单周期控制功率变换器复杂动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功率变换器是典型的非线性系统,会表现出非线性系统特有的分岔和混沌等现象。由于这些非线性现象会使得变换器的正常运行受到影响,破坏其安全工作,所以要深入分析这些非线性现象发生的原因,认识它们的特点。过去二十多年的研究主要集中于各种线性控制的功率变换器中的非线性动力学行为,而对非线性控制的功率变换器中的非线性动力学行为则知之甚少。由于非线性控制和线性控制的本质不同,非线性控制功率变换器会表现出不同于线性控制功率变换器的动力学行为,对它们的研究有着重要的理论价值。在功率变换器的非线性控制方法中,单周期控制是一种应用非常广泛的方法,本文研究多种单周期控制功率变换器的非线性动力学行为。
     单周期控制Buck和Boost变换器是两种最基本的变换器拓扑结构。建立了单周期控制Buck变换器的采样数据模型,通过对其进行分析指出,在参考电压小于输入电压的情况下,此变换器会稳定运行。通过对单周期控制Boost变换器采样数据模型的分析,研究了参考电压和负载电阻变化时变换器可能出现的分岔现象;通过对此变换器平均模型的分析,确认了上述分岔现象;基于平均模型,提出了采用washout滤波器消除分岔的方法,对于washout滤波器中的两个新引入的参数,使用Routh-Hurwitz准则进行选取。仿真和实验验证了所提方法的有效性。建立了单周期控制Cuk变换器的采样数据模型,分析了参考电压和负载电阻变化时,在此变换器的输入级中出现的分岔现象;提出了采用washout滤波器的方法来稳定变换器,利用输入级电容电压作为washout滤波器的输入消除了分岔。建立了采用washout滤波器的单周期控制Cuk变换器的采样数据模型,分析了washout滤波器中参数对变换器稳定性的影响。利用采样数据模型,讨论了washout滤波器在功率变换器分岔控制中的基本特点。
     研究了单周期控制Boost功率因数校正(PFC)变换器的慢时标分岔现象。利用双平均方法和谐波平衡法建立了描述单周期控制Boost PFC变换器动力学行为的直流分量模型﹑一次和二次谐波分量模型。通过对这些模型平衡点的分析和合理的假设,根据信号传递函数,得到了此变换器电路参数的稳定工作范围近似表达式。分析了主要电路参数的稳定工作范围。
     提出了采用washout滤波器控制平均电流模式控制Boost PFC变换器中的慢时标倍周期分岔。在平均电流模式控制Boost PFC预调节器平均模型的基础上,根据双平均方法和谐波平衡法建立了平均电流模式控制Boost PFC预调节器的直流分量模型﹑一次和二次谐波分量模型,在合理假设的条件下,一次谐波模型的稳定性可以用一个线性系统来判定,为了控制慢时标倍周期分岔,就要采用washout滤波器使这个线性系统稳定。研究了washout滤波器参数的选取方法,分析了电路参数变化时变换器的响应。建立了平均电流模式控制两级Boost PFC变换器的平均模型,讨论了washout滤波器方法中参数的选取方法。对Boost PFC预调节器和两级Boost PFC变换器采用washout滤波器进行慢时标分岔控制的特点进行了比较。
     分析了单周期控制Cuk PFC变换器的慢时标分岔现象,讨论了其双平均模型的特点,在平均模型的基础上,通过谐波平衡法得到了各变量周期平衡解的近似表达式,应用Floquet理论分析了主要电路参数对此变换器运行的影响。
Power converters are highly nonlinear systems, which means they may exhibit nonlinear phenomena, such as bifurcation and chaos. The nonlinear phenomena jeopardize performance of the converters, so it is necessary to thoroughly analyze these phenomena. Over the last two decades, many works have been done to study the nonlinear dynamics in traditional linear controlled power converters. Little is known about nonlinear dynamics in nonlinear controlled power converters, which may exhibit nonlinear dynamics different from linear controlled converters, due to the different control methods. Therefore, study of nonlinear dynamics in nonlinear controlled power converters is important. One-cycle control is one of the most widely used nonlinear control methods, and this dissertation focuses on nonlinear dynamics in several basic One-cycle controlled power converters.
     One-cycle controlled Buck converter and Boost converter are two basic topologies. In this dissertation, sampled-data model of One-cycle controlled Buck converter is derived. Analysis of the model indicates that, when the reference voltage is less than the input voltage, the One-cycle controlled Buck converter is always stable. In One-cycle controlled Boost converter, bifurcation due to variation of the reference voltage and the load resistance is analyzed by using the sampled-data model. Averaged model of the One-cycle controlled Boost converter is derived to confirm the result from the analysis of the sampled-data model. Based on the averaged model, a washout filter is proposed to control the bifurcation in the One-cycle controlled Boost converter. Routh-Hurwitz criterion is applied to select the parameters of the washout filter. The sampled-data model of the One-cycle controlled Cuk converter is derived, and the bifurcation in the input stage of the converter under variations of the reference voltage and the load resistor is analyzed using the model. A washout filter is proposed to control the bifurcation in the input stage by taking the input capacitor voltage as its input. The sampled-data model of the One-cycle controlled Cuk converter with the washout filter is derived. The effect of the parameters of the washout filter on the stability of the converter is analyzed. The characteristics of the washout filter aided method used in power converters are discussed by using the sampled model.
     Slow-scale bifurcation in the One-cycle controlled Boost Power Factor Correction (PFC) converter is studied. The averaged model of the converter is derived through the first averaging, which averages all state variables within one switching cycle. After adopting the second averaging and harmonic balance method, the DC component model, the first- and the second-order harmonic component averaged model are derived to describe the dynamics of the converter. The equilibria of these models are calculated. Based on the signal transfer function, the stability boundaries of the circuit parameters are derived. The stability boundaries of some main parameters are discussed.
     A washout filter is proposed to control the slow-scale bifurcation in the average current mode controlled Boost PFC. Two cases of the Boost PFC are studied, i.e., the Boost pre-regulator and the complete two-stage Boost PFC. The DC component model, the first- and the second-order harmonic component averaged model are derived from the averaged model of the Boost pre-regulator to study its dynamics. After reasonable assumption of the steady state of the DC component and the second-order harmonic component, the dynamics of the converter is decided by a linear system. A washout filter may be used to stabilize the linear system. The effect of circuit parameters of the washout filter on the dynamics of the converter is studied in detail. The response under variation of parameters in the converter is analyzed. The average model of the complete two-stage Boost PFC converter is derived, and the DC component model, the first- and the second-order harmonic component averaged model are derived from the averaged model to study the effect of the washout filter aided method. A comparison between the effects of the washout filter method on the two cases is given.
     Slow-scale bifurcation in the One-cycle controlled Cuk PFC converter is analyzed. Based on the average model, the approximate resolution of the state variables is obtained by adopting harmonic balance method. The stability boundaries of some circuit parameters are presented and are discussed.
引文
[1] Lorenz, Edward N. Deterministic Nonperiodic Flow [J]. Journal of Atmospheric Sciences, 1963, 20(2) : 130.
    [2] Li T Y, Yorke J A. Period three implies chaos [J]. American Mathematical Monthly, 1975, 82(10) : 985.
    [3]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安:西安交通大学出版社,2001.
    [4] Verghese, G. C. , Elbuluk, M. E. , Kassakian, J. G. A General Approach to Sampled-Data Modeling for Power Electronic Circuits[J]. IEEE Transactions on Power Electronics, 1986, 1(2) : 76.
    [5] Bernardo, M. D. , Vasca, F. Discrete-time maps for the analysis of bifurcations and chaos in DC/DC converters[J]. IEEE Transactions on Circuits and Systems—I, 2000, 47(2): 130.
    [6] Brockett, W. R. , Wood, J. R. Understanding power converter chaotic behavior mechanism in protective and abnormal modes[C]. Proceedings of Powercon 11, 1984: 1.
    [7] Hamill, D. C. , Jefferies, D. J. Subharmonics and chaos in a controlled switched mode power converter[J]. IEEE Transactions on Circuits and Systems—I, 1988, 35(3): 1059.
    [8] Tse, C. K. Flip Bifurcation and Chaos in Three-State Boost Switching Regulators[J]. IEEE Transactions on Circuits and Systems—I, 1994, 41(1): 16.
    [9] Tse, C. K. Chaos from a buck switching regulator operating in discontinuous mode[J]. International Journal of Circuit Theory and Applications, 1994,22(4): 263.
    [10] Chan, W. Y. , Tse, C. K. Study of Bifurcations in Current-Programmed DC-DC Boost Converters: From Quasi-Periodicity to Period-Doubling[J]. IEEE Transactions on Circuits and Systems—I, 1997, 44(12): 1129.
    [11] Chan, W. Y. , Tse, C. K. Bifurcation in current-programmed dc/dc buck switching regulators-conjecturing a universal bifurcation path[J]. International Journal of Circuit Theory and Applications, 1998,26(2): 127.
    [12] Banerjee, S. Coexisting Attractors,Chaotic Saddles,and Fractal Basins in a Power Electronic Circuit[J]. IEEE Transactions on Circuits and Systems—I, 1997, 44(9): 847.
    [13] Banerjee, S. , Chakrabarty, K. Nonlinear Modeling and Bifurcations in the Boost Converter[J]. IEEE Transactions on Power Electronics, 1998, 13(2): 252.
    [14] Bernardo, M. D. , Garofalo, F. , Glielmo, L. , et al. Switchings, Bifurcations, and Chaos in DC-DC Converters[J]. IEEE Transactions on Circuits and Systems—I, 1998, 45(2): 133.
    [15] Bernardo, M. D. , Garofalo, F. , Glielmo, L. , et al. Quasi-Periodic behaviors in DC-DC converters[C]. IEEE Power Electronics Specialists Conference, 1996:1376.
    [16] Bernardo, M. D. , Fossas, E. Secondary bifurcation and high periodic orbits in voltage controlled buck converter[J]. International Journal of Bifurcation and Chaos, 1997, 7(12): 2755.
    [17] Maity S, Tripathy D, Bhattacharya T K, Banerjee S. Bifurcation Analysis of PWM-1 Voltage-Mode-Controlled Buck Converter Using the Exact Discrete Model[J]. IEEE Transactions on Circuits and Systems-I, 2007, 54(5):1120.
    [18] Yuan, G. H. , Banerjee, S. , Ott, E. , et al. Border Collision Bifurcation in the Buck Converter[J]. IEEE Transactions on Circuits and Systems-I, 1998, 45(7):707.
    [19] Banerjee, S. , Grebogi, C. Border Collision Bifurcations in Two Dimensinal Piecewise Smooth Maps[J]. Physical Review E, 1999, 59(4): 4052.
    [20] Banerjee, S. , Ranjan, P. , Grebogi, C. Bifurcation in two dimensional piecewise smooth maps- theory and applications in switching circuits[J]. IEEE Transactions on Circuits and Systems-I, 2000, 47(5):633.
    [21] Maggio, G. M. , Bernardo, M. D. , Kennedy, M. P. Nonsmooth bifurcations in a piecewise linear model of the colpitts oscillator[J]. IEEE Transactions on Circuits and Systems-I, 2000, 47(8):1160.
    [22] Zhusubaliyev, Z. T. , Soukhoterin, E. A. , Mosekilde, E. Quasi-Periodicity and Border-Collision Bifurcations in a DC-DC Converter with Pulsewidth Modulation[J]. IEEE Transactions on Circuits and Systems-I, 2003, 50(8):1047.
    [23] Ma, Y. , Tse, C. K. , Kousaka, T. , et al. A subtle link in switched dynamical systems: saddle-node bifurcation meets border collision[C]. IEEE International Symposium on Circuits and Systems, 2005:6050.
    [24] Ma, Y. , Tse, C. K. , Kousaka, T. , et al. Connecting Border Collision with Saddle-Node Bifurcation in Switched Dynamical Systems[J]. IEEE Transactions on Circuits and Systems-II, 2005, 52(9):581.
    [25] Dai, D. , Tse, C. K. Symbolic Analysis of Bifurcation in Switching Power Converters: A Novel Method for Detecting Border Collision[C]. Internaitonal Workshop on Nonlinear Circuit and Signal Processing, 2004:519.
    [26] Tse, C. K. , Dai, D. , Ma, X. K. Symbolic analysis of bifurcation in switching power converters: a practical alternative viewpoint of border collision[J]. International Journal of Bifurcation and Chaos, 2005, 15(7): 2263.
    [27] Robert, B. , Robert, C. Border Collision Bifurcations in a One-Dimensional PiecewiseSmooth Map for a PWM Current-Programmed H-Bridge Inverter. International Journal of Control, 2002, 75(16,17): 1356.
    [28] Zhusubaliyev, Z. T. , Soukhoterin, E. A. ,Mosekilde, E. Border-collision bifurcations on a two-dimensional torus[J]. Chaos, Solitons and Fractals, 2002, 13:1889.
    [29]李明,马西奎,戴栋等.基于符号序列描述的一类分段光滑系统中的分岔现象与混沌分析[J].物理学报,2005,54(3):1084.
    [30] Aroudi, A. E. , Olivar, G. , Benadero, L. , et al. Hopf bifurcation and chaos from torus breakdown in a PWM voltage-controlled dc-dc boost converter[J]. IEEE Transactions on Circuits and Systems-I, 1999, 46(11):1374.
    [31] Aroudi, A. E. ,Leyva, R. Quasi-periodic route to chaos in a PWM voltage-Controlled dc-dc boost converter[J]. IEEE Transactions on Circuits and Systems-I, 2001, 48(8):967.
    [32]刘健,王媛彬. PWM开关DC-DC变换器的低频波动[J].中国电机工程学报,2004, 24(4):174.
    [33]张波,齐群. PWM Buck变换器不同工作方式下的次谐波和混沌行为[J].中国电机工程学报,2002, 22(10):18.
    [34]曲颖,张波.电压控制型Buck变换器DCM的精确离散模型及分岔稳定性研究[J].电子学报,2002,30(8): 1253.
    [35]张波,曲颖. Buck DC/DC变换器分岔和混沌的精确离散模型及其实验研究[J].中国电机工程学报,2003, 23(12):99.
    [36]周宇飞,陈军宁,徐超.开关变换器中吸引子共存现象的仿真与实验研究[J].中国电机工程学报,2005, 25(21):30.
    [37]赵益波,罗晓曙等.电压反馈型DC-DC变换器的稳定性研究[J].物理学报,2005,54(11):5022.
    [38]戴栋,马西奎,李小峰.一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌[J].物理学报,2003,52(11): 2729.
    [39]张波.电力电子变换器非线性混沌现象及其应用研究[J].电工技术学报,2005,20(12): 1.
    [40]张波.电力电子学亟待解决的若干基础问题探讨[J].电工技术学报,2006,21(3): 24.
    [41]马西奎,李明,戴栋等.电力电子电路与系统中的复杂行为研究综述[J].电工技术学报,2006,21(12): 1.
    [42]杨宇,马西奎.输出电压纹波对电流型Boost变换器稳定性的影响[J].中国电机工程学报,2007,27(28): 102.
    [43]杨宇,马西奎,赵世平.电流型Cuk变换器稳定运行的参数域预测[J].中国电机工程学报,2007,27(16): 78.
    [44]刘芳,张浩.电压型SEPIC变换器中的分岔行为与低频振荡现象分析[J].电工技术学报,2008,23(6): 54.
    [45]刘芳,张浩,马西奎.电流型单端初级电感变换器中分岔行为与稳定性[J].电工技术学报,2007,22(9): 86.
    [46]刘芳.电流型单端初级电感变换器的不稳定性与分岔控制[J].西安交通大学学报,2007,41(12): 1465.
    [47]张笑天,马西奎,张浩.数字控制DC-DC Buck变换器中低频振荡现象分析[J].物理学报,2008,57(10):6174.
    [48]杨宇. Cuk变换器中的复杂行为分析及其控制[D].西安:西安交通大学,2007.
    [49]刘芳.单端初级电感变换器(SEPIC)中复杂动力学行为研究[D].西安:西安交通大学,2008.
    [50] Alfayyoumi, M. , Nayfeh, A. H. , Borojevic, D. Modeling and analysis of switching mode DC-DC regulators[J]. International Journal of Bifurcation and Chaos, 2000, 10(2): 373.
    [51] Iu, H. H. C. , Tse, C. K. Study of low-frequency bifurcation phenomena of a parallel-connected boost converter system via simple averaged models[J]. IEEE Transactions on Circuits and Systems-I, 2003, 50(5): 679.
    [52] Iu, H. H. C. , Tse, C. K. Bifurcation behavior of parallel connected buck converter[J]. IEEE Transactions on Circuits and Systems-I, 2001, 48(2): 233.
    [53] Iu, H. H. C. , Tse, C. K. , Lai, Y. M. Effects of interleaving on the bifurcation behavior of paralle-connected buck converters[C]. IEEE International Conference on Industrial Technology, 2002: 1072.
    [54] Iu, H. H. C. , Tse, C. K. , Dranga, O. Comparative study of bifurcation in single and parallel-connected buck converters under current-mode control: disappearance of period-doubling[J]. Circuits, Systems and Signal Processing, 2005, 24(2):201.
    [55] Mazumder, S. K. Stability Analysis of Parallel DC-DC Converters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 50.
    [56]吴俊娟,邬伟扬,孙孝峰.并联Buck变换器中的混沌研究[J].中国电机工程学报,2005,25(11): 51.
    [57]陈明亮,马伟明.多级并联电流型反馈DC-DC升压变换器中的分岔与混沌[J].中国电机工程学报,2005,25(6): 67.
    [58] Banerjee S, Verghese G C. Nonlinear Phenomena in Power Electronics[M]. Hoboken, NJ: John Wiley & Sons, 2001.
    [59] Tse C K. Complex behavior of switching power converters[M]. Boca Raton: CRC Press LLC, 2004.
    [60] Zhusubaliyev, Z. T. , Mosekilde, E. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems[M]. Singapore: World Scientific, 2003.
    [61] Benadero, L. , Aroudi, A. E. Bifurcations in dc-dc switching converters: review of methods and applications[J]. International Journal of Bifurcation and Chaos, 2005, 15(5): 1549.
    [62] Chen, Y. F, Tse, C. K. Qiu, S. S. , Lindenmüller, L. , Schwarz, W. Coexisting Fast-Scale and Slow-Scale Instabilityin Current-Mode Controlled DC/DC Converters: Analysis, Simulation and Experimental Results[J]. IEEE Transactions on Circuits and Systems-I, 2008, 55(10): 3335.
    [63] Mazumder, S. K. , Nayfeh, A. H. , Boroyevich, D. An Investigation Into the Fast- and Slow-Scale Instabilities of a Single Phase Bidirectional Boost Converter[J]. IEEE Transactions on Power Electronics, 2003, 18(4): 1063.
    [64]周国华,许建平,包伯成.峰值/谷值电流型控制开关DC-DC变换器的对称动力学现象分析[J].物理学报,2010,59(4):2272.
    [65] Chan, W. C. Study of Chaos in DC/DC Switching Converters[D]. Hong Kong Polytechnic University, 1998.
    [66] Iu, H. H. Study of Nonlinear Phenomena in Switching DC/DC Converters. Hong Kong Polytechnic University, 2000.
    [67] Mazumder, S. K. , Nayfeh, A. H. , Boroyevich, D. Theoretical and Experimental Investigation of the Fast- and Slow-Scale Instabilities of a DC-DC Converter[J]. IEEE Transactions on Power Electronics, 2001, 16(2): 201.
    [68]王学梅,张波. H桥直流斩波变换器边界碰撞分岔和混沌研究[J].中国电机工程学报,2009,29(9): 22.
    [69]王学梅,张波,丘东元. H桥正弦逆变器的快变和慢变稳定性及混沌行为研究[J].物理学报,2009,58(4):2248.
    [70] Aroudi, A. El. , Rodriguez, E. , Orabi, M. , Alarcon, E. Modeling of switching frequency instabilities in buck based DC–AC H-bridge inverters[J]. International Journal of Circuit Theory and Applications, 2010, DOI:10.1002/cta.627.
    [71] Orabi, M. , Nimoniya, T. Nonlinear dynamic of power factor correction converter[J]. IEEE Transactions on Industrial Electronics, 2003, 50(6): 1116.
    [72] Iu, H. H. C. , Zhou, Y. F. , Tse, C. K. Fast-scale instability in a PFC boost converter under average current-mode control[J]. International Journal of Circuit Theory and Applications, 2003, 31(6): 611.
    [73] Zhang, H. , Ma, X. K. , Xue, B. L. et al. Study of intermittent bifurcations and chaos in boost PFC converters by nonlinear discrete models[J]. Chaos, Solitons and Fractals, 2005,23(2):431.
    [74] Wong, S. C. , Tse, C. K. , Orabi, M. , et al. The Method of Double Averaging: An Approach for Modeling Power-Factor-Correction Switching Converters[J]. IEEE Transactions on Circuits and Systems-I, 2006, 53(2): 454.
    [75] Zou, J. , Ma, X. K. , Tse, C. K. et al. Fast-scale bifurcation in power-factor-correction buck-boost converters and effects of incomopatible periodicities[J]. International Journal of Circuit Theory and Applications, 2006, 34(3): 251.
    [76] Kolokolov, Yu. V. ; Koschinsky, S. L. ; Hamzaoui, A. Comparative study of the dynamics and overall performance of boost converter with conventional and fuzzy control in application to PFC[C]. Power Electronics Specialists Conference, 2004, 2165.
    [77] Aroudi, A. El, Orabi, M. , Martinez, L. A Representative Discrete-Time Model for Uncovering Slow and Fast Scale Instabilities in Boost Power Factor Correction AC-DC Pre-Regulators[J]. International Journal of Bifurcation and Chaos, 2008, 18(10): 3073.
    [78] Orabi, M. ; Ninomiya, T. Numerical and experimental study of instability phenomena of a boost PFC converter[C]. IEEE International Conference on Industrial Technology, 2003: 854.
    [79] Mazumder, S. K. ; Nayfeh, A. H. ; Borojevic, D. A novel approach to the stability analysis of boost power-factor-correction circuits[C]. IEEE Power Electronics Specialists Conference, 2001: 1719.
    [80] El Aroudi, A. ; Martinez-Salamero, L. ; Orabi, M. ; Ninomiya, T. Investigating stability and bifurcations of a boost PFC circuit under peak current mode control[C]. IEEE International Symposium on Circuits and Systems, 2005: 2835.
    [81] Wu, X. Q. ; Tse, C. K. ; Dranga, O. ; Lu, J. A. Fast-scale instability of single-stage power-factor-correction power supplies[J]. IEEE Transactions on Circuits and Systems-I, 2006, 53(1): 204.
    [82] Orabi, M. ; Ninomiya, T. ; Jin, C. F. Novel developments in the study of nonlinear phenomena in power factor correction circuits[C].IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference of the] : 209.
    [83] Ren, H. P. ; Jin,C. F. ; Ninomiya, T. Low-frequency bifurcation behaviors of PFC converter[C]. IEEE International Symposium on Circuits and Systems, 2005: 2827.
    [84]邹建龙,马西奎.级联功率因数校正变换器的级间耦合非线性动力学行为分析[J].物理学报, 2010, 59:3794.
    [85] Giaouris, D. , Banerjee S, Zahawi, B. , Pickert, V. Control of fast scale bifurcations in power factor correction converters[J]. IEEE Transactions on Circuits and System—II, 2007; 54(9):805.
    [86] Ke, Y. J. ; Zhou, Y. F. ; Chen, J. N. Control Bifurcation in PFC Boost Converter under Peak Current-Mode Control[C]. CES/IEEE 5th International Power Electronics and Motion Control Conference, 2006: 1.
    [87] Chu, G. , Tse, C. K. ,Wong, S. C. Line-Frequency instability of PFC power supplies[J]. IEEE Transactions on Power Electronics, 2009, 24(2): 469.
    [88] El Aroudi, A.; Orabi, M. A Harmonic Balance-Based Method for Predicting Line Frequency Instabilities in PFC Converters[C]. International Conference on Electric Power and Energy Conversion Systems, 2009: 1.
    [89] El Aroudi, A.; Orabi, M. Control of Oscillations in PFC Power Supplies by Time Delay Feedback[C]. International Conference on Electric Power and Energy Conversion Systems, 2009: 1.
    [90] El Aroudi, A.; Orabi, M. Stabilizing Technique for AC–DC Boost PFC Converter Based on Time Delay Feedback[J]. IEEE Transactions on Circuits and System—II, 2010; 57(1): 56.
    [91] El Aroudi, A.; Orabi, M. Dynamics of PFC power converters subject to time-delayed feedback control[J]. International Journal of Circuit Theory and Applications, 2010, DOI:10.1002/cta.703.
    [92] Wang, F. Q. , Zhang, H. , Ma, X. K. Analysis of Slow-Scale Instability in Boost PFC Converter Using the Method of Harmonic Balance and Floquet Theory[J]. IEEE Transactions on Circuits and System—I, 2010; 57(2): 405.
    [93] Poddar, G. , Chakrabarty, K. Banerjee, S. Experimental control of chaotic behavior of buck converter[J]. IEEE Transactions on Circuits and System—I, 1995; 42(8): 502.
    [94] Poddar, G. , Chakrabarty, K. Banerjee, S. Control of Chaos in DC-DC Converters[J]. IEEE Transactions on Circuits and System—I, 1998; 45(6): 672.
    [95] Zhou, Y. F. , Tse, C. K. , Qiu, S. S. Applying resonant parametric perturbation to control chaos in the buck dc/dc converter with phase shift and frequency mismatch considerations[J]. International Journal of Bifurcation and Chaos, 2003, 13(11): 3459.
    [96] Tse, C. K. , Lai, Y. M. , Chow, M. H. L. Control of bifurcation in dc/dc converters: an alternative viewpoint of ramp compensation[C]. International Conference on Industrial Electronics Control and Instrumentation, 2000: 2413.
    [97] Battle, C. , Fossas, E. , Olivar, G. Stabilization of Periodic Orbits of the Buck Converter by Time-Delayed Feedback[J]. International Journal of Circuit Theory and Applications, 1999, 27(6): 617.
    [98] Iu, H. H. C. , Robert, B. Control of chaos in a PWM current-mode H-bridge inverter usingtime-delayed feedback[J]. IEEE Transactions on Circuits and System—I, 2003; 50(8): 1125.
    [99] Fang, C. C. , Abed, E. H. Robust feedback stabilization of limit cycles in PWM DC/DC converters[J]. Nonlinear Dynamics, 2002, 27(3):295.
    [100] Tse, C. K. , Fung, S. C. , Kwan, M. W. Experimental confirmation of chaos in a current programmed Cuk converter[J]. IEEE Transactions on Circuits and System—I, 1996; 43(7): 605.
    [101] Iu, H. H. C. , Tse, C. K. A Study of Synchronization in Chaotic Autonomous Cuk DC/DC Converters [J]. IEEE Transactions on Circuits and System—I, 2000; 47(6): 913.
    [102]高金峰,吴振军,赵坤.混沌调制技术降低Buck型变换器电磁干扰水平研究[J].电工技术学报,2003, 18(6): 23.
    [103]李冠林,陈希有,刘凤春.混沌PWM逆变器输出电压功率谱密度分析[J].中国电机工程学报,2006,26(20): 79.
    [104] Lu, W. G. , Zhou, L. W. , Luo, Q. M. , et al. Filter based non-invasive control of chaos in Buck converter[J]. Physics Letters A, 2008, 372(18): 3217.
    [105] Lu, W. G. , Zhou, L. W. , Luo, Q. M. Dynamic feedback controlling chaos in current-mode boost converter[J]. Chinese Physics Letters, 2007, 24(7): 1837.
    [106] Lu, W. G. , Zhou, L. W. , Luo, Q. M. Notch filter feedback controlling chaos in buck converter[J]. Chinese Physics, 2007, 16(11): 3256.
    [107]卢伟国.开关功率变换器的混沌控制研究[D].重庆:重庆大学,2008.
    [108]罗晓曙,汪秉宏,陈关荣等. DC-DC Buck变换器的分岔行为及混沌控制研究[J].物理学报,2003,52(1):12.
    [109]周宇飞,陈军宁,谢智刚等.参数共振微扰法在Boost变换器混沌控制中的实现及其优化[J].物理学报,2004,53(11):3676.
    [110]李志忠,丘水生,陈艳峰.混沌映射抑制DC-DC变换器EMI水平的实验研究[J].中国电机工程学报,2006,26(5): 76.
    [111]邹艳丽,罗晓曙,方锦清等.脉冲电压反馈法控制Buck功率变换器中的混沌[J].物理学报,2003,52(12):2978.
    [112] Smedley, K. M. , Cuk, S. One-Cycle Control of Switching Converters[J]. IEEE Trans. Power Electr. 1995, 10: 625-633.
    [113] Smedley, K. M. , Cuk, S. Dynamics of One-Cycle Controlled Cuk Converters[J]. IEEE Trans. Power Electr. 1995, 10:634.
    [114] Santi, E. , Cuk, S. Modeling of one-cycle controlled switching converters [C]. Proc. Telecommunications Energy Conference, Washington, DC 1992, 131.
    [115] Fang, C. Sampled-Data modeling and analysis of One-Cycle control and charge control [J].IEEE Trans. Power Electr. 2001, 16: 345.
    [116] Aroudi, A. El , Orabi, M. Stabilizing technique for AC-DC boost PFC converter based on time delay feedback [J]. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2010, 57(1): 56.
    [117] Aroudi, A. El , Haroun, R. , Cid-Pastor, A. , Orabi, M. , Martinez-Salamero, L. Notch filtering-based stabilization of PFC AC-DC pre-regulators [C]. 14th International Power Electronics and Motion Control Conference (EPE/PEMC), 2010: T13-22.
    [118] Giaouris, D. , Banerjee, S. , Zahawi, B. , Pickert, V. Stability analysis of the continuous-conduction-mode Buck converter via Filippov’s method [J]. IEEE Trans. Circuits Syst. I, 2008, 55: 1084.
    [119]王发强,张浩,马西奎.单周控制Buck变换器中的降频现象分析[J].物理学报, 2008, 57(5): 2842.
    [120]王发强,张浩,马西奎.单周期控制Boost变换器中的低频波动现象分析[J].物理学报, 2008, 57(3): 1522.
    [121] Tse, C. K. , Lai, Y. M. , Iu, H. H. C. Hopf Bifurcation and Chaos in a Free-Running Current-Controlled Cuk Switching Regulator[J]. IEEE Trans. Circuits Syst. I, 2000, 47: 448.
    [122] Chen, G. , Moiola, J. L. , Wang, H. O. , Bifurcation control: theories, methods, and applications[J]. Int. J. Bifurc. Chaos, 2000, 10(3): 511.
    [123] Wang, H. O. , Abed, E. H. , Bifurcation control of a chaotic system[J]. Automatica, 1995, 31(9):1213.
    [124] Xie, Y., Chen, L., Kang, Y.M., Aihara, K. Controlling the onset of Hopf bifurcation in the Hodgkin–Huxley model[J]. Phys. Rev. E, 2008, 77:061921.
    [125] Ding, L. , Hou, C. Stabilizing control of Hopf bifurcation in the Hodgkin–Huxley model via washout filter with linear control term[J]. Nonlinear Dyn., 2010, 60: 131.
    [126] J. Wang, L. Chen and X. Fei, Analysis and control of the bifurcation of Hodgkin–Huxley model[J]. Chaos, Solitons & Fractals, 2007, 31: 247.
    [127]张浩,马西奎.一种基于Washout Filter滤波器技术的参数受扰混沌系统的控制[J] .物理学报, 2003, 52(10) :2415.
    [128]赵益波,罗晓曙.基于washout滤波器技术的Colpitts振荡器混沌控制研究[J].物理学报, 2007, 56(11): 6258.
    [129]李春来.永磁同步电动机中基于冲洗滤波技术的混沌控制研究[J].物理学报, 2009, 58(12): 8134.
    [130] Dorf R C, Bishop R H 2008 Modern Control Systems 11th ed.(Upper Saddle River: Pearson Education,Inc.) 361.
    [131] Wong, S. C. , Wu, X. , Tse, C. K. Sustained slow-scale oscillation in higher ordercurrent-mode controlled converter[J]. IEEE Trans. Circuits Syst. II, 2008, 55(5):489.
    [132] Lai, Z., Smedley, K. M. A Family of Continuous-Conduction-Mode Power-Factor-Correction Controllers Based on the General Pulse-Width Modulator[J]. IEEE Trans. Power Electr. 1998, 13: 501.
    [133] A. El Aroudi, M. Orabi, R. Haroun, and L. Martínez-Salamero. Asymptotic slow scale stability boundary of PFC AC-DC power converters: theoretical prediction and experimental validation [J]. IEEE Trans. Ind. Electron., to be published.
    [134]张源,张浩,马西奎.单周期控制Cuk功率因数校正变换器中的中尺度不稳定现象分析[J] .物理学报, 2010, 59(12) :8432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700