深海管道位姿测量系统的研制及相关理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球海上油气资源中大约有44%储存在300m以深的深水海域,未来势必有越来越多的管线铺设到海底。海底两管道的相对位姿测量,即:两管道相对距离与相对角度等空间位姿参数的测量,是深水管道连接过程中的一项关键技术。准确地测量出这些参数,是在施工船上预制合适管段的前提条件,是保证海底管网顺利连接的基础。课题来源于十一五期间承担的国家863重大专项,目的是研制深海管道位姿精确测量设备,为海底管道铺设提供技术保障。
     论文首先综述水下位姿测量技术的国内外发展概况,阐述拉绳测量技术、卫星定位技术、水声测量技术的特点与发展,对比各个测量系统的优缺点,重点分析潜水员辅助拉绳测量系统、水下法兰测量仪和ROV辅助拉绳测量系统等典型拉绳测量系统的工作原理。此外,对拉绳测量系统的相关技术(索长理论、水下缆索理论和误差修正技术)进行简要的综述。
     针对深水位姿测量系统指标要求和实际深海作业环境,完成基于拉绳的水下管道位姿测量系统总体方案设计。分析系统本体机构的工作原理与作业范围,建立拉绳绞盘磁耦合数学模型和丝杠定位底座受力模型,对测量装置、磁动力拉绳绞盘、丝杠定位底座进行详细结构设计。利用三维建模软件3DS MAX完成系统作业方案的虚拟作业仿真,验证方案的可行性。针对深海环境,对设备进行防腐处理和浮力材料设计。
     通过分析拉绳系统的深水力学模型与拉绳微元受到的水下外力,建立水下拉绳的平衡微分方程,利用抛物线索长理论并结合伸出臂俯仰角度初始条件,求解两个测量装置的支点距与高度差,得出两个测量装置的相对距离。利用传感器获取相关参数,基于机器人技术位姿理论、过渡矩阵理论与向量的运算原则,提出深水海底管道位姿求解的关键算法——过渡矩阵位姿算法。通过该算法对管道相对位姿进行演算,得出测量装置相对距离、参考坐标系与基础坐标系的过渡角度、法兰中心向量的表示等,实现两管道相对距离与相对角度等位姿参数的求解。
     分析系统的测量误差、模型误差、计算误差和定位误差组成,运用误差设计思想建立误差设计数学模型,并对密封壳变形误差与卡座定位误差进行辨识,对系统误差传递关系进行分析。以系统某一特定作业工况为例,计算长度误差与角度误差具体数值,并且仿真各误差源对系统长度与角度相对误差的影响。利用分段式最小二乘法对误差进行修正,求出长度与角度误差修正系数,得到其误差修正函数表达式,修正管道相对位姿的测量结果。设计误差防止措施,从根本上进一步减小误差的形成。
     通过系统检测方案的设计,完成正交倾角检测调试、磁耦合角度传感器电路设计和拉绳长度检测调试,实现正交倾角、深水角度、拉绳绳长的检测,采用ARM控制芯片实现各个传感器数据的采集和绞绳电机的控制。基于LabVIEW软件设计上位机操控界面,完成串口通讯模块、绞盘控制模块、过渡算法模块和数据结果模块的编程,实现拉绳操控、参数获取、结果显示和数据存储等功能。
     通过实验样机的系统调试实验,分析验证拉绳索长的求解方法和拉绳所需张紧力。通过陆上综合测量实验,模拟设备在水下的工作过程,对比位姿测量值与真值的误差。模拟深海环境,利用深海压力试验舱进行高压实验,分析设备的抗高压性。模拟海洋环境,在10米水池进行实验,测量水下两个管道的相对位姿,分析设备水下测量的准确性。
     本文的研究成果为测量系统实验样机的设计,为工程样机的进一步研制奠定理论基础,也为后续位姿算法和误差设计深入研究提供良好的理论平台,同时也将为我国深水测量技术的深入研究开辟更新更广阔的思路,相信,深水位姿测量系统在海底油气管道铺设工程中将发挥出重要的作用。
There are about 44%of the global offshore oil and gas resources stored in the 300m deep waters, which means more and more submarine pipelines will be lay on deep sea. A key technology of submarine pipeline connecting, pipe flange relative pose measurements, is that two pipe flanges relative distance between the spatial location and relative angle measurement. Accurate measurement of these parameters is the premise in the construction of prefabricated pipe sections on board which is the basis to ensure the smooth connection of submarine pipeline network. The Topics comes from the National "863" major projects. The aim of the project is that the exact position and orientation measurement device is to connect two underwater pipelines, which could provide technical support for the laying of submarine pipelines.
     Paper first reviews the domestic and international developments of underwater pose measurement techniques, describes the characteristics and development of rope measuring technology, satellite positioning technology, acoustic measurement techniques, and comparatives advantages and disadvantages of each measurement system. Paper analyzes the divers assisted rope measuring system, underwater ROV auxiliary flange measuring system and other typical auxiliary rope measuring system works. In addition, the measurement system of rope-related technologies (cable length theory, underwater cable theory and error correction technology) is briefly reviewed.
     According to the indicators and the actual deep-sea operating environment, paper completes the overall program of the measurement system. Paper establishes the mathematical model of magnetic coupling winch and screw base model, and designs in detail measuring devices, magnetic power winch rope and screw positioning base through analyzing system working principle and scope of operations. Then using 3DS MAX three-dimensional modeling software completes the virtual operating system operation simulation to verify the feasibility. For deep-sea environment, equipment has anti-corrosion treatment and buoyancy material design.
     Through analyzing the rope and the rope micro-element mechanical model of the underwater, the equilibrium differential equations of underwater rope are established. Using the cable length parabolic theory and the initial conditions solves the two measurements devices support pitch and height difference and comes to the relative distance of two measuring devices. Based on the theory of robot technology pose, the transition matrix theory and the principle of vector operations, the key algorithm (the pose transition matrix algorithm) is proposed. Through the algorithm for relative position and orientation calculation, the expression derived vector AB, the reference coordinate system and basis for the transition point coordinate system, flange center vector is are received and achieve the two pipe angle relative distance and relative position.
     Paper presents system of measurement error, model error, calculation error and positioning error of the composition, and analysis the relationship of error propagation on the system. For example, in the operating system conditions, the calculation error and angle error from the specific values, and the simulation of each error source distance and angle relative to system error. Paper uses segmented least squares method and find the length and angle error correction coefficient, and make sure the error correction function by its expression and design error prevention measures to further reduce the error from the root formation.
     Paper designs the overall program, completes the orthogonal angle detection testing, design of magnetic coupling angle sensor circuit and debugging rope length detection and achieves quadrature angle, deep perspective, rope long test. ARM control chip collect each sensor data. Base on Labview software control interface, system completes serial communication module, winch control module, the results of the transition algorithm module and data module programming in order to operate rope, exquisite parameter, display the results and storage data functions.
     Through prototype system debugging experiment, paper verifies length method of rope and rope required tension. Through integrated test, equipment simulates in the working process of water, system compares to the position and orientation measurement error and true value. Then, the experiment simulated deep sea environment of 8000 m deep-sea by using high pressure test chamber for experimental, to analyze anti-hypertensive equipment. In order to simulate marine environment, the experiment investigated in 10-meter pool experiment in Harbin Engineering University by measuring the relative water pose the two pipelines and analyzing accuracy of measurement.
     The research results provide a good platform for measurement system prototype design for the project success and the subsequent pose algorithms study. Study will also be opening up the new and extensive idea for State measurement of deep-depth. I believe, deep water oil and gas pose measurement system will play an important role in the seabed pipeline project.
引文
[1]田洪亮,杨金华.全球深海油气勘探开发形势分析与展望[J].国际石油经济.2006:1-3.
    [2]周灿丰,焦向东等.21世纪海洋工程连接技术的挑战与对策[J].电焊机,2007,37(6):75-79.
    [3]时黎霞,李志刚,赵冬岩,等.海底管道回接技术[J].天然气工业,2008,28(5):106-108.
    [4]周灿丰,焦向东等.海洋工程水下连接新技术[J].北京石油化工学院学报,2006,14(3):20-22.
    [5]朱绍华.海管法兰测量仪使用及法兰膨胀弯安装技术[C]//我国近海油气勘探开发高技术发展研讨会.北京:中国21世纪议程管理中心,2005.
    [6]盛继业,现代测量定位技术在水下工程中的应用.上海海运学院硕士学位论文.2007:1-3.
    [7]Den Norske Stats oljeselskap A.S. System for subsea diverless metrology and hard-pipe connection of pipelines[P]. United States:6700835, Mar.2,2004.
    [8]谢新宇,龚楚安,谢年生.水下测量装置及其测试方法[P].中国:200910043030.x,2009.10.14.
    [9]Maisano D, Jamshidi J, Franeeshini F, et al. Indoor GPS:system functionality and initial performance evaluation. International Journal of Manufacturing Research,2008, (3)3: 335-349.
    [10]Global Positioning System Standard Positioning Service Signal Specification, NAV-STAR GPS, June,1995.
    [11]Diggelen V, Frank. Indoor GPS theory& implementation. IEEE Position Location and Navigation Symposium, Palm Springs, CA,2002:240-247.
    [12]Alliot,Vincent M G. Method of obtaining acoustic metrology data[P]. US:7088640 B2, Aug.8,2006.
    [13]王燕,梁国龙.一种适用于长基线水声定位系统的声线修正方法[J].哈尔滨工程大学学报,2002,23(5):32-34.
    [14]李守军,包更生,吴水根.水声定位技术的发展现状与展望[J].海洋技术,2005,24(1):130-134.
    [15]朱绍华,魏行超,刘勃.使用法兰测量仪进行海底管线膨胀弯测量技术研究与应用[J].中国海上油气.2008,20(5):342344.
    [16]刘林泉.水声综合测控系统关键技术研究.哈尔滨工程大学博士学位论文.2008:4-27.
    [17]刘树东,田俊峰.水下地形测量技术发展述评[J].水运工程.2008,1(411):11-14.
    [18]D R C Philip DipHS, FRICS Philip& Associates Ltd. An Evaluation of USBL and SBL Acoustic Systems and the Optimisation of Methods of Calibration-Part 1 [J]. The Hydrographic Journal,2003,108:18-25.
    [19]D R C Philip DipHS, FRICS Philip& Associates Ltd. An Evaluation of USBL and SBL Acoustic Systems and the Optimisation of Methods of Calibration-Part 2 [J]. The Hydrographic Journal,2003,108:18-25.
    [20]http://www.sonardyne.co.uk/
    [21]Luis Sardinha Monteiro, Terry Moore, Chris Hill "What is the accuracy of DGPS", The Journal of navigation(2005),2004:20-22.
    [22]宁津生.测绘学概论[M].武汉:武汉大学出版社,2004.
    [23]Chansarkar M, Garin LJ. Acquisition of GPS signals at very low signal to noise ratio. In Proceedings of the Institute of Navigation ION National Technical Meeting-2000, Anaheim, California,2000:731-737.
    [24]RTCM Recommended Standards for Differential NAVSTAR GPS Service.Ver 2.1 Jan.1994.
    [25]李洪涛等著.GPS应用程序设计[M].北京:科学出版社,2000.
    [26]路武生.水下地形测量原理与方法研究[J].科技创新导报,2009,26:191.
    [27]Nesreen I. Ziedan and James L.Garrison. Unaided Acquisition of Weak GPS Signals Using Circular Correlation or Double-Block Zero Padding[C].IEEE PLANS, Position, Position and Navigation Symposium,2004, pp:461-470.
    [28]原大为.水下地形测量的发展趋势概述[J].黑龙江水利科技,2005,1(33).
    [29]宋凯东;吕志刚;薛瑗.乌沙山电厂1_取水口外延工程水下测量方法[J].交通建设与管理,2009,(08):101-103.
    [30]张双慧孟杰.GPS配合测深仪进行水下测量原理[J].科技信息,2010,(1):18.
    [31]王泽民,罗建国,陈琴仙,等.水下高精度立体定位导航系统[J].声学与电子工程,2005,(2):1-3.
    [32]李小民,李建增,宋军,等.水下GPS应用方法研究[J].测控技术,2004,23(6):57-59.
    [33]李睿.水下GPS定位技术研究.西安电子科技大学硕士学位论文.2008:1-27.
    [34]李精文.GPS水下定位的水声定位系统研究[R].中国航海学会通信导航专业委员会船舶通信与导航研讨会.1998-11:43-50.
    [35]Bechaz C, Thomas H.GIB system:the under water GPS solution[A], UDT(Undersea Defense Technology), Europe2000[C],2000.
    [36]863计划水下GPS高精度定位系统课题组.我国首套水下GPS高精度定位导航系统简介[J].中国水利,2004年3月,53-45页。
    [37]单圣涤,李飞云.悬索曲线理论及其应用.长沙:湖南科技出版社,1983.
    [38]沈世钊,徐崇宝.悬索结构设计.北京:中国建筑工业出版社,1997.
    [39]Barnes M R. Form-finding analysis of tension structures by dynamic relaxation. International Journal of Space Structures,1999,14(2):89-104.
    [40]Maurin B, Motro R. The surface stress density method as a form-finding tool for tensile membranes. Engineering Structures,1998,20(8):712-719.
    [41]Gray A. Modern differential geometry of curves and surfaces with mathematics(2nd ed). Boca Raton, FL:CRC Press,1997.102-103.
    [42]Linkwitz, Schek H J. A new method of analysis of Prestressed cable networks. Amsterdam:IABSE,1972.
    [43]Leonard J W. Tension structures behavior and analysis. New York:McGraw-Hill,1988.
    [44]B. Faggiano, F.M. Mazzolani, R. Landolfo, Design and modeling aspects concerning the submerged floating tunnel:an application to the Messina Strait crossing[A]. Strait Crossing 2001[C].Krobeborg:Swets& Zeitlinger Publishers Lisse,2001,511-519.
    [45]程大业.悬索结构分析的精确单元方法.哈尔滨工程大学博士学位论文.2005:1-12页.
    [46]郝超,裴岷山,强士中.大跨度斜拉桥拉索无应力长度的计算方法比较[J].重庆交通学院.2001,20(3):1-3.
    [47]Rene Walther, Bernard Houriet, Walmarisler, et al. Cable-Stayed Bridges[M]. London:Thoms Telford Ltd,1988.
    [48]Man-Chung Tang. Design of Cable-Stayed Girder Bridges[J]. Journal of Structural Divison, ASCE,1972,98 (8):1789-1802.
    [49]张志国,刘淑红,王慧东.不等高支承柔索索长计算[J].空间钢结构.2003,18(6):12-14.
    [50]张志国,张晓民,邹振祝.悬索无应力索长精确解[J].东北公路.2003,26(4):86-87.
    [51]陈太聪,王卫锋,苏成.斜拉索无应力索长的快速算法[J]公路.2007,(10):62-64.
    [52]聂建国,陈必磊,肖建春.已知索端预张力或预应力状态索长的索原长求解技术[J].工程力学.2003,20(6):81-85.
    [53]李晓平.多体系统动力学建模方法及在水下缆索中的应用研究.天津大学博士学位论文.2004:2-15页.
    [54]Buckham B,Nahon M. Dynamics simulation of low tention tethers. Oceans Conference Record (IEEE). Seattle, WA.USA. Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ. USA.1999:757-766.
    [55]Buckham B, Nahon M.,Cote G.Validation of a finite element model for slack ROV tethers. Oceans Conference Record (IEEE). Providence, RI. USA. Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ. USA.2000:1129-1136.
    [56]程楠.集中质量法在深海系泊冲击张力计算中的应用研究.天津大学硕士学位论文.2008:1-10页.
    [57]李远林,吴家鸣.多锚链系泊浮筒非线性漂移运动的时域模拟[J].海洋工程,1990,8(1):25-33.
    [58]Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools-a review part Ⅰ: geometric, cutting-force induced and fixture-dependent errors [J]. International Journal of Machine Tools& Manufacture,2000,40:1235-1256.
    [59]Mou J, Liu C R. An adaptive methodology for machine tool error correction. ASME Transactions [J]. Journal of Engineering for Industry,1995,117:389-399.
    [60]Chen G Q, Yuan J X, Ni J. A displacement measurement approach for machine geometric error assessment. International Journal of Machine Tools& Manufacture, 2001,41:149-161.
    [61]Christopher D. Mize and John C. Ziegert. Durability evaluation of software errorcorrection on a machine center. International Journal of Machine Tools and Manufacturing,2000,40:1527-1534.
    [62]Yang S, Yuan J, Ni J. Accuracy enhancement of a horizontal machining center by real-time error compensation[J]. Journal of Manufacturing Systems,1996,15(2):113-124.
    [63]Sartori S, Zhang G X. Geometric Error Measurement and Compensation of Machine. Annals of CIRP,1995,2(44):599-608.
    [64]施浒立,赵彦.误差设计新理念与方法.北京:科学出版社,2007:10-60页.
    [65]费业泰,陈晓怀,李书富.精密测试及仪器的误差修正技术[J].宇航计测技术,1996,16(4,5):66-70.
    [66]夏卫星,杨晓东.基于最小二乘法的电罗经匀转向航向误差修正方法.[J].船海工程,2009,38(4):183-185.
    [67]Moritz H. Least squares collocation [M]. Deatsche Geodat Kommission (DGK). A-75, Munich,1973:20-35.
    [68]Ludwik Finkelstein and Roman Z. Morawski, Fundamental concepts of measurement, Measurement,34(1), Jul.2003.
    [69]Stolt offshore limited. Remote bolted flange connection apparatus and methods of operation thereof [P]. Norway. International Patent No. WO 03/040602, May 15,2003.
    [70]Vincent Alliot, Ian Frazer. Tie-in system uses low-cost flanges on deepwater Girassol development[J]. Oil& Gas journal,2002,100(18):96-104.
    [71]Sonsub International Ltd. Method and apparatus for connecting underwater conduits [P].United States:6767165, Jul 27,2004.
    [72]陈育喜,张竺英.深海ROV脐带缆绞车设计研究[J].机械设计与制造.2010,(4):39-41.
    [73]翟庆光等.深海调查绞车牵引机构和储缆机构分离技术系统分析[J].海洋技术,2008,27(4):8-10.
    [74]DYNACON, Inc. Modified Model 461 Traction Winch System with Electro-Hydraulic Power Unit,1996.
    [75]孙虎元,王在峰,黄彦良.海洋腐蚀监测的发展现状及趋势[J].海湖盐与化工.2004,34(2):33-37.
    [76]Bozec N Le,ompere C C, Her ML,Laouenan A, Costa D,Marcus P. Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater[J]. corrosion science,2001,43:765-786.
    [77]侯保荣.海洋腐蚀环境理论及其应用[M].北京:科学出版社,1999,209-224.
    [78]张承忠.金属的腐蚀及保护[M].北京:冶金工业出版社,1985,59-60.
    [79]刘伟.深海热液保压采样器的关键技术研究.浙江大学博士学位论文.2007:41-61页.
    [80]李福宝.磁传动密封综述[J].辽阳石油化工高等专科学校学报.2000,16(1):37-39.
    [81]李国坤,李希宁,赵克中等.稀土钴磁力传动密封技术及其应用[J].真空与低温,1982(2):1-6.
    [82]赵克中.磁耦合传动装置的理论与设计[M].北京:化学工业出版社,2009:20-40.
    [83]彭飞.基于DSP的无刷直流电机控制系统设计[D].国防科技大学研究生院硕士论文,2004:45-52.
    [84]郭雪梅,贾宏光,冯长有.直流无刷电机位置跟踪的模糊PID控制[J]长春理工大学学报(自然科学版).2008,31(1):97-100.
    [85]杨家军.机械原理[M].武汉:华中科技大学出版社,2009:145-160.
    [86]王受谦,杨淑贞.防腐涂料与涂装技术[M].北京:化学工业出版社,2002.35-55.
    [87]余召年.防腐蚀涂料和涂装[M].北京:化学工业出版社,1994,38-153.
    [88]武利民.涂料技术基础[M].北京:化学工业出版社,1999,63-65.
    [89]刘鸿升,刘长江,韩清国.埕岛滩海油田平台的涂层防腐技术[J].石油工程建设.1999,(4):18-20.
    [90]余越泉.导管架平台防腐技术研究[J].中国海洋平台.2001,16(4):37-41.
    [91]徐海良,尹平伟,徐大鹏.深海采矿浮力材料理论研究[J].中国矿业.2007,16(12):90-93.
    [92]孙春宝,汪群慧,邢奕等.深海高强安全浮力材料的研制及其表征[J].哈尔滨工业大学学报.2006,38(11):2000-2002.
    [93]陈先,张树华.新型深潜用固体浮力材料[J].化工新型材料,1999,27:15-17.
    [94]朱克强,曹奇英,施国庆.分段曳力系数在缆体系统仿真中的应用[J].镇江船舶学院学报,1993,7(1):18-23.
    [95]林元培.斜拉桥[M].北京:人民交通出版社,1995:20-50.
    [96]李传习,夏桂云,张建仁,廖金德.斜拉索静力分析综述[J].中南公路工程,2001,26(2):32-34.
    [97]Barnes M R. Form-finding and analysis of tension structures by dynamic relaxation. International Journal of Space Structures,1999,14(2):89-104.
    [98]Hellesland J, Bjorhovde R. Improved frame stability analysis with effective lengths. J Struct Eng-ASCE,1996,122(11):1275-1283.
    [99]Bridge RQ, Fraser DJ. Improved G-factor method for evaluating effective lengths of columns. J Struct Eng-ASCE,1987,113(6):1341-1356.
    [100]李瑰贤.空间几何建模及工程应用[M].北京:高等教育出版社,2007:5-65.
    [101]王立权,唐德栋,吴健荣,等.水下运载器新型对接裙口的结构及运动学研究[J].中国机械工程,2008,19(23):2814-2818.
    [102]A.S. Morris, A. Mansor, Finding the inverse kinematics of manipulator arm using artificial neural network with lookup table, Robotica,1997,15:617-625.
    [103]王立权;王文明;何宁;等.深海管道法兰连接机具的设计与仿真分析[J].哈尔滨工程大学学报,2010,31(5):559-563.
    [104]王立权,吴健荣,刘于珑,唐德栋.核电站蒸汽发生器检修机器人设计及运动学分析[J].机器人,2009,31(1):61-66.
    [105]Y. Xia, J. Wang, A dual neural network for kinematic control of redundant robot manipulators, IEEE Transactions on Systems, Man, and Cybernetics, Part B,2001,31 (1): 147-154.
    [106]王立权,王文明,赵东岩,何宁.深海回接位姿测量系统及其控制策略[J].石油勘探与开发,2010,37(4):494-500.
    [107]黄真,孔宪文.机器人机构的误差位形模量的概念及在精度分析和综合中的应用[J].机器人,1993,15(6):23-26.
    [108]栗时平.多轴机床精度建模与误差补偿方法研究.国防科技大学博士学位论文.2002:26-46.
    [109]杨道军,许伟杰,刘林泉,翁国忠.高精度定位标定系统水下基准方位误差分析[J].声学技术,2007,26(2):189-191.
    [110]邢军,刘忠,彭鹏菲.水下目标深度测量误差源分析[J].舰船科学技术,2009,31(3):99-103.
    [111]左长贵,居从莽.系统误差及其消除[J].盐城工学院学报,2002,15(2):36-39.
    [112]李丙才,嵇海旭.丝杠行程误差补偿技术[J].电子机械工程,2005,21(2):62-64.
    [113]Balsamo Alessandro, Meda Alice. Geometrical error compensation of coordinate measuring systems[J]. Nanotechnology and Precision Engineering.2006,4(2):83-91.
    [114]Tong Kun, Joshi Sanjay, Lehtihet E. Amine Error compensation for fused deposition modeling (FDM) machine by correcting slice files[J]. Rapid Prototyping Journal,2008, 14(1):4-14.
    [115]卢碧红等.数控车床加工精度预测系统研究[J].组合机床与自动化加工技术,2001(2):7-12.
    [116]薛皓,万江文,冯仁剑.基于TinyOS的TDOA测距误差修正方法[J].北京邮电大学学报,2008,31(1):23-25.
    [117]费业泰.精度理论若干问题研究进展与未来[J].中国机械工程,2000,11(3):255-256.
    [118]杨世锡,胡小平,吴昭同.数控机床径向运动误差的形成机理及补偿方法研究[J].中国机械工程,2001,12(2):179-184.
    [119]Alexander N K, Richard E C. Errors and uncertainties in the measurement of ultrasonic wave attenuation and phase velocity [J]. Ultrasonics, Ferroelectrics and Frequency Control,2005,52 (10):1754-1768.
    [120]李永军,李飞权.水下自动监控站的结构设计和试验[J].海洋技术,2007,26(1):1-5.
    [121]韩崇昭,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社,2006:23-56.
    [122]幸晋渝,刘念,郝江涛,等.电力设备状态监控技术的研究现状及发展[J].继电器,2005,33(1):80-84.
    [123]唐跃林,肖沙里,丘柳东等.钢丝绳实时测长系统[J].计算机测量与控制,2004.12(9):813-815.
    [124]王磊,陶梅.精通labview8.0电子工业出版社合[M].北京:电子工业出版社,2007:17-50.
    [125]National instruments corporation, LabVIEW Advanced Performance and Communication Course Manual,2001.
    [126]http://www.ni.com/labview.
    [127]T.K. Starn, N.N. Sesi, J.A. Homer, G.M. Hieftje, A LabVIEW program for determining electron number density from Stark broadening measurements of the hydrogen-beta line, Spectrochim. Acta Part B,1995,50:1147-1158.
    [128]徐文华,梁政,何茂林,等.管道位置检测技术方案研究[J].西南石油学院学报,2006,28(5):96-98.
    [129]Anon. Rigid pipeline tie-in system for deepwater[J]. Journal of Offshore Technology, 1999,7(3):36-37.
    [130]李世伦.深海超临界高温高压极端环境模拟与监控技术研究.浙江大学博士学位论文.2006:63-73.
    [131]吴怀超.深海热液原位探测技术研究及其原型系统集成.浙江大学博士学位论文.2008:56-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700