空间等离子体探测中粒子谱仪读出电子学方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间等离子体探测,自20世纪末至今,都是世界各地的空间探测科学家们密切关注的研究领域。空间等离子特性的研究,对于航空航天、无线电通讯技术、太阳风暴预警、行星大气环境研究等方面都有非常积极的意义。近年来,空间等离子体探测的技术发展迅速,这些技术主要探知的是等离子体的电荷、质量、能量以及分布密度信息。目前,国际上发射了很多近地环境的空间等离子体探测卫星,包括:Cluster、FAST、WIND、GIOTTO、AMPTE等等。这些卫星中等离子体的探测手段各有不同,但是最终都能得到等离子体的参数信息。另外,火星快车、金星快车等行星探测器,以及ROSETTA这类彗星探测器中,也有类似的粒子探测仪器。
     在空间等离子体探测中,顶帽型静电分析仪是一种应用非常普遍的离子能量选择器,其能够根据供给分析仪的电压来选择不同能量电荷比的离子。同时,飞行时间测量谱仪是一种常用的、通过测量离子在固定长度内的飞行时间得出粒子速度信息的手段。国外在空间等离子体探测方面的技术起步较早,发展时间较长,但是国内却不尽然。为了自主研发并掌握空间等离子探测的技术,国内的科研单位也开展了该方面的研究工作。本论文的内容将就基于顶帽型静电分析仪的离子量能器及其读出电子学系统的原理样机的研发工作、飞行时间探测谱仪和电子学中飞行时间测量关键技术的研究展开。具体章节如下:
     第一章介绍空间等离子体的研究背景、可应用于空间等离子探测的几类探测器以及国际上的各类空间探测任务。
     第二章介绍基于顶帽型静电分析仪的离子量能器及其读出电子学的原理样机的研究工作。详细介绍了量能器及读出电子学的框架结构、各类参数以及实现的功能,并说明了对整机进行标定的方案。
     第三章介绍了空间等离子体探测飞行时间谱仪的几类探测手段,对其离子飞行时间测量原理进行了说明,同时对其读出电子学系统需要实现的功能进行说明,指出其中的关键技术与难点。
     第四章对空间等离子体飞行时间谱仪读出电子学的关键技术——基于Actel抗辐射FPGA的时间数字转换器的研究工作进行说明,分别描述了在Flash型和反熔丝型FPGA中利用延时链法实现时间内插,得到的高精度时间数字转换器的原理框架和测试结果。Flash型FPGA中,延时链的延时单元的是CMOS Buffer,而在反熔丝FPGA中延时单元是专用进位链。本章最后,对Actel的FPGA的抗辐照性能进行说明。
     第五章中,就FPGA中时间数字转换器的温度漂移效应进行标定,并根据TDC码宽随温度变化的线性特性,提出使用线性函数法修正TDC的温度漂移。同时,把线性函数法修正后的时间测量精度,与使用码密度法在各个温度点分别标定后实现的精度相对比,验证了线性函数法修正的准确性。
     第六章在延时链法时间数字转换器的基础上,利用Flash型FPGA的可重复编程性,研究提高时间测量精度的方法,分别使用多次测量法和游标卡尺延时链法实现了几十皮秒的时间分辨。其中多次测量法包含Wave-union和平行延时链两种方法。最后,把实现这几种提高时间测量精度的方法所需要的代价进行了对比。
     第七章,讲述了空间等离子探测谱仪飞行时间测量系统读出电子学原型样机的方案设计,将基于Actel FPGAde时间数字转换器应用于离子飞行时间测量,并得到了初步的电子学测试结果。同时说明了飞行时间测量系统读出电子学下一步的工作。
     第八章,总结与展望。
Space Plasma Detection has been the center of attention for space scientists since the end of20th century. The research on space plasma is significant for the aerospace industry, radio communication, solar wind early warning, the research on planetary atmosphere, etc. In the recent years, techniques on measuring the charge, the mass, and the energy information of the space plasmas have being developed rapidly. Till now, the European countries and America have launched many satellites for plasma detection around near-earth orbits, such as:Cluster, FAST, WIND, GIOTTO, AMPTE, etc. There are different sorts of plasma detectors in these satellites, however, the detectors can achieve the same purpose finally. On the other hand, similar instruments have been loaded on planet detectors such as Mars Express and Venus Express, and comet detectors such as ROSETTA.
     The "Top-hat" electrostatic analyzer (ESA) is widely used in space plasma detection, the analyzer can select the incoming ions according to their energy charge ratio by supplying various reference voltage to its inner and outer semispheres. In addition, time-of-flight (TOF) systems are frequently used for measuring the flight speed of the selected ions. The techniques on space plasma detections have been developed much earlier in the foreign countries than in China. We conducted an investigation into space plasma detector independently using the foreign ones as a reference, and this paper is on the development of principle prototype of the "Top-hat" ESA based ion detector and its read-out electronics, as well as the resercch on the key technology for TOF system:
     Chapter1introduces the background study of space plasmas, and shows the different sorts of instruments that can be applied in space plasma detection. Finally, some space detectors including the introduced detectors are presented.
     In chapter2, the work on the development of principle prototype of the "Top-hat" ESA based ion detector and its read-out electronics is presented. The detector and the read-out electronics structures, the performance as well as the parameters are describled in detail, and the overall calibrating plan is also presented.
     Chapter3introduces different kinds of time-of-flight measurement systems in space plasma detection, and explans their operation principle. The needed fuctions of time-of-flight electronics are decribled, and the key techniques as well as difficulties are also mentioned.
     In chapter4, the research on the key technique of read-out electronics in space plasma detectors is discussed. High resolution time-to-digital convenors (TDC) are implemented repectively in Actel Flash-based and Anti-fuse based FPGAs. The TDC is based on time interpolating method employing time delay chains, and the architecture and test results are describled in detail, In Flash-based FPGAs, the delay element for the delay chain is CMOS Buffer, and in Anti-fuse FPGA, the delay element is the dedicated carry chain. Finally, the radiation-torlerant performance of Actel radiation strengthening FPGAs is illustrated.
     Chapter5discusses the temperature drift of FPGA-based TDC bin size according to the thermal tests. The TDC bin size changes linearly with temperature, thus the linear function algotithm is employed for correction. The correcting precision of the linear function algotithm is proved by comparing with the code-density method.
     Chapter6presents some methods on improving the TDC timing performance: multi-time averaging method and vernier delay chains method, In the discussion of multi-time averaging method, wave-union and parallel delay chains methods are included. At last, the consumed resources for these methods are showed for comparision.
     Chapter7introduces the schematic design of the readout electronics prototype for the TOF system in the space plasma detector, and preliminary test results are presented. Meanwhile, the future work for the TOF system is illustrated.
     Chapter8summarizes our work on the research of space plasma detection, and prospects the future work.
引文
[1]http://wenku.baidu.com/view/33186dl959eef8c75fbfb384.html
    [2]上出洋介(日),简进隆(巴西),日地环境指南,科学出版社,2010年7月
    [3]Chen, F.F., Introduction to Plasma Physics, Plenum Press, New York,1974
    [4]李定,陈银华,马锦秀,等离子体物理学,高等教育出版社,2006年5月
    [5]张和祺,徐永喧,空间天文学,国防工业出版社,1998年3月
    [6]总装备部电子信息基础部,太阳风暴揭秘,国防工业出版社,2011年1月
    [7]George K. Parks, Physics of Space Plasmas, Westview Press,2004
    [8]M. Wuest, D.S. Evans, R. von Steiger, Calibration of Particle Instruments in Space Physics, International Space Science Institdue,2007
    [9]焦维新,空间探测, 北京大学出版社,2002年8月
    [10]H.Wollnik, P.Wurz, and D.T. Young, Rosetta Orbiter Spectrometer for Ion and Neutral Analysis-ROSINA, Adv. Space Res.,21,1527-1535,1998.
    [11]Balsiger, H., K. Altwegg, P. Bochsler et al., Rosetta Orbiter Spectrometer for Ion and Neutral Analysis ROSINA, Space Sci. Rev.,128,745-801,2007
    [12]Brace L H., Langmuir Probe Measurements in the Ionosphere, Measurement Techniques in Space Plasmas, AGU Washington DC, pp.23-35,1997
    [13]Car L., Fast Electron Temperature Measurement with Langmuir Probes:Consideration for Space Flight and Initial Laboratory Tests, Measurement Techniques in Space Plasmas, AGU Washington DC, p.55,1997
    [14]Paschmann, G., H. Loidl, P. Obermayer et al., The plasma instrument for AMPTE IRM, IEEE Trans. Geosci. Remote Sens., GE-23,262-266,1985
    [15]Reme, H., F. Cotin, A. Croset al., The Giotto electron plasma experiment, J. Phys. E,20, 721-731,1987
    [16]Lin. R.P., K.A. Anderson, S. Ashford et al., A three-dimensional plasma and energetic particle investigation for the Wind spacecraft, Space Sci. Rev.,71,125-153,1995
    [17]Reme, H., J.M. Bosqued, J.A. Sauvaud et al., The CLUSTER Ion Spectrometry (CIS) experiment, Space Sci. Rev.,79,303-350,1997.
    [18]Johnstone A D., Pease: A Plasma Electron and Current Experiment, The CLUSTER and Phoenix Missions, Kluwer academic publishers, London, p.351,1997
    [19]Von Rosenvinge, T.T., L.M. Barbier, J. Karsch, TheEnergetic Particles:Acceleration, Composition, and Transport (EPACT) investigation on the Wind spacecraft, Space Sci. Rev., 71,155-206,1995
    [20]Balogh, A., Space physics instrumentation and missions, in Payload and Mission Definition in Space Sciences, V. Martinez Pillet, A. Aparicio, F. Sanchez, Eds., Cambridge University Press, Cambridge,233-322,2005.
    [21]Balogh, A. and A. Pedersen, Space Instruments, ISSI Scientific Report, SR-008, ESA Publications Division, Noordwijk,2008.
    [22]Torst J. et al., Energetic Particle Experiment ERNE, Solar Physics, Vol.162, pp.505-531, 1995
    [23]http://nssdc.gsfc.nasa.gov
    [24]http://baike.baidu.com/view/70729.htm
    [25]http://baike.baidu.com/view/606562.htm
    [26]http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1997-061A
    [27]Ferri, P., Mission Operations for the New Rosetta, Acta Astronaut.,58, No.2,105-111, Jan. 2006.
    [28]Montagnon, E., and P. Ferri, Rosetta on Its Way to the Outer Solar System, Acta Astronaut., 59, No.1-5,301-309, Sept.2006.
    [1]F. R. Paolini and G. C. Theodoridis, Charged Particle Transmission Through Spherical Plate Electrostatic Analyzers, Rev. Sci. Instrum.38,579 (1967).
    [2]史钰峰,单旭,陈向军,空间带电粒子谱仪的设计报告,2011年5月.
    [3]M. Barat, J. C. Brenot, J. A. Fayeton, and Y. J. Picard, Absolute detection efficiency of a microchannel plate detector for neutral atoms, Rev. Sci. Instrum.71,2050 (2000).
    [4]C. W. Carlson, D.W. Curtis, G. Paschmann, W. Michel, An instrument for rapidly measuring plasma distribution functions with high resolution, Adv. Space Res.2 (7),67,1982.
    [5]C. W. Carlsonet al., Measurement techniques in space plasmas:particles,1998.
    [6]C. W. Carlson, J. P. Mcfadden, P. Turin, The Electron and Ion Plasma Experiment For FAST, Space Sci., Rev.,98:33-66,2001.
    [7]R. S. Gao,P. S. Gibner, J. H. Newman, K. A. Smith, and R. F. Stebbings, Absolute and angular efficiencies of a microchannel-plate position-sensitive detector. Rev. Sci. Instrum.55,1756 (1984).
    [8]张爱兵,袁庆智,王世金,一种测量MCP输出信号幅度的方法,中国空间科学学会空间探测专业委员会第十九次学术会议,2006
    [9]Wuest, M. and P. Bochsler, Simulation of ion backscattering from rough surfaces, Nucl. Instrum. Methods B,71,314-323,1992.
    [10]http://www.amptek.com
    [11]http://www.amptek.com/pdf/a111.pdf, Amptek inc
    [12]http://www.amptek.com/pdf/a111f.pdf, Amptek inc
    [13]L. Adama, E. J. Daly and R. Harboe-Sorensen, Measurement of SEU and Total Dose in Geostationary Orbit under Normal and Solar Flare Conditions, IEEE Trans. Nucl. Sic, vol. 38, N0.6, December,1991.
    [14]http://www.analog.com/en/index.html.
    [15]DAC8412 Data Sheet Rev F.pdf, Analog Device,09,2009.
    [16]AD976 Data Sheet Rev C.pdf, Analog Device,08,1999.
    [17]AD558 Data Sheet Rev A.pdf, Analog Device,08,1987.
    [18]http://baike.baidu.com/view/51371.htm
    [19]ProASIC3 Flash Family FPGAs datasheet V1.3.pdf, Actel inc.
    [20]P. R. Harvey, D. W. Curtis, H. D. Heetderks, The Fast Spacecraft Instrument Data Processing Unit, Space Science Reviews 98:113-149,2001.
    [21]http://www.interpoint.com
    [22]http://www.interpoint.com/products/product_listing/fmce-0328_3_amps
    [23]http://www.interpoint.com/products/product_listing/mhf
    [24]http://dongwen.dianyuan.com
    [25]http://www.caentechnologies.com/
    [26]High Voltage Optocoupler HV801 datasheet Rev A3, Amptek inc.
    [27]Dave Curtis, Maven Static Sweep HVPS, Technical Note on Achieving a Large Dynamic Range Sweep Supply,2008.
    [28]http://www.ti.com.cn/product/cn/lml247247SEM
    [29]史钰峰,空间离子探测谱仪标定方案,2013.4.
    [30]A. G. Ghielmetti, H. Balsiger, R. Banninger, Calibration system for satellite and rocket-borne ion mass spectrometers in the energy range from 5 eV/charge to 100 keV/charge, Rev. Sci. Instrum.54,425 (1983).
    [1]S. Barabash, R. Lundin, H. Andersson, The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the MARS Express Mission, Space Science Reviews (2006) 126:113-164.
    [2]S. Barabash, J.A. Sauvaud,H. Gunella, The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission, Planetary and Space Science, Vol.55, Issue 12, October 2007, pp.1772-1792.
    [3]焦维新,空间探测,北京大学出版社,2002年8月.
    [4]MartinWuest, Time-of-Flight Ion Composition Measurement Technique for Space Plasmas, Measurement Techniques in Space Plasmas, AGU Washington DC, pp.141-155,1997.
    [5]Williams, D.J., E. Keppler, T.A. Fritz, The ISEE 1 and 2 Medium Energy Particles Experiment, IEEE Trans on Geosic. Electron., GE 16,270-280,1978.
    [6]Gloeckler, G, J. Geiss, H. Balsiger, The Solar Wind Ion Composition Spectrometer, Astron. Astrophys. Suppl. Ser.,92,267-289,1992.
    [7]Reme, J., J.M. Bosqued, J.A. Sauvaud, The Cluster Ion Spectrometry Experiment, Europ. Space Agency Spec. Publ., ESA-SP-1159,133-161,1993.
    [8]Wilken, B., W. Weiss, W. Studemann, A Compact Time-of-Flight mass-spectrometer with electrostatic mirrors, Nucl. Instrum. Meth.,222,587-600,1984.
    [9]Hamilton, D.C., G. Gloeckler,F.M. Ipavich, New High-Resolution Electrostatic Ion Mass Analyzer using Time-of-Flight, Rev. Sci. Instrum.,61,3104-3106,1990.
    [10]Gloeckler, G, H. Balsiger, A. Burgi, The Solar Wind and Suprathermal Ion Composition Investigation on the WIND Spacecraft, Space Sci. Rev.,79-124,1995.
    [11]Stone, E.C., L.F. Burlaga, W.C. Feldman, Phase A study of an Advanced Composition Explorer, NASA Contract NAS 5-30340,2 July 1989.
    [12]Hovestadt, D., M. Hilchenbach, A. Burgi, CELIAS-Charge element and Isotope Analysis System for SOHO Solar Physics,162,441-481,1995.
    [13]Mobius, E., P. Bochsler, A.G. Ghielmetti, High Mass Resolution Isochronous Time-of-Flight Spectrograph for Three-Dimensional Space Plasma Measurement, Rev. Sci. Instrum.,61, 3609-3612,1990.
    [14]Gubler, L., P. Wurz, P. Bochster, High Resolution Isochronous Mass Spectrometer for Space Plasma Applications, Int. J. Mass Spect.,148,77-96,1995.
    [15]Wurz, P., L. Gubler, P. Bochsler and E. Mobius, Isochronous Mass Spectrometer for Space Plasma Applications, AGU Geophys. Monogr. Ser., J.E. Borovsky, R.F. Pfaff, and D.T. Young, Eds., American Geophysical Union, Washington DC, this issue,1997.
    [16]Wiley, W.C. and I.H. Mclaren, Time-of-Flight Mass Spectrometer with Improved Resolution, Rev. Sci. Instrum.,26,1150-1157,1955.
    [17]Kissel, J., The Giotto Particulate Impact Analyzer, Europ. Space Agency Spec. Pul., ESA-SP-1077,67-83,1986.
    [18]Mamyrin, B.A., V.I. Karataev, D.V. Shmikk, The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution, Sov. Phys.-JETP,37,45-48,1973.
    [19]Pollard, J.E., D.A. Lichtin, S.W. Janson, Time resolved mass and energy analysis by position sensitive time-of flight detection, Rev. Sci. Instrum.,61,3134-3136,1990.
    [20]H. Reme, C. Aoustin, J. M. Bosqued, First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Annales Geophysicae (2001) 19:1303-1354.
    [21]T. Sluijk, H. Verkooijen, A. Zwart, TDC in Actel FPGA, February 2nd,2009.
    [22]W. Hisong, S. Huntzicker, K. King, "Performance and Area Tradeoffs in Space-Qualified FPGA-Based Time-of-Flight Systems" The Ninth International Conference on Electronic Measurement & Instruments,2009, pp 1-6.
    [1]D. C. Hamilton, G Gloeckler, F. M. Ipavich et al., New Highresolution Electrostatic Ion Mass Analyzer Using Time-of-flight, Rev. Sci. Instrum.,9 May,1990.
    [2]H. Reme, C. Aoustin, J. M. Bosqued et al., First Multispacecraft Ion Measurements in and near the Earth'smagnetosphere with the Identical Cluster Ion Spectrometry (CIS) Experiment, Annales Geophysicae,13 July,2001.
    [3]E. Mobius, G. Gloeckler, D. Hovestadt et al, The Time-of-Flight Spectrometer SULEICA for Ions of the Energy Range 5-270 keV/charge on AMPTE IRM, IEEE Trans. Geos. Rem., VOL. GE-23,NO.3, MAY 1985.
    [4]David T. Young, Space Plasma Particle Instrumentation and the New Paradigm:Faster, Cheaper, Better, Measurement Techniques in Space Plasmas:Particles, Geophysical Monograph 102,1998.
    [5]E. Mobius, L.M. Kistler, M.A. Popecki et al., The 3-D Plasma Distribution Function Analyzers With Time-of-flight Mass Discrimination for Cluster, Fast, and Equator-S, Measurement Techniques in Space Plasmas:Particles, Geophysical Monograph 102,1998.
    [6]安琪,粒子物理实验中的精密时间间隔测量,核技术,第29卷第6期,2006年6月.
    [7]J. Kalisz, R. Szplet, and A. Poniecki, "Field programmable gate array based time-to-digital converter with 200-ps resolution," IEEE Trans. Instrum. Meas., vol.46, no.1, pp.51-55, Feb. 1997.
    [8]R. Szplet, J. Kalisz, and R. Szymanowski, "Interpolating time counter with 100 ps resolution on a single FPGA device," IEEE Trans. Instrum. Meas., vol.49, no.4, pp.879-883, Aug. 2000.
    [9]M. S. Andaloussi, M. Boukadoum, and E.-M. Aboulhamid, "A novel time-to-digital converter with 150 ps time resolution and 2.5 ns pulse-pair resolution," in Proc.14th Int. Conf. Microelectron.,2002, pp.123-126.
    [10]M. D. Fries and J. J.Williams, "High-precision TDC in an FPGA using a 192-MHz quadrature clock," in Proc. IEEE Conf. Rec. NSS.,2002, vol.1, pp.580-584.
    [11]J. Wu, Z. Shi, and I. Y. Wang, "Firmware-only implementation of time-to-digital converter in field programmable gate array," in Proc. IEEE Conf. Rec. NSS.,2003, vol.1, pp.177-181.
    [12]M. Zielinski, D. Chaberski, M. Kowalski, R. Frankowski, and S. Grzelak, "High-resolution time-interval measuring system implemented in single FPGA device," Measurement, vol.35, pp.311-317,2004.
    [13]D. K. Xie, Q. C. Zhang, G. S. Qi, and D. Y. Xu, "Cascading delay line time-to-digital converter with 75 ps resolution and a reduced number of delay cells," Rev. Sci. Instrum., vol. 76, no.014701,2005.
    [14]R. Szymanowski and J. Kalisz, "Field programmable gate array time counter with two-stage interpolation," Rev. Sci. Instrum., vol.76, no.045104,2005.
    [15]J. Song, Q. An, and S. Liu, "A high resolution time-to-digital-converter implemented in field-programmable-gate-arrays," IEEE Trans. Nucl. Sci., vol.53, no.1, pp.236-241, Feb. 2006.
    [16]J. Wang, S. Liu, Q. Shen, "A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays" IEEE Trans. Nucl.Sci, vol.57, No.2, April 2010, pp 446-450.
    [17]T. Sluijk, H. Verkooijen, A. Zwart, TDC in Actel FPGA, February 2nd,2009.
    [18]W. Hisong, S. Huntzicker, K. King, "Performance and Area Tradeoffs in Space-Qualified FPGA-Based Time-of-Flight Systems" The Ninth International Conference on Electronic Measurement& Instruments,2009, pp 1-6.
    [19]J. Kissel. K. Altwegg. B. C. Clark, Cosima-High Resolution Tims-of-F Mass Spectrometer for the Analysis of Cometary Dust Particles on Board ROSETTA, Space Sci., Rev.,2006.
    [20]ProASICR3E Handbook datasheet v1.1, Actel Corporation,2009.
    [21]Texas instrument, Understanding Data Converters Application Report,1995.
    [22]J. Doernberg, H.-S. Lee, and D. A. Hodges, "Full-speed testing of A/D converters," IEEE J. Solid-State Circuits, vol. SSC-19, no.6, pp.820-827, Dec.1984.
    [23]ProASICPLUSR Flash Family FPGAs v3.0, Actel Corporation,2009.
    [24]X. Qin, C. Q. Feng, L. Zhao, Development of High Resolution TDC Implementd in Radiation Tolerant FPGAs for Aerospace Application, IEEE RT12 conference.
    [25]Axcelerator Family FPGAs datasheet, v2.8, Actel Corporation,2009.
    [26]Axcelerator Carry-Connect Macros Application Note AC163, Actel Corporation,2002.
    [27]http://www.actel.com/products/milaero/hireldata.aspx
    [28]http://baike.baidu.com/view/6407149.htm
    [29]T. R. Oldham, F. B. McLean, Total Ionizing Dose Effects in MOS Oxides and Devices, IEEE Trans. Nucl. Sci., vol.50, NO.3, JUNE 2003.
    [30]Allen, G.R. Single Event Effects Test Results for Advanced Field Programmable Gate Arrays, Radiation Effects Data Workshop,2006 IEEE, pp.115-120.
    [31]J.Wang, S. Rezgui, "RTAX-S SEE Report-Analysis of NASA/Goddard High Speed SET/SEU Data", August,2006.
    [32]Radiation Perfoemance of Actel Products Version 9, Actel Inc.
    [33]徐加强等,空间电子辐照下半导体器件的抗辐射屏蔽优化,上海大学学报,Vol.9,No.3
    [34]黄影等,SRAM型FPGA的抗SEU方法研究,中国空间科学技术,2007年8月第4期
    [35]Anurag Tiwari, et al., Enhanced Reliability of Finite-State Machines in FPGA Through Efficient Fault Detection and Correction, IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO.3, SEPTEMBER 2005
    [1]F. Bigongiari, R. Roncella, R. Saletti, and P. Terreni, A 250-ps time resolution CMOS multihit time-to-digital converter for nuclear physics experiments, IEEE Trans. Nucl. Sci., vol.46, no. 4, pp.73-77, Apr.1999.
    [2]J. Kalisz, R. Szplet, and A. Poniecki, Field programmable gate array based time-to-digital converter with 200-ps resolution, IEEE Trans. Instrum. Meas., vol.46, no.1, pp.51-55, Feb. 1997.
    [3]R. Szplet, J. Kalisz, and R. Szymanowski, "Interpolating time counter with 100 ps resolution on a single FPGA device," IEEE Trans. Instrum. Meas., vol.49, no.4, pp.879-883, Aug. 2000.
    [4]J. Wu, Z. Shi, and I. Y. Wang, "Firmware-only implementation of time-to-digital converter in field programmable gate array," in Proc. IEEE Conf. Rec. NSS., vol.1,2003, pp.177-181.
    [5]D. K. Xie, Q. C. Zhang, G. S. Qi, and D. Y. Xu, "Cascading delay line time-to-digital converter with 75 ps resolution and a reduced number of delay cells," Rev. Sci. Instrum., vol. 76,2005.014701.
    [6]http://www.chem!7.com/st8286/product_2544844.html
    [7]J. Wang, S. Liu, Q. Shen, "A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays" IEEE Trans. Nucl.Sci, vol.57, No.2, April 2010, pp 446-450.
    [8]S. Liu, C. Feng, H. Yan, Q. An, "LUT-based non-linearity compensation for BES III TOF's time measurement" Nuclear Science and Techniques 21 (2010) 49-53.
    [9]J. Doernberg, H.-S. Lee, and D. A. Hodges, "Full-speed testing of A/D converters," IEEE J. Solid-State Circuits, vol. SSC-19, no.6, pp.820-827, Dec.1984.
    [10]基于反熔丝FPGA的时间数字转换器及其温度漂移修正方法,中国科学技术大学,NO.20120566382.5,2012年12月24日。
    [11]X. Qin, C. Feng, D. Zhang, Development of High Resolution TDC Implemented in Flash-based and Anti-fuse FPGA for Aerospace Application, submitted to IEEE Trans. Nucl. Sci..
    [1]S. Barabash, R. Lundin, H. Andersson, The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the MARS Express Mission, Space Science Reviews (2006) 126:113-164.
    [2]http://baike.baidu.com/view/2241892.htm?fromId=1220064.
    [3]Qi Shen, Shengkai Liao, Shubin Liu, "Time Interval Analyzer with FPGA-Based TDC for Free Space Quantum Key Distribution:Principle and Validation with Prototype Setup ", IEEE 2012 18th Real Time Conference.
    [4]J.Wu and Z. Shi, "The 10-ps wave union TDC:Improving FPGA TDC Resolution Beyond its Cell Delay," Proc. IEEE Nucl. Sci. Symp., Oct.19-25,2008, pp.3440-3446.
    [5]J. Wu, "On-chip processing for the wave union TDC implemented in FPGA," in Proc. IEEE-NPSS Real Time Conf., May 10-15,2009, pp.279-282.
    [6]J.Wu, "An FPGA wave union TDC for time-of-Flight applications," in Proc. IEEE Nucl. Sci. Symp. Conf. Rec, Oct.25-31,2009, pp.299-304.
    [7]J. Wang, S. Liu, and L. Zhao, "The 10-ps Multitime Measurements Averaging TDC Implemented in an FPGA" IEEE Trans. Nucl.Sci, Forum vol.58, NO.4, AUGUST 2011, pp. 2011-2018.
    [8]M. Daigneault and J. David, "A novel 10 ps resolution TDC architecture implemented in a 130 nm process FPGA," in Proc.8th IEEE Int. NEWCAS Conf.,2010, pp.281-284.
    [9]X. Qin, C. Feng, D. Zhang, "Multi-time Averaging TDCs Implemented in an Actel Flash-based FPGA", ICMIA 2013.
    [10]G. Jovanovic, M. Stojcev, Vernier's Delay Line Time-to-Digital Converter Scientific Publications of the State University of Novi Pazar, Ser A:Appl Math Inform Mech,2009 1: 11-20.
    [11]P. Dudek, S. Szczepan'ski, J. Hatfield, A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line IEEE Trans. Solid-state Circuits,2000 35:240-247.
    [12]J. Yu, F. Dai, R. Jaeger, A 12-Bit Vernier Ring Time-to-Digital Converter in 0.13 μm CMOS Technology IEEE Trans Solid-state Circuits, April 2010 45:830-842.
    [13]X. Qin, C. Feng, D. Zhang, "A Low Dead Time Vernier Delay Line TDC Implementedin an Actel Flash-Based FPGA", Submitted to Nuclear Science and Techniques, under review
    [14]H. Johnson and M. Graham, High-Speed Digital Design, 沈立,朱来文,陈宏伟等译,高 速数字设计,电子工业出版社,2007年1月。
    [15]K. Chen, S. Liu, and Q. An, "A high precision time-to-digital converter based on multi-phase clock implemented within field-programmablegate-array," Nucl. Sci. Techniques, vol.21, pp. 123-128,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700