苏云金芽胞杆菌资源多样性分析与杀虫基因发掘
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis, Bt),革兰氏阳性细菌,在芽胞形成期可产生具有杀虫活性的伴胞晶体。Bt晶体主要由cry基因编码的杀虫晶体蛋白组成,在害虫的防治中具有重要作用,有巨大的商业价值,因此发掘新基因并进行知识产权保护是Bt资源研究的重要内容。知识产权作为综合竞争力的重要体现,而目前我国在Bt杀虫基因资源的知识产权方面处于劣势,大部分Bt杀虫基因的专利权掌握在西方各大型农业生物技术企业手中,我国掌握的Bt新的基因发明专利不足60项。高通量测序技术的发展为发掘杀虫基因提供了新思路,成为国内外发掘Bt杀虫基因的主要手段。但是测序价格较高,Bt资源库中存在的冗余菌株会造成较大的资金浪费,目前尚没有便捷的方法去除重复菌株。因此,迫切需要建立可以快速分析比较大量样品的方法,来排除重复菌株,进一步提高杀虫基因发掘效率。本论文在分离1500株Bt菌株的基础上,进一步建立了菌株多样性分析方法,对菌株多样性进行研究,去除冗余菌株,对其中90株菌株进行了杀虫基因测序筛选,主要结果如下:
     Bt菌株分离与鉴定:杀虫活性评估结果显示多数菌株对鳞翅目害虫有较高活性,1500株测试菌株中,对棉铃虫有活性的菌株有1346株,对玉米螟有活性菌株有813株,而对叶甲类害虫大猿叶甲有活性的菌株较少,只有42株;镜检结果显示不同菌株产生的晶体形状、大小、种类有较大差异,晶体种类主要为菱形,部分为球形和不规则的晶体形状;杀虫晶体蛋白图谱显示大部分菌株表达了130kD蛋白,部分菌株还表达了100Kd、60kD蛋白,具有典型Bt杀虫晶体蛋白的特征;质粒图谱显示不同菌株质粒图谱条带数量和大小都有所不同,并且有部分菌株图谱相似,说明资源库中有冗余菌株。
     建立Bt菌株多样性分析方法:首先,设计了可以扩增多个基因家族的兼并引物,fastPCR软件分析结果显示该引物可以对超过30种的杀虫基因家族进行较好的扩增,PCR实验检测显示,该引物可以扩增出预期条带但是条带较弱。进一步通过增加侧翼特异序列的办法对兼并引物进行改良,改良后的引物显著提高了扩增效率。同时,还对引物浓度与退火温度进行了优化,利用72个不同血清型的标准菌对优化后的PCR体系进行了评估,结果显示95%以上的菌株都可以获得预期条带;利用含有多个基因的HD12菌株评估了优化后体系对多个基因同时扩增的能力,结果显示优化后的PCR可以从HD12获得9种不同的RFLP类型。这些结果说明优化后的PCR体系具备了cry基因指纹图谱的基本要求。此外,本论文还对Bt基因组提取方法进行了改良,改良后的方法可以提取并获得质量均一的基因组DNA。用改良的PCR体系对Bt基因组进行扩增,并用HinfI对PCR产物进行消化,利用LabChip GX电泳系统进行分析,获得了888个菌株的RFLP图谱。进一步对电泳图谱进行数字化、计算相似性、构建系统发生树分析。结果显示,该方法可以有效分析菌株多样性,去除冗余菌株,获得可用于进一步基因发掘的菌株。
     90株Bt菌株杀虫基因测序筛选:利用高通量测序技术分析了90株不同的Bt菌株的序列,进一步通过SOAPdenovo软件拼接、GeneMark基因预测、模式杀虫基因数据库及专利数据库blast比对,最终获得全新杀虫基因21个。
     总之,本论文建立菌株多样性研究方法,解决了冗余菌株会造成资金的浪费的问题,最终完成了“菌株分离去除冗余基因测序筛选”这一杀虫基因高通量发掘平台的构建,为提升我国在Bt资源发掘中的竞争力提供了重要保障。
Bacillus thuringiensis,gram positive bacteria, it can produce parasporal crystal during spore periodand play an important role in the pest control. The crystal mainly consist by the insecticidal crystalproteins which encode by cry genes, because the commercial value of Bt insecticidal gene, andexploring new toxin genes and protecting intellectual property rights is one of the important Bt resourceresearch content.
     As the intellectual property rights reflect the comprehensive competitiveness, our country at adisadvantage situation now. At present, most of Bt insecticidal gene patents were controlled by foreignagricultural biotechnology companies, and our country contoled less than60new gene with patents. Thedevelopment of high-throughput sequencing technologies provides new idea for insecticidal genemining and became the principal means to find new Bt insecticidal genes. But the sequencing price isrelative higher and the redundancy in Bt resource will be a big waste; and now there was no method canbe applied in strain comparison. Therefore, there is an urgent need.to set up an efficient method that cananalyzing and comparing large scale sample, removing redundant strains, to improve the insecticidalgene discovery efficiency. This thesis, beyond isolating1500strains Bt strains, setting up Bt diversityanalysis method, analyzing the strains diversity, removing redundant strains, sequencing screening90strains, and the results are:
     Isolation and analysis of Bt strains: The toxic activity evaluation results indicated that most strainshave highly toxicity against lepidoptera pests, in1500tested strains, there are1346strains toxic toHelicoverpa armigera,813strains toxic to Ostrinia furnacalis and only a few strains have toxic to leafbeetle, just42strains. Microscopic examination results shown that crystals are different in shape, size,and types between strains, most of them were rhombus, also contains spherical or irregular shapecrystals. Insecticidal crystal protein profiles analysis indicated that most strains expressing130kDprotein, and few of strains have100kD、60kD bands. With typical characteristic of Bt insecticidalcrystal proteins. Plasmid profile analysis indicated that the bands size and number is different betweenstrains and some strains’ plasmid profile are identical, this result indicated that they are redundant strainin the collection.
     Set up Bt stain diversity analysis method. Firstly, a pair degenerated primer were designed toamplify multi-cry genes. The fastPCR software analysis results showed that the primer set can amplifymore than30types insecticidal gene families. The following PCR results shown that the primer canwork but the amplicon bands produced were very week. Then, the primer set was improved by adding flank specific sequence, the new primer set were significantly improved the amplification efficiency.Furthermore, the primer concentrations and annealing temperature of PCR system were optimized; andthe testing of72different serotype standard Bt strains shown that the optimized PCR system canamplify expect bands from more than95%of the strains. The multiple genes amplification ability of theoptimized PCR system was evaluate by HD12that containing multiple genes, the results indicated thatit amplified9different cry gene fragments from the HD12strain. These results state that the optimizedPCR system with the basic requirements for Bt strains cry gene fingerprinting for its widelyamplification spectrum. In this thesis, Bt genome DNA extraction method also improved, the newmethod can get homogeneous quality genome DNA. The strains genome DNA were amplified by theoptimized PCR system and the PCR products were digested by Hinf I. the digested PCR products wereanalyzed by LabChip GX Electrophoresis system. Totally, in this thesis,888strains PCR-RFLP patternwere analyzed. The strains similarity and phylogenetic tree were constructed by PCR-RFLP patternsdigitize and computing. The results indicated that the method described here can effectively remove theredundant strain and yield valuable strains for next toxin gene finding.
     Screening insecticidal gene by sequencing of90Bt strains:90different strains sequence wereanalyzed by HiSeqTM2000and assembled by SOAPdenovo, then, the nsecticidal genes were predictby GeneMark, the insecticidal genes were screen out by blast software packge; and the NCBI patentdatabase were used to get rid of these already pattened genes. Finaly,21new insecticidal genes havebeen revealed in this study.
     In conclusion, a Bt strain diversity analysis method set up, and it can be used in removing theredundancy strains in collection, finally completed the “strain isolationg redundant removingtoxin gene sequencing screening” high throughput insecticidal gene screening platform construction.This work provides important guarantee to enhance competitiveness of China in the Bt resourcesdiscovery.
引文
[1] ROH J Y, LIU Q, LEE D W, et al. Bacillus thuringiensis serovar mogi (flagellar serotype3a3b3d), anovel serogroup with a mosquitocidal activity [J]. J Invertebr Pathol,2009,102(3):266-268.
    [2] SCHNEPF E, CRICKMORE N, VAN RIE J, et al. Bacillus thuringiensis and its pesticidal crystalproteins [J]. Microbiol Mol Biol Rev,1998,62(3):775-806.
    [3] SANAHUJA G, BANAKAR R, TWYMAN R M, et al. Bacillus thuringiensis: a century of research,development and commercial applications [J]. Plant Biotechnol J,2011,9(3):283-300.
    [4] RAYMOND B, JOHNSTON P R, NIELSEN-LEROUX C, et al. Bacillus thuringiensis: an impotentpathogen?[J]. Trends Microbiol,2010,18(5):189-194.
    [5] SAUKA D H,BENINTENDE G B.[Bacillus thuringiensis: general aspects. An approach to its use inthe biological control of lepidopteran insects behaving as agricultural pests][J]. Rev Argent Microbiol,2008,40(2):124-140.
    [6] ZGAIR A K,CHHIBBER S. Immunological and biological relationship among flagellin ofPseudomonas aeruginosa, Burkholderia cepacia and Stenotrophomonas maltophilia [J].Mikrobiologiia,2012,81(3):371-376.
    [7] XU D,COTE J C. Sequence diversity of Bacillus thuringiensis flagellin (H antigen) protein at theintra-H serotype level [J]. Appl Environ Microbiol,2008,74(17):5524-5532.
    [8] XU D,COTE J C. Sequence diversity of the Bacillus thuringiensis and B. cereus sensu lato flagellin (Hantigen) protein: comparison with H serotype diversity [J]. Appl Environ Microbiol,2006,72(7):4653-4662.
    [9] YU J, TAN L, LIU Y, et al. Phylogenetic analysis of Bacillus thuringiensis based on PCR amplifiedfragment polymorphisms of flagellin genes [J]. Curr Microbiol,2002,45(2):139-143.
    [10] SOUFIANE B, XU D,COTE J C. Flagellin (FliC) protein sequence diversity among Bacillusthuringiensis does not correlate with H serotype diversity [J]. Antonie Van Leeuwenhoek,2007,92(4):449-461.
    [11] YE W, ZHU L, LIU Y, et al. Mining new crystal protein genes from Bacillus thuringiensis on the basisof mixed plasmid-enriched genome sequencing and a computational pipeline [J]. Appl EnvironMicrobiol,2012,78(14):4795-4801.
    [12] QI J L, ZHU Y G, SHANG H, et al.[Cloning of a large plasmid pBMB28in Bacillus thuringiensis][J].Yi Chuan,2011,33(10):1141-1146.
    [13] FAGUNDES R B, PICOLI E A, LANA U G, et al. Plasmid patterns of efficient and inefficient strains ofBacillus thuringiensis against Spodoptera frugiperda (J.E. Smith)(Lepidoptera: Noctuidae)[J].Neotrop Entomol,2011,40(5):600-606.
    [14]李林,王征,喻子牛.消除内生质粒对苏云金芽胞杆菌YBT-1463特性的影响[J].微生物学通报,2000,(01):25-28.
    [15] KRONSTAD J W, SCHNEPF H E,WHITELEY H R. Diversity of locations for Bacillus thuringiensiscrystal protein genes [J]. J Bacteriol,1983,154(1):419-428.
    [16] FANG Y, LI Z, LIU J, et al. A pangenomic study of Bacillus thuringiensis [J]. J Genet Genomics,2011,38(12):567-576.
    [17] KALYAN KUMAR T D, MURALI H S,BATRA H V. Multiplex PCR assay for the detection ofenterotoxic Bacillus cereus group strains and its application in food matrices [J]. Indian J Microbiol,2010,50(2):165-171.
    [18] LEVINSON B L, KASYAN K J, CHIU S S, et al. Identification of beta-exotoxin production, plasmidsencoding beta-exotoxin, and a new exotoxin in Bacillus thuringiensis by using high-performanceliquid chromatography [J]. J Bacteriol,1990,172(6):3172-3179.
    [19] HU X, VAN DER AUWERA G, TIMMERY S, et al. Distribution, diversity, and potential mobility ofextrachromosomal elements related to the Bacillus anthracis pXO1and pXO2virulence plasmids [J].Appl Environ Microbiol,2009,75(10):3016-3028.
    [20] HU X, HANSEN B M, EILENBERG J, et al. Conjugative transfer, stability and expression of a plasmidencoding a cry1Ac gene in Bacillus cereus group strains [J]. FEMS Microbiol Lett,2004,231(1):45-52.
    [21] ARONSON A I,BECKMAN W. Transfer of chromosomal genes and plasmids in Bacillus thuringiensis[J]. Appl Environ Microbiol,1987,53(7):1525-1530.
    [22] VAN DER AUWERA G A, TIMMERY S, HOTON F, et al. Plasmid exchanges among members of theBacillus cereus group in foodstuffs [J]. Int J Food Microbiol,2007,113(2):164-172.
    [23]袁永明,周帼萍,刘海舟, et al.苏云金杆菌毒性质粒在蜡状芽胞杆菌群间的水平转移[J].微生物学杂志,2008,(02):1-5.
    [24] PORCAR M,CABALLERO P. Molecular and insecticidal characterization of a Bacillus thuringiensisstrain isolated during a natural epizootic [J]. J Appl Microbiol,2000,89(2):309-316.
    [25] VAN DER AUWERA G A, ANDRUP L,MAHILLON J. Conjugative plasmid pAW63brings newinsights into the genesis of the Bacillus anthracis virulence plasmid pXO2and of the Bacillusthuringiensis plasmid pBT9727[J]. BMC Genomics,2005,6103.
    [26] IBARRA J E, DEL RINCON M C, ORDUZ S, et al. Diversity of Bacillus thuringiensis strains fromLatin America with insecticidal activity against different mosquito species [J]. Appl EnvironMicrobiol,2003,69(9):5269-5274.
    [27] REYES-RAMIREZ A,IBARRA J E. Plasmid patterns of Bacillus thuringiensis type strains [J]. ApplEnviron Microbiol,2008,74(1):125-129.
    [28]刘晶晶,束长龙,张杰, et al.苏云金芽胞杆菌内生质粒提取方法的改进[J].生物技术通报,2008,(06):120-123.
    [29] REYES-RAMIREZ A,IBARRA J E. Fingerprinting of Bacillus thuringiensis type strains and isolates byusing Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis[J]. Appl Environ Microbiol,2005,71(3):1346-1355.
    [30] KATARA J, DESHMUKH R, N K S, et al. Molecular typing of native Bacillus thuringiensis isolatesfrom diverse habitats in India using REP-PCR and ERIC-PCR analysis [J]. J Gen Appl Microbiol,2012,58(2):83-94.
    [31] CHAVES J Q, CAVADOS CDE F,VIVONI A M. Molecular and toxigenic characterization of Bacilluscereus and Bacillus thuringiensis strains isolated from commercial ground roasted coffee [J]. J FoodProt,2012,75(3):518-522.
    [32] SAUKA D H, BASILE J I,BENINTENDE G. Evidence of Bacillus thuringiensis intra-serovar diversityrevealed by Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCRgenomic fingerprinting [J]. J Mol Microbiol Biotechnol,2011,21(3-4):184-190.
    [33] MANZANO M, GIUSTO C, IACUMIN L, et al. Molecular methods to evaluate biodiversity in Bacilluscereus and Bacillus thuringiensis strains from different origins [J]. Food Microbiol,2009,26(3):259-264.
    [34] SOUFIANE B,COTE J C. Discrimination among Bacillus thuringiensis H serotypes, serovars andstrains based on16S rRNA, gyrB and aroE gene sequence analyses [J]. Antonie Van Leeuwenhoek,2009,95(1):33-45.
    [35] DWORZANSKI J P, DICKINSON D N, DESHPANDE S V, et al. Discrimination and phylogenomicclassification of Bacillus anthracis-cereus-thuringiensis strains based on LC-MS/MS analysis ofwhole cell protein digests [J]. Anal Chem,2010,82(1):145-155.
    [36] ALAM S I, BANSOD S, GOEL A K, et al. Characterization of an environmental strain of Bacillusthuringiensis from a hot spring in Western Himalayas [J]. Curr Microbiol,2011,62(2):547-556.
    [37] THORSEN L, ABDELGADIR W S, RONSBO M H, et al. Identification and safety evaluation ofBacillus species occurring in high numbers during spontaneous fermentations to produce Gergoush, atraditional Sudanese bread snack [J]. Int J Food Microbiol,2011,146(3):244-252.
    [38] FORMINSKA K, ZASADA A A,JAGIELSKI M.[Evaluation of multiplex PCR to identify the speciesof microorganisms from Bacillus cereus group][J]. Med Dosw Mikrobiol,2012,64(2):101-108.
    [39]董夏梦,宋迤明,蒋冬花, et al.1株产聚-β-羟基丁酸芽胞杆菌的分离、筛选与鉴定[J].微生物学杂志,2011,(04):80-84.
    [40] IBRAHIM M A, GRIKO N, JUNKER M, et al. Bacillus thuringiensis: a genomics and proteomicsperspective [J]. Bioeng Bugs,2010,1(1):31-50.
    [41] BRAVO A, LIKITVIVATANAVONG S, GILL S S, et al. Bacillus thuringiensis: A story of a successfulbioinsecticide [J]. Insect Biochem Mol Biol,2011,41(7):423-431.
    [42] BERGAMASCO V B, MENDES D R, FERNANDES O A, et al. Bacillus thuringiensis Cry1Ia10andVip3Aa protein interactions and their toxicity in Spodoptera spp.(Lepidoptera)[J]. J Invertebr Pathol,2013,112(2):152-158.
    [43] LIKITVIVATANAVONG S, CHEN J, EVANS A M, et al. Multiple receptors as targets of cry toxins inmosquitoes [J]. J Agric Food Chem,2011,59(7):2829-2838.
    [44] MAHADEVA SWAMY H M, ASOKAN R, THIMMEGOWDA G G, et al. Expression of cry3A geneand its toxicity against Asian Gray Weevil Myllocerus undecimpustulatus undatus Marshall(Coleoptera: Curculionidae)[J]. J Basic Microbiol,2013,
    [45] LI H, OLSON M, LIN G, et al. Bacillus thuringiensis Cry34Ab1/Cry35Ab1interactions with westerncorn rootworm midgut membrane binding sites [J]. PLoS ONE,2013,8(1): e53079.
    [46] VAN DER GEEST L P, ELLIOT S L, BREEUWER J A, et al. Diseases of mites [J]. Exp Appl Acarol,2000,24(7):497-560.
    [47] LUO X, CHEN L, HUANG Q, et al. Bacillus thuringiensis metalloproteinase Bmp1functions as anematicidal virulence factor [J]. Appl Environ Microbiol,2013,79(2):460-468.
    [48] KURODA S, BEGUM A, SAGA M, et al. Parasporin1Ac2, a Novel Cytotoxic Crystal Protein Isolatedfrom Bacillus thuringiensis B0462Strain [J]. Curr Microbiol,2013,
    [49] OKUMURA S, SAITOH H, ISHIKAWA T, et al. Mode of action of parasporin-4, a cytocidal proteinfrom Bacillus thuringiensis [J]. Biochim Biophys Acta,2011,1808(6):1476-1482.
    [50] OHBA M, MIZUKI E,UEMORI A. Parasporin, a new anticancer protein group from Bacillusthuringiensis [J]. Anticancer Res,2009,29(1):427-433.
    [51] TOLEDO A V, ALIPPI A M,DE REMES LENICOV A M. Growth inhibition of Beauveria bassiana bybacteria isolated from the cuticular surface of the corn leafhopper, Dalbulus maidis and theplanthopper, Delphacodes kuscheli, two important vectors of maize pathogens [J]. J Insect Sci,2011,1129.
    [52] DONOVAN W P, ENGLEMAN J T, DONOVAN J C, et al. Discovery and characterization of Sip1A: Anovel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae [J]. ApplMicrobiol Biotechnol,2006,72(4):713-719.
    [53] PENA G, MIRANDA-RIOS J, DE LA RIVA G, et al. A Bacillus thuringiensis S-layer protein involvedin toxicity against Epilachna varivestis (Coleoptera: Coccinellidae)[J]. Appl Environ Microbiol,2006,72(1):353-360.
    [54] MAC INNES T C,BOUWER G. An improved bioassay for the detection of Bacillus thuringiensisbeta-exotoxin [J]. J Invertebr Pathol,2009,101(2):137-139.
    [55] CRICKMORE N, ZEIGLER D R, FEITELSON J, et al. Revision of the nomenclature for the Bacillusthuringiensis pesticidal crystal proteins [J]. Microbiol Mol Biol Rev,1998,62(3):807-813.
    [56] VALAITIS A P,PODGWAITE J D. Bacillus thuringiensis Cry1A toxin-binding glycoconjugates presenton the brush border membrane and in the peritrophic membrane of the Douglas-fir tussock moth areperitrophins [J]. J Invertebr Pathol,2013,112(1):1-8.
    [57] RODRIGUEZ-ALMAZAN C, REYES E Z, ZUNIGA-NAVARRETE F, et al. Cadherin binding is not alimiting step for Bacillus thuringiensis subsp. israelensis Cry4Ba toxicity to Aedes aegypti larvae [J].Biochem J,2012,443(3):711-717.
    [58] KHO M F, BELLIER A, BALASUBRAMANI V, et al. The pore-forming protein Cry5B elicits thepathogenicity of Bacillus sp. against Caenorhabditis elegans [J]. PLoS ONE,2011,6(12): e29122.
    [59] OHSAWA M, TANAKA M, MORIYAMA K, et al. A50-kilodalton Cry2A peptide is lethal to Bombyxmori and Lymantria dispar [J]. Appl Environ Microbiol,2012,78(13):4755-4757.
    [60] MORSE R J, YAMAMOTO T,STROUD R M. Structure of Cry2Aa suggests an unexpected receptorbinding epitope [J]. Structure,2001,9(5):409-417.
    [61] COHEN S, ALBECK S, BEN-DOV E, et al. Cyt1Aa toxin: crystal structure reveals implications for itsmembrane-perforating function [J]. J Mol Biol,2011,413(4):804-814.
    [62] COHEN S, DYM O, ALBECK S, et al. High-resolution crystal structure of activated Cyt2Ba monomerfrom Bacillus thuringiensis subsp. israelensis [J]. J Mol Biol,2008,380(5):820-827.
    [63] GROCHULSKI P, MASSON L, BORISOVA S, et al. Bacillus thuringiensis CryIA(a) insecticidal toxin:crystal structure and channel formation [J]. J Mol Biol,1995,254(3):447-464.
    [64] GALITSKY N, CODY V, WOJTCZAK A, et al. Structure of the insecticidal bacterial delta-endotoxinCry3Bb1of Bacillus thuringiensis [J]. Acta Crystallogr D Biol Crystallogr,2001,57(Pt8):1101-1109.
    [65] BOONSERM P, DAVIS P, ELLAR D J, et al. Crystal structure of the mosquito-larvicidal toxin Cry4Baand its biological implications [J]. J Mol Biol,2005,348(2):363-382.
    [66] GUO S, YE S, LIU Y, et al. Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxintoxic to underground pests, the larvae of Holotrichia parallela [J]. J Struct Biol,2009,168(2):259-266.
    [67] BRAVO A, GOMEZ I, PORTA H, et al. Evolution of Bacillus thuringiensis cry toxins insecticidalactivity [J]. Microb Biotechnol,2013,6(1):17-26.
    [68] DE MAAGD R A, BRAVO A,CRICKMORE N. How Bacillus thuringiensis has evolved specific toxinsto colonize the insect world [J]. Trends Genet,2001,17(4):193-199.
    [69] VIDAL-QUIST J C, CASTANERA P,GONZALEZ-CABRERA J. Diversity of Bacillus thuringiensisstrains isolated from citrus orchards in spain and evaluation of their insecticidal activity againstCeratitis capitata [J]. J Microbiol Biotechnol,2009,19(8):749-759.
    [70] SALEHI JOUZANI G, SEIFINEJAD A, SAEEDIZADEH A, et al. Molecular detection of nematicidalcrystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living andplant-parasitic nematodes [J]. Can J Microbiol,2008,54(10):812-822.
    [71] ARRIETA G, HERNANDEZ A,ESPINOZA A M. Diversity of Bacillus thuringiensis strains isolatedfrom coffee plantations infested with the coffee berry borer Hypothenemus hampei [J]. Rev Biol Trop,2004,52(3):757-764.
    [72] NAZARIAN A, JAHANGIRI R, JOUZANI G S, et al. Coleopteran-specific and putative novel crygenes in Iranian native Bacillus thuringiensis collection [J]. J Invertebr Pathol,2009,102(2):101-109.
    [73] WIDNER W R,WHITELEY H R. Location of the dipteran specificity region in a lepidopteran-dipterancrystal protein from Bacillus thuringiensis [J]. J Bacteriol,1990,172(6):2826-2832.
    [74] MASSON L, MAZZA A, GRINGORTEN L, et al. Specificity domain localization of Bacillusthuringiensis insecticidal toxins is highly dependent on the bioassay system [J]. Mol Microbiol,1994,14(5):851-860.
    [75] BOSCH D, SCHIPPER B, VAN DER KLEIJ H, et al. Recombinant Bacillus thuringiensis crystalproteins with new properties: possibilities for resistance management [J]. Biotechnology (N Y),1994,12(9):915-918.
    [76] GE A Z, RIVERS D, MILNE R, et al. Functional domains of Bacillus thuringiensis insecticidal crystalproteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c)[J]. JBiol Chem,1991,266(27):17954-17958.
    [77] DE MAAGD R A, KWA M S, VAN DER KLEI H, et al. Domain III substitution in Bacillusthuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and alteredmembrane protein recognition [J]. Appl Environ Microbiol,1996,62(5):1537-1543.
    [78] DE MAAGD R A, WEEMEN-HENDRIKS M, STIEKEMA W, et al. Bacillus thuringiensisdelta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua indifferent, but not all, Cry1-Cry1C hybrids [J]. Appl Environ Microbiol,2000,66(4):1559-1563.
    [79] SCHNEPF H E, TOMCZAK K, ORTEGA J P, et al. Specificity-determining regions of alepidopteran-specific insecticidal protein produced by Bacillus thuringiensis [J]. J Biol Chem,1990,265(34):20923-20930.
    [80] ESTRUCH J J, WARREN G W, MULLINS M A, et al. Vip3A, a novel Bacillus thuringiensis vegetativeinsecticidal protein with a wide spectrum of activities against lepidopteran insects [J]. Proc Natl AcadSci U S A,1996,93(11):5389-5394.
    [81] YU C G, MULLINS M A, WARREN G W, et al. The Bacillus thuringiensis vegetative insecticidalprotein Vip3A lyses midgut epithelium cells of susceptible insects [J]. Appl Environ Microbiol,1997,63(2):532-536.
    [82]何晓明,束长龙,刘晓垒, et al.苏云金芽胞杆菌新型vip3Aa基因的克隆、表达与活性分析[J].农业生物技术学报,2011,(05):932-937.
    [83]翟元娜,张杰,高继国.苏云金芽孢杆菌营养期杀虫蛋白Vip3A研究进展[J].东北农业大学学报,2009,(08):123-127.
    [84]赵世源,李海涛,张春鸽, et al.新型vip3Aa基因的克隆与杀虫活性的测定[J].中国农学通报,2012,(30):191-195.
    [85]高川,郎志宏,朱莉, et al.转cry2Ab4和vip3Aa11基因烟草对小地老虎杀虫效果研究[J].中国农业科技导报,2012,(05):42-48.
    [86] SHI Y, XU W, YUAN M, et al. Expression of vip1/vip2genes in Escherichia coli and Bacillusthuringiensis and the analysis of their signal peptides [J]. J Appl Microbiol,2004,97(4):757-765.
    [87] HERNANDEZ-MARTINEZ P, HERNANDEZ-RODRIGUEZ C S, RIE J V, et al. Insecticidal activityof Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests[J]. J Invertebr Pathol,2013,113(1):78-81.
    [88] MILNE R, LIU Y, GAUTHIER D, et al. Purification of Vip3Aa from Bacillus thuringiensis HD-1andits contribution to toxicity of HD-1to spruce budworm (Choristoneura fumiferana) and gypsy moth(Lymantria dispar)(Lepidoptera)[J]. J Invertebr Pathol,2008,99(2):166-172.
    [89]蔡启良,刘子铎,喻子牛.苏云金芽胞杆菌营养期杀虫蛋白基因特性分析[J].中国生物化学与分子生物学报,2004,(05):598-603.
    [90] GOUFFON C, VAN VLIET A, VAN RIE J, et al. Binding sites for Bacillus thuringiensis Cry2Ae toxinon heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin [J].Appl Environ Microbiol,2011,77(10):3182-3188.
    [91] ROSAS-GARCIA N M, FORTUNA-GONZALEZ J M,BARBOZA-CORONA J E. Characterization ofthe chitinase gene in Bacillus thuringiensis Mexican isolates [J]. Folia Microbiol (Praha),2013,
    [92] VU K D, YAN S, TYAGI R D, et al. Induced production of chitinase to enhance entomotoxicity ofBacillus thuringiensis employing starch industry wastewater as a substrate [J]. Bioresour Technol,2009,100(21):5260-5269.
    [93] DING X, LUO Z, XIA L, et al. Improving the insecticidal activity by expression of a recombinantcry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis [J]. CurrMicrobiol,2008,56(5):442-446.
    [94]黄志鹏,关雄.苏云金芽胞杆菌菌株WB9编码活性因子的基因分析[J].应用与环境生物学报,2003,(04):377-381.
    [95]谢池楚,陈月华,蔡峻, et al. Bt几丁质酶的基础表达及诱导合成的多态现象[J].生物工程学报,2010,(11):1532-1538.
    [96]沙莉,黄振吉,关雄.不同氮源对苏云金芽胞杆菌产几丁质酶的影响[J].福建农林大学学报(自然科学版),2011,(04):412-415.
    [97] KENT R M, GUINANE C M, O'CONNOR P M, et al. Production of the antimicrobial peptidesCaseicin A and B by Bacillus isolates growing on sodium caseinate [J]. Lett Appl Microbiol,2012,55(2):141-148.
    [98] ADKINS I, HOLUBOVA J, KOSOVA M, et al. Bacteria and their toxins tamed for immunotherapy [J].Curr Pharm Biotechnol,2012,13(8):1446-1473.
    [99] FEDHILA S, NEL P,LERECLUS D. The InhA2metalloprotease of Bacillus thuringiensis strain407isrequired for pathogenicity in insects infected via the oral route [J]. J Bacteriol,2002,184(12):3296-3304.
    [100]李小辉,夏立秋,袁灿, et al.苏云金杆菌4.0718菌株InhA的鉴定和不同生长时期的表达分析[J].湖南师范大学自然科学学报,2008,(02):115-119.
    [101] LUO Y, RUAN L F, ZHAO C M, et al. Validation of the intact zwittermicin A biosynthetic genecluster and discovery of a complementary resistance mechanism in Bacillus thuringiensis [J].Antimicrob Agents Chemother,2011,55(9):4161-4169.
    [102] ZHOU Y, CHOI Y L, SUN M, et al. Novel roles of Bacillus thuringiensis to control plant diseases [J].Appl Microbiol Biotechnol,2008,80(4):563-572.
    [103]于秀莲,刘心,万中义, et al.苏云金杆菌发酵上清液中生物活性物质的研究[J].微生物学杂志,2007,(03):69-72.
    [104]宋春旭,赵昌明,喻子牛, et al. Zwittermicin A合成基因簇中腺苷酰化功能域的预测、表达与活性验证[J].微生物学报,2008,(09):1260-1265.
    [105] LOVGREN A, ZHANG M, ENGSTROM A, et al. Molecular characterization of immune inhibitor A,a secreted virulence protease from Bacillus thuringiensis [J]. Mol Microbiol,1990,4(12):2137-2146.
    [106] BINESSE J, DELSERT C, SAULNIER D, et al. Metalloprotease vsm is the major determinant oftoxicity for extracellular products of Vibrio splendidus [J]. Appl Environ Microbiol,2008,74(23):7108-7117.
    [107] BEN-DOV E, WANG Q, ZARITSKY A, et al. Multiplex PCR screening to detect cry9genes inBacillus thuringiensis strains [J]. Appl Environ Microbiol,1999,65(8):3714-3716.
    [108] BOURQUE S N, VALERO J R, MERCIER J, et al. Multiplex polymerase chain reaction for detectionand differentiation of the microbial insecticide Bacillus thuringiensis [J]. Appl Environ Microbiol,1993,59(2):523-527.
    [109] KUO W S,CHAK K F. Identification of novel cry-type genes from Bacillus thuringiensis strains onthe basis of restriction fragment length polymorphism of the PCR-amplified DNA [J]. Appl EnvironMicrobiol,1996,62(4):1369-1377.
    [110] ZHANG J, SONG F, ZUO Y, et al.[Identification of cry-type genes of31Bacillus thuringiensisisolates and analysis of their expression product][J]. Wei Sheng Wu Xue Bao,2000,40(4):372-378.
    [111]宋福平,张杰,谢天健, et al.苏云金芽孢杆菌cry基因PCR-RFLP鉴定体系的建立[J].中国农业科学,1998,(03):13-18.
    [112]张杰,宋福平,左雅慧, et al.31株苏云金芽孢杆菌杀虫晶体蛋白基因型鉴定及表达产物研究[J].微生物学报,2000,(04):372-378.
    [113]陈中义,吴限,张杰, et al. PCR-RFLP筛选DNA文库克隆Bt cry基因的研究[J].中国农业科学,2003,(04):398-402.
    [114] SONG F, ZHANG J, GU A, et al. Identification of cry1I-type genes from Bacillus thuringiensis strainsand characterization of a novel cry1I-type gene [J]. Appl Environ Microbiol,2003,69(9):5207-5211.
    [115] SHU C, YAN G, WANG R, et al. Characterization of a novel cry8gene specific to Melolonthidaepests: Holotrichia oblita and Holotrichia parallela [J]. Appl Microbiol Biotechnol,2009,84(4):701-707.
    [116] SHU C, YU H, WANG R, et al. Characterization of two novel cry8genes from Bacillus thuringiensisstrain BT185[J]. Curr Microbiol,2009,58(4):389-392.
    [117] HUANG D F, ZHANG J, SONG F P, et al. Microbial control and biotechnology research on Bacillusthuringiensis in China [J]. J Invertebr Pathol,2007,95(3):175-180.
    [118] XUE J, ZHOU Z, SONG F, et al. Identification of the minimal active fragment of the Cry1Ah toxin[J]. Biotechnol Lett,2011,33(3):531-537.
    [119] LIU J, SONG F, ZHANG J, et al. Identification of vip3A-type genes from Bacillus thuringiensisstrains and characterization of a novel vip3A-type gene [J]. Lett Appl Microbiol,2007,45(4):432-438.
    [120] BERON C M, CURATTI L,SALERNO G L. New strategy for identification of novel Cry-type genesfrom Bacillus thuringiensis strains [J]. Appl Environ Microbiol,2005,71(2):761-765.
    [121] BERON C M,SALERNO G L. Cloning and characterization of a novel crystal protein from a nativeBacillus thuringiensis isolate highly active against Aedes aegypti [J]. Curr Microbiol,2007,54(4):271-276.
    [122] NOGUERA P A,IBARRA J E. Detection of new cry genes of Bacillus thuringiensis by use of a novelPCR primer system [J]. Appl Environ Microbiol,2010,76(18):6150-6155.
    [123] BEARD C E, RANASINGHE C,AKHURST R J. Screening for novel cry genes by hybridization [J].Lett Appl Microbiol,2001,33(3):241-245.
    [124]刘旭光,宋福平,文思远, et al.苏云金芽孢杆菌cry基因芯片检测方法的研究[J].中国农业科学,2004,(07):987-992.
    [125]刘旭光,宋福平,张杰.寡核苷酸芯片在微生物检测中的应用[J].生物技术通报,2005,(01):29-33+11.
    [126] LI H, SHU C, HE X, et al. Detection and identification of vegetative insecticidal proteins vip3genesof Bacillus thuringiensis strains using polymerase chain reaction-high resolution melt analysis [J].Curr Microbiol,2012,64(5):463-468.
    [127] SHU C, SU H, ZHANG J, et al. Characterization of cry9Da4, cry9Eb2, and cry9Ee1genes fromBacillus thuringiensis strain T03B001[J]. Appl Microbiol Biotechnol,2013,
    [128]茅洁瑜,束长龙,李克斌, et al.对蛴螬有活性的苏云金芽胞杆菌菌株的筛选与基因鉴定[J].中国生物防治学报,2011,(02):176-181.
    [129]赵灿,张春鸽,束长龙, et al.基于高分辨熔解分析的cry1I类基因的克隆、表达及活性分析[J].中国生物防治学报,2013,(01):
    [130] PORNWIROON W, KATZENMEIER G, PANYIM S, et al. Aromaticity of Tyr-202in thealpha4-alpha5loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin [J]. J BiochemMol Biol,2004,37(3):292-297.
    [131] MASSON L, PREFONTAINE G, PELOQUIN L, et al. Comparative analysis of the individualprotoxin components in P1crystals of Bacillus thuringiensis subsp. kurstaki isolates NRD-12andHD-1[J]. Biochem J,1990,269(2):507-512.
    [132] SUN Y, FU Z, DING X, et al. Evaluating the insecticidal genes and their expressed products inBacillus thuringiensis strains by combining PCR with mass spectrometry [J]. Appl Environ Microbiol,2008,74(21):6811-6813.
    [133] MANACHINI B, ARIZZA V, RINALDI A, et al. Eco-physiological response of two marine bivalvesto acute exposition to commercial Bt-based pesticide [J]. Mar Environ Res,2013,8329-37.
    [134] ROSAS-GARCIA N M. Biopesticide production from Bacillus thuringiensis: an environmentallyfriendly alternative [J]. Recent Pat Biotechnol,2009,3(1):28-36.
    [135] SUDAKIN D L. Biopesticides [J]. Toxicol Rev,2003,22(2):83-90.
    [136] TENCZAR E G,KRISCHIK V A. Management of cottonwood leaf beetle (Coleoptera: Chrysomelidae)with a novel transplant soak and biorational insecticides to conserve coccinellid beetles [J]. J EconEntomol,2006,99(1):102-108.
    [137]杜立新,王金耀,王容燕, et al.苏云金芽胞杆菌工程菌BIOT185对金龟子幼虫的田间防效及其安全性评价[J].农药学学报,2011,(04):354-358.
    [138]彭东海,陈守文,阮丽芳, et al.苏云金芽胞杆菌基因工程菌BMB696B对实验动物的安全性评估[J].安全与环境学报,2006,(06):87-91.
    [139]黄凯,金鑫,梅菲, et al.过表达CodY蛋白的苏云金芽胞杆菌基因工程菌YBT-881-L1的构建及特性鉴定[J].生物技术通报,2011,(12):181-187.
    [140]周学永,陈守文.我国生物农药Bt下游技术研究中的问题及对策[J].农业环境保护,2002,(05):480.
    [141] WANG G, ZHANG J, SONG F, et al. Engineered Bacillus thuringiensis GO33A with broadinsecticidal activity against lepidopteran and coleopteran pests [J]. Appl Microbiol Biotechnol,2006,72(5):924-930.
    [142] WANG G, ZHANG J, SONG F, et al. Recombinant Bacillus thuringiensis strain shows highinsecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affectingnontarget species in the field [J]. J Appl Microbiol,2008,105(5):1536-1543.
    [143] PERLAK F J, DEATON R W, ARMSTRONG T A, et al. Insect resistant cotton plants [J].Biotechnology (N Y),1990,8(10):939-943.
    [144] TABASHNIK B E,GOULD F. Delaying corn rootworm resistance to Bt corn [J]. J Econ Entomol,2012,105(3):767-776.
    [145] TABASHNIK B E. Plant science. Communal benefits of transgenic corn [J]. Science,2010,330(6001):189-190.
    [146] SUTTON D W, HAVSTAD P K,KEMP J D. Synthetic cryIIIA gene from Bacillus thuringiensisimproved for high expression in plants [J]. Transgenic Res,1992,1(5):228-236.
    [147] BARTON K A, WHITELEY H R,YANG N S. Bacillus thuringiensis section sign-EndotoxinExpressed in Transgenic Nicotiana tabacum Provides Resistance to Lepidopteran Insects [J]. PlantPhysiol,1987,85(4):1103-1109.
    [148] ADANG M J, BRODY M S, CARDINEAU G, et al. The reconstruction and expression of a Bacillusthuringiensis cryIIIA gene in protoplasts and potato plants [J]. Plant Mol Biol,1993,21(6):1131-1145.
    [149] FUJIMOTO H, ITOH K, YAMAMOTO M, et al. Insect resistant rice generated by introduction of amodified delta-endotoxin gene of Bacillus thuringiensis [J]. Biotechnology (N Y),1993,11(10):1151-1155.
    [150] ESTRUCH J J, CAROZZI N B, DESAI N, et al. Transgenic plants: an emerging approach to pestcontrol [J]. Nat Biotechnol,1997,15(2):137-141.
    [151] WU K M,GUO Y Y. The evolution of cotton pest management practices in China [J]. Annu RevEntomol,2005,5031-52.
    [152] WU K M, LU Y H, FENG H Q, et al. Suppression of cotton bollworm in multiple crops in China inareas with Bt toxin-containing cotton [J]. Science,2008,321(5896):1676-1678.
    [153]张杰,束长龙,张春鸽. Bt杀虫基因专利保护现状与趋势[J].植物保护,2011,(03):1-6+11.
    [154] SHU C,ZHANG J. Current patents related to Bacillus thuringiensis insecticidal crystal proteins [J].Recent Pat DNA Gene Seq,2009,3(1):26-28.
    [155] SWAMY H M, ASOKAN R, RAJASEKARAN P E, et al. Analysis of opportunities and challenges inpatenting of Bacillus thuringiensis insecticidal crystal protein genes [J]. Recent Pat DNA Gene Seq,
    2012,6(1):64-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700