](a)Vreven, T.; Morokuma, K. J. Comput. Chem.2000,21,1419-1432. (b) Dapprich, S.; Komaromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. J. Mol. Struct. (THEOCHEM) 1999,1,461-462. (c) Svensson, M.; Humbel, S.; Morokuma, K. J. Chem. Phys.1996,105,3654-3661. (d) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K. J. Phys. Chem. 1996,100,19357-19363. (e) Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys.1996,105,1959-1967. (f) Matsubara, T.; Sieber, S.; Morokuma, K.; Matsubara, T.; Sieber, S.; Morokuma, K. Int. J. Quantum Chem.1996,60, 1101-1109. (g) Maseras, F.; Morokuma, K. J. Comput. Chem.1995,16, 1170-1179.
    [12](a) Simon L.; Goodman J. M. J. Am. Chem. Soc.2009,131,4070-4077. (b) Simon L.; Goodman J. M. J. Am. Chem. Soc.2008,130,8741-8747. (c) Dudding, T.; Houk, K. N. PNAS 2004,101,5770-5775. (d) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am. Chem. Soc.2003,125,2475-2479. (e) Bahmanyar, S.; Houk, K. N. Org. Lett.2003,5,1249-1251. (f) Kozlowski, M. C.; Panda, M. J. Org. Chem.2003,68,2061-2076.
    [13]Tang, K.; Wang, J.; H.; Cheng, X. L.; Hou, Q. Q.; Liu, Y. J. Eur. J. Org. Chem. 2010,32,6249-6255.
    [14]Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
    [15]Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision D.02; Gaussian, Inc.:Pittsburgh, PA,2003.
    [16]Becke, A. D. J. Chem. Phys.1983,98,5648-5652.
    [17]Stewart, J. J. P. J. Comput. Chem.1989,10,221-264.
    [18](a) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem.1990,94,5523-5527. (b) Ishida, K.; Morokuma, K.; Kormornicki, A. J. Chem. Phys.1977,66,2153-2156. (c) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys.1989,90,2154-2161.
    [19]Zhao, Y.; Truhlar,D. G. Theor. Chem. Acc.2008,120,215-241.
    [20](a) Bjorgo, J.; Boyd, D. R.;Watson, C. G.; Jennings, W. B.; Jerina, D. M. J. Chem. Soc, Perkin Trans.Ⅱ1974,9,1081-1084. (b) Jiao, L.; Liang, Y.; and Xu, J. X. J. Am. Chem. Soc.2006,128,6060-6069.
    [1]Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996,52,15031-15070.
    [2](a) Rakotoson, J. H.; Fabre, N.; Jacquemond-Collet, Ⅰ.; Hannedouche, S.; Fouraste, I.; Moulis, C. Planta Med 1998,64,762-763. (b) Jacquemond-Collet,Ⅰ.; Hannedouche, S.; Fabre, N.; Fouraste,Ⅰ.; Moulis, C. Phytochemistry 1999,51, 1167-1169.
    [3](c) Houghton, P. J.; Woldemariam, T. Z.; Watanabe, Y.; Yates, M. Planta Med. 1999,65,250-254.
    [4]For reviews, see:(a) Noyori, R. Angew. Chem. Int. Ed.2002,41,2008-2022. (b) Knowles, W. S. Angew. Chem. Int. Ed.2002,41,1998-2007. (c) Blaser, H. U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal.2003, 345,103-151. (d) Tang, W.; Zhang, X. Chem. Rev.2003,103,3029-3069. (e) Ohkuma, T.; Kitamura, M.; Noyori R. in Catalytic Asymmetric Synthesis,2nd ed. (Ed.:I. Ojima), Wiley-VCH, New York,2000, chap.1; (f) Ohkuma, T.; R. Noyori in Comprehensive Asymmetric Catalysis, Suppl.1 (Eds.:E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, New York,2004, p.43. (g) Nishiyama, H.; K. Itoh in Catalytic Asymmetric Synthesis,2nd ed. (Ed.:I. Ojima), Wiley-VCH, New York,2000, chap.2.(h) Kadyrov, R.; Riermeier, T. H. Angew. Chem. Int. Ed. 2003,42,5472-5474. (i) Moessner, C.; Bolm, C. Angew. Chem. Int. Ed.2005,44, 7564-7567. (j) Malkov, A. V.; Mariani, A.; MacDougall, K. N.; Kocovsky, P. Org. Lett.2004,6,2253-2256. (k) Iwasaki, F.; Omonura, O.; Mishima, K.; Kanematsu, T.; Maki, T.;.Matsumura, Y. Tetrahedron Lett.2001,42,2525-2527.
    [5]For selected reviews, see (a) Glorius, F. Org. Biomol. Chem.2005,3,4171-4175. (b) Comprehensive Asymmetric Catalysis, Vol.2 (Eds.:E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin,1999. (c) Principles and Applications of Asymmetric Synthesis (Eds.:G.-Q. Lin, Y.-M. Li, A. S. C. Chan), John Wiley & Sons, New York,2001. (g) Legault, C. Y.; Charette, A. B.; J. Am. Chem. Soc. 2005,127,8966-8967. (h) Kuwano, R.; Kashiwabara, M. Org. Lett.2006,8, 2653-2655. (i) Lu, S. M.; Wang, Y. Q.; Han, X. W.; Zhou, Y. G. Angew. Chem. Int. Ed.2006,45,2260-2263.
    [6](a)Wang, W. B.; Lu, S. M.; Yang, P. Y.; Han, X. W.; Zhou, Y. G. J. Am. Chem. Soc.2003,125,10536-10537; (b) Xu, L.; Lam, K. H; Ji, J.; Wu, J.; Fan, Q.H.; Lo, W.H.; Chan, A. S. C. Chem. Commun.2005,1390-1392; (c) Wang, Z. J.; Deng, G. J.; Li, Y.; He, Y. M.; Tang, W. J.; Fan, Q. H. Org. Lett.2007,9,1243-1246; (d) Tang, W. J.;. Zhou, S. F.;. Xu, L. J.; Zhou, Q. L..; Fan, Q. H.; Zhou, H. F.; Lam, K.; Chan, A. S. C. Chem. Commun.2007,613-615.
    [7]Murata, S.; Sugimoto, T.; Matsuura, S. Heterocycles 1987,26,763-766.
    [8]Bianchini, C.; Barbaro, P.; Scapacci, G.; Farnetti, E.; Graziani, M. Organometallics 1998,17,3308-3310.
    [9]Ohta, T.; Miyake, T.; Seido, N.; Kumobayashi, H.; Takaya, H. J. Org. Chem.1995, 60,357-363.
    [10]Fuchs, R. Process for the Preparation of Optically Active Piperazine-2-carboxylic Acid Derivatives,1997, Eur. Pat. Appl. EP 803502 (Chem. Abstr.,1998,128, 13286).
    [11](1) (a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res.1997,30,97-102. (b) Palmer, M. J.; Wills, M. Tetrahedron:Asymmetry 1999,10,2045-2061. (c) Everaere, K.; Mortreux, A.; Carpentier, J. F. Adv. Synth. Catal.2003,345,67-77. (d) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev.2004,248,2201-2237. (e) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem.2006,4,393-406. (f) Blacker, A. J. In The Handbook of Homogeneous Hydrogenation; de Vries, J. G.; Elsevier, C. J. Eds.; Wiley-VCH Verlag GmbH & KgaA:Weinheim, Germany, 2007; pp 1215-1244. (g) Seraino Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006,35,226-236. (h) Joseph, S. M.; Samec, J. S.; Backvall, J. E.; Andersson, P. G.; Brandt, P. Chem. Soc. Rev.2006,35,237-248.
    [12]Fujita, K.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R. Tetrahedron Lett.2004,45, 3215-3217.
    [13](a) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed.2006, 45,3683-3686. (b) Guo, Q. S.; Du, D. M.; Xu, J. X. Angew. Chem., Int. Ed.2008, 47,759-762. (c) Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W. Adv. Synth.Catal.2008,350,1001-1006.
    [14]Zhou, H. F.; Li, Z. W.; Wang, Z. J.; Wang, T. L.; Xu, L. J.; He, Y. M; Fan, Q. H.; Pan, J.; Gu, L. Q.; Chan, A. S. C. Angew. Chem. Int. Ed.2008,47,8464-8467.
    [15]Guan, H.; Iimura, M.; Magee, M. P.; Norton, J. R.; Zhu, G. J. Am. Chem. Soc. 2005,127,7805-7814.
    [16](a) Becke, A. D. J. Chem. Phys.1993,98,5648-5652. (b) Hertwig, R. H.; Koch, W. Chem. Phys. Lett.1997,268,345-351. (c) Stephens, P. J.; Devlin, J. F.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem.1994,98,11623-11627.
    [17](a) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem.1990,94,5523-5527. (b) Ishida, K.; Morokuma, K.; Kormornicki, A. J. Chem. Phys.1977,66,2153-2156. (c) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys.1989,90,2154-2161.
    [18](a) Barone, V.; Cossi, M. J. Phys. Chem. A 1998,102,1995-2001. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.2003,24,669-681. (c) Takano, Y.; Houk, K. N. J. Chem. Theory Comput.2005,1,70-77.
    1. The optical activity of β-lactams is critical to their clinic uses because the biological activity of drugs is often related to their chirality, see:(a) Agrawal, Y. k; Bhatt, H. G.; Raval, H. g.; Oza p. m.; Gogoi, P. J. Mini Rev. Med. Chem.2007,7,451-460. (b) Coren, S. Laterality.1998,3,161-172. (c) Gorlin, R. J. Am J Med Genet 2001,101,290-291. (d) Brocks, D. R.; Jamali, F. Pharmacotherapy 1995,15,551-564. (e) Hutt, A. J.; Tan, S. C. Drugs 1996,52,1-12. (f) Lamzin, V. S.; Dauter, Z.; Wilson, K. S. Curr Opin Struct Biol 1995,5,830-836.
    2. For reviews on p-lactams antibiotics, see:(a) Morin, R. B., Gorman, M., Eds.; Chemistry and Biology of Beta-Lactam Antibiotics; Academic:New York,1982, Vols 1-3. (b) Georg, G. I., Ed.; The Organic Chemistry ofR-Lactams; VCH:New York,1993, pp 295-368.
    3. Notable nonantibiotic uses of β-lactams include serving as precursors to numbers of enzyme inhibitors and drug candidates, see:(a) Haley, T. M.; Angier, S. J.; Borthwick, A. D.; Singh, R.; Micetich, R. G. I. Drugs 2000,3,512-517. (b) Skiles, J. W.; Sorcek, R.; Jacober, S.; Miao, C.; Mui, P. W.; McNeil, D.; Rosenthal, A. S. Bioorg. Med. Chem. Lett.1993,3,773-778. (c) Alcaide, B.; Almendros, P. Curr. Med.Chem.2004,11,1921-1949. (d) Singh, G. S. Tetrahedron 2003,59,7631-7649. (e) Kingston, D. I. Chem. Commun.2001,10,867-880. (f) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Synlett 2001,12,1813-1826.
    4. (a) Evans, D. A.; Sjogren, E. B. Tetrahedron Lett.1985,26,3783-3786. (b) Bose, A. K.; Manhas, M. S.; van der Veen, J. M.; Bari, S. S.; Wagle, D. R. Tetrahedron 1992,48, 4831-4844.
    5. Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J., Ⅲ; Lectka, T. J. Am. Chem. Soc.2000,122,7831-7832. (b) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J. Am. Chem. Soc.2002,124,6626-6635.
    6. (a) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc.1989,111,931-934. (b) Davoli, P.; Moretti, I.; Prati, F.; Alper, H. J. Org. Chem.1999,64,518-521. (c) Fujieda, H.; Kanai, M.; Kambara, A. I.; Tomioka, K. J. Am. Chem. Soc.1997,119,2060-2061. (d) Doyle, M. P.; Kalinin, A. V. Synlett 1995,10,1075-1076.
    7. Staudinger, H. Liebigs Ann. Chem.1907,356,51-123.
    8. For recent reviews for the Staudinger reaction, see:(a) Cossio, F. P.; Arrieta, A.; Sierra, M. A. Acc. Chem. Res.2008,41,925-936. (b) Tidwell, T. T.Angew. Chem. Int. Ed.2008,47, 1016-1020. (c) Fu, N. Y.; Tidwell, T. T. Tetrahedron 2008,64,10465-10496.
    9. (a) Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. J. Am. Chem. Soc.2005,127, 11586-11587. (b) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc.2002,124,1578-1579.
    10. (a) Zhang, Y. R.; He, L.; Wu, X.; Shao, P. L.; Ye, S. Org. Lett.2008,10,277-280. (b) Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. Chem.2008,6,1108-1113.
    11. (a) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka, T. Acc. Chem. Res.2004,37,592-600. (b) Taggi, A. E.; Hafez, A. M.; Dudding, T.; Lectka, T. Tetrahedron 2002,58,8351-8356.
    12. (a)Vreven, T.; Morokuma, K. J. Comput. Chem.2000,21,1419-1432. (b) Dapprich, S.; Komaromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. J. Mol. Struct. (THEOCHEM) 1999, 1,461-462. (c) Svensson, M.; Humbel, S.; Morokuma, K. J. Chem. Phys.1996,105, 3654-3661. (d) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K. J. Phys. Chem.1996,100,19357-19363. (e) Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys.1996,105,1959-1967. (f) Matsubara, T.; Sieber, S.; Morokuma, K.; Matsubara, T.; Sieber, S.; Morokuma, K. Int. J. Quantum Chem.1996,60, 1101-1109. (g) Maseras, F.; Morokuma, K. J. Comput. Chem.1995,16,1170-1179.
    13. (a) Simon L.; Goodman J. M. J. Am. Chem. Soc.2009,131,4070-4077. (b) Simon L.; Goodman J. M. J. Am. Chem. Soc.2008,130,8741-8747. (c) Dudding, T.; Houk, K. N. PNAS 2004,101,5770-5775. (d) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am. Chem. Soc.2003,125,2475-2479. (e) Bahmanyar, S.; Houk, K. N. Org. Lett.2003,5,1249-1251. (f) Kozlowski, M. C.; Panda, M. J. Org. Chem.2003,68,2061-2076.
    14. (a) Paull, D. H.; Weatherwax, A.; Lectka, T. Tetrahedron 2009,65,6771-6803. (b) Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. J. Am. Chem. Soc.2005,127,11586-11587.
    15. Tang, K.; Wang, J.; H.; Cheng, X. L.; Hou, Q. Q.; Liu, Y. J. Eur. J. Org. Chem.2010,32, 6249-6255.
    16. Seebach, D. Angew. Chem. Int. Ed.1979,18,239-258.
    17. Becke, A. D. J. Chem. Phys.1983,98,5648-5652.
    18. Stewart, J. J. P. J. Comput. Chem.1989,10,221-264.
    19. (a) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem.1990,94,5523-5527. (b) Ishida, K.; Morokuma, K.; Kormornicki, A. J. Chem. Phys.1977,66,2153-2156. (c) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys.1989,90,2154-2161.
    20. Zhao, Y.; Truhlar,D. G. Theor. Chem. Acc.2008,120,215-241.
    21. (a) Barone, V.; Cossi, M. J. Phys. Chem. A 1998,102,1995-2001. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.2003,24,669-681. (c) Takano, Y.; Houk, K. N. J. Chem. Theory Comput.2005,1,70-77.
    22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT,2009.
    23. (a) Bjorgo, J.; Boyd, D. R.;Watson, C. G.; Jennings, W. B.; Jerina, D. M. J. Chem. Soc, Perkin Trans. Ⅱ 1974,9,1081-1084. (b) Jiao, L.; Liang, Y.; Xu, J. X.J. Am. Chem. Soc.2006, 128,6060-6069.
    24. Dang T. P.; Kagan, H. B. J. Chem. Soc. D,1971,481.
    Corresponding author. Tel:+86-531-88365576; fax:+86-531-88564464; e-mail:yongjunliu_1@sdu.edu.cn

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700