超微孔过滤原理的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超微孔过滤根据孔径的大小可以分为超滤、纳滤、反渗透,由于孔径大小的差别,超微孔技术在应用时存在多样的分离指导理论,但是均有一定的应用局限性。同一材质、孔径的滤膜,中药成分的透过率常常与现有的分离原理相违背,为了明确超微孔过滤的真实分离过程,本论文展开了超微孔过滤原理的综述和实验研究。
     在过滤时,溶液与滤膜接触后会出现一层非均匀分布的液-固界面层,界面层在超微孔内占据一定的膜孔体积,使得膜孔内溶液过滤的流径相对狭窄,因而提出界面层狭孔过滤的概念。根据界面狭孔效应的强弱,可以将超微孔过滤模式分为,①一级过滤模型(大孔径膜超滤):分子筛过滤,分子大小筛分;②二级过滤模型(反渗透及小孔径纳滤):在分子筛过滤基础上,加上界面渗透模型;③三级过滤模型(小孔径超滤或大孔径纳滤):分子筛原理、界面狭孔、渗透与溶液混合滤过。
     选择三七总皂苷中分子量相似,同为三萜皂苷类成分的三七皂苷R1、人参皂苷Rgl、人参皂苷Rb1、人参皂苷Rd为实验对象,进行界面狭孔效应研究。在规范了超滤操作方法的前提下,分析在1KDa~100KDa系列孔径超滤膜中的透过规律,三七总皂苷中四种主要成分超滤透过率差异明显,三七皂苷R1和人参皂苷Rg1高于人参皂苷Rb1、人参皂苷Rd,在膜孔径达到100KDa时差异消失,这种差异并不完全是膜孔筛分引起的,主要是因为成分之间的界面效应不同,导致四种成分在界面层中的比例明显不同,从而出现差异性的透过结果。
     进而对三七总皂苷溶液与滤膜之间的界面层物理参数进行理论推导和计算机模拟,根据三七总皂苷在系列膜孔径中的透过率,以膜孔内过滤时溶液和界面过滤的浓度和速度方程,推导溶质过滤理论方程。以Maple16非线性拟合计算三七总皂苷的界面参数,以四种成分之间的界面层厚度差异(1.8nnm)为评价指标,并以相关系数r为指标通过Matlab R2011b验证。当流速方程中的幂值N=6时,三七皂苷R1、人参皂苷Rg1、人参皂苷Rb1、人参皂苷Rd的界面厚度(Ds)分别为2.06nm、1.96nm、3.90nm、3.87nm,趋向性常数(b)分别为1.63、1.95、0.71、0.88,在明确液-固界面参数的前提下,完善界面层浓度和流速方程,从而建立了分析溶质界面参数的界面狭孔效应计算模型。
     在此基础上,通过改变溶液性质,在三七总皂苷水溶液中加入有机溶剂、表面活性剂、无机盐、温度、pH值,均对溶液的表面张力、成分透过率、界面组成有影响,基本趋势为降低溶液表面张力时,成分透过率上升,且界面层中人参皂苷Rb1、人参皂苷Rd比例升高。总结相关影响因素、表面张力、成分透过行的相关性,在界面狭孔效应理论的指导下,可以通过改变液-固两相的性质,达到目的性的成分透过或截留行为。
     在界面狭孔效应理论的实际应用中,对中药注射剂中的超滤技术应用进行指导。冰七注射液中采用1,2-丙二醇助溶冰片降低冰片与膜之间的界面效应,提高成分透过率;通络清脑注射用粉针中改变溶液pH值,增加黄芩苷的溶解度,降低界面狭孔效应,改善成分的透过行为,同时还对膜材质的研制进行探讨,有效的提升超微孔过滤技术在中药产业中的应用。此外,不同成分在相同的液-固体系中的界面厚度和成分组成也有所差别,通过界面狭孔效应模型,完成液-固界面的组成分析。
     在明确成分界面狭孔效应的前提下,分析超滤时溶液实际过滤孔径R_狭,通过数学运算,当成分的透过率为60%时,供成分透过的实际膜孔半径接近0m,因此以溶质透过60%时的膜孔半径近似等于溶质的界面层厚度,即R60%≈Ds,可以根据此式,近似推算成分的界面特征参数。
     界面狭孔效应过滤理论的提出,并没有颠覆原有膜孔筛分的分离理论,而是对孔径筛分原理进行修正。为全面认识超微孔过滤原理及成分透过规律提供理论基础,对成分过滤反常现象进行合理化解释,并进一步指导膜分离应用的膜选择,包括选择适宜的孔径和膜材质,为膜材质研究如材质的修饰、新型膜材质的研制提供理论依据,可设计特定材质膜实现预期过滤效果,推广膜分离的应用领域,推动膜产业发展。
According to membrane pore size or molecular weight cut-off (MWCO), ultramicro-porous filtration can be divided to ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO). In recent years, membrane separation processes have found wide applications in industry and research laboratories, the development of quantitative predictive models are importance for the successful application of membrane filtration. The primary difference of UF, NF and RO is membrane pore size, and the common defects of the existing models are that they do not consider the change of "meaningful membrane pore size" and therefore, cannot be compatible with each other, in part because of neglecting the interface between solution and membrane. To clarify the real filtrate progress in ultramicro-porous, this study carried out research on reviews and experiments of ultramicro-porous filtration theory.
     In the filtrate progress, the interface between phases is generated as two phases intersect each other, in which the molecules of two phases are permeating mutually and form a non-uniform layer the existance of interface layer caused actual membrane pores are "samller" and narrowed the solution flow path within pores. Based on the interfacial narrowed pores effect, the ultramicro-porous filtration can be divided into three filtrating model,①primary filtrated model: molecular sieving for big pore UF,②secondary filtrated model:molecular sieving and interface peanetrate for RO and small pore NF, and③) tertiary filtrated model:molecular sieving, interfacial narrowed-pores filtrate and interface peanetrate for small pores UF and big pores NF.
     Panax notoginseng saponins (PNS) was selected as experimental subject. Notoginsenoside Rl(Rl), Ginsenoside Rgl (Rgl), Ginsenoside Rbl (Rbl) and Ginsenoside Rd (Rd), four main components of PNS, have similar structure and molecular size, but different surface activities. Using series of membranes with different pore sizes, the transmittances of main components of PNS water solution were detected. Using the interfacial thickness difference of the four solute (1.8nm) as evaluation indexes, the values of tendency constan (b), interfacial thickness(Ds) and velocity eqution index (N) of Rl, Rgl, Rbl and Rd were calculated the by using Maple software with data of membrane radius and transmittances and were verified by Matlab R2011b which evaluated by correlation coefficients (r). Results show that Ds of main components of PNS were varied from1.96nm to3.90nm, b varied from0.71to1.95, and N was6. According to the whole method mentioned above, the fitting model of interfacial narrowed pores effect was established to analyze the interfacial characteristics for solutes.
     With the solution properties affected by organic solvents, surfactants, inorganic salt, tempreture and pH, the solution surface tension, solute transmittance and interfacial composition were changed correspondingly. As the surface tension decreasing, conversely the solutes tranmittance and the proportion of Rbl and Rd were increased. Therefore, under the guidance of interfacial narrowed pores effect, analyzing the relevance among of influened factors, surface tension and tranmittance to get the purposefully retain or reject results by changing the liquid-solid interfacial properties.
     in the practical application,1,2-propylene glycol was chosen as cosolvent to reduce the interfacial effect and improve borneol solubility and tranmittance of Bingqi injection. Moreover, the solubility and transmittance of baicalin were increased by adjusting pH to7.5, and the10KDa membrane was suitable for Tongluoqingnao powder injection with little loss of baicalin and high rejection of endotoxin.
     The interfacial composition and thickness of various solutes are different in the same liquid-solid system, and the start inspiring results achieved by ultramicropore will be helpful in revealing the essence of interface effect in nature.
     Meanwhile, the filtration theory of interface-effect did not challenge the molecular sieving theory, but instead attempt to modify it. The interfacial narrowed-pore effect may exert profound influence on the development of the whole membrane technology and provides a guideline for the application of membrane separation including selecting proper membrane pore size and material, membrane modification, designing specific membrane material and extending the fields of membrane application etc. In addition, the results develop here would be of great value to the future studies on interface by ultramicro-pore method.
引文
[1]L. J. Zeman, A. L. Zydney. Microfiltration and Ultrafiltration:Principles and Applications [M]. Marcel Dekker, Inc.,1996.
    [2]崔崇威,纪峰,唐小辉,等.纳滤膜法生产桶装饮用水与提高水资源利用率[J].哈尔滨工业大学学报,2007,39(2):258-261.
    [3]韩少卿,叶骥,薛强,等.超滤和纳滤膜分离技术提取螺旋霉素[J].中国抗生素杂志,2005,30(1):52-55.
    [4]胡立新,崔朝亮,程新华,等.利用膜分离技术对牛初乳进行除菌浓缩的研究[J].食品科技,2007,(3):90-92.
    [5]牟旭凤,白庆中,陈红盛,等.聚合物辅助超滤/纳滤技术处理模拟放射性废水[J].给水排水,2006,32:174-177.
    [7]P. Silva, S. J. Han, A. G. Livingston, Solvent transport in organic solvent nanofiltration membr-anes [J]. Journal of Membrane Science,2005,262(1-2):49-59.
    [8]D. R. Paul, Reformulation of the solution-diffusion theory of reverse osmosis [J]. Journal of Membrane Science,241(2004)371-386.
    [9]Strathmann H.相转化工艺制备微孔膜[J].水处理技术,1984,10(6):39-50.
    [10]H Mehdizadeh, Kh Molaiee-Nejad. Modeling of mass transport of aqueous solutions of multi-solute organics through reverse osmosis membranes in case of solute-membrane affinity [J]. Journal of Membrane Science,2005,267:27-40.
    [11]Sarit Bason, Adi Ben-David. Characterization of ion transport in the active layer of RO and NF polyamide membranes [J]. Desalination,2006,199:31-33.
    [12]K. Ikeda, T. Nakano, H. Ito, T. Kubota, S. Yamamoto. New composite charged reverse osmosis membrane [J]. Desalination,1988,2-3(68):109-119。
    [13]Wang X L, Tsuru T, Togoh M, et al. Evaluation of pore structure and electrical properties of nanofiltration membrane[J] Journal of Chemical Engineering of Japan,1995,28(2):186-192.
    [14]Klaudla Wesolowska. Stanislaw Koter. Modeling of nanofiltration in softening water [J].Desalination, 2004,163:137-151.
    [15]Wang X L, Tsuru I. Nakao S, et al. The electrostatic and steric hindrance model for the transport of charged solutes through nanofiltration membrane [J]. Journal of Membrane Science,1997,26(1):91-105.
    [16]Bowen W R, Mohammad A W, Hilal N. Characterization of nanofitration membranes for predictive purposes:use of salts, uncharged solutes and atomic force microscopy [J]. Journal of Membrane Science,1997, 126:91-105.
    [17]李应彪,童军茂,翟金兰,等.膜及膜分离技术在食品工业中的应用[J].粮油加工与食品机械,2002(2):30-31.
    [18]牛涛涛,李振玉,汪建根,等.近年来国内反渗透技术在废水处理中的应用状况[J].广州环境科学,2008,23(2):11-13.
    [19]Haruhiko Ohya, Huang Jicai, Yoichi Negishi. Studies on distribution and reverse osmosis properties of cellulose acetate derivatives for organic compounds [J]. Journal of Membrane Science,1993, (85):1-11.
    [20]B. V. Derjaguin, N. V. Churaev, G. A. Martynov. The theory of the reverse osmosis separation of solutions using fine-porous membranes [J]. Journal of Colloid and Interface Science,1980, (75):419-434.
    [21]A.A. Merdaw, A.O. Sharif, G.A.W. Derwish, Water permeability in polymeric membranes, Part I [J]. Desalination,2010,260:180-192.
    [22]M. Toffoletto, A.A. Merdaw, A.O. Sharif, A. Bertucco, Experimental approaches to feed solution permeability in pressure-driven membrane separation processes [J]. Journal of Membrane Science,2010, 364:27-33.
    [23]U. Merten, Flow relationships in reverse osmosis [J]. Industrial and Engineering Chemistry Research. 1963,2:229-232.
    [24]H. K. Lonsdale, U. Merten, M. Tagami, Phenol transport in cellulose acetate membranes [J]. Journal of Applied Polymer Science.1967,11:1807-1820.
    [25]G. Scatchard, W. H. Orttung. Diffusion and the bi-ionic potential with an ion exchanger membrane [J]. Journal of Colloid and Interface Science,22(1966):19-22.
    [26]Jaekyung Yoon, Gary Amy, Jinwook Chung,et al. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis,nanofiltration, and ultrafiltration membranes [J]. Chemosphere 77 (2009) 228-235.
    [27]Yoshiaki Kiso, Kentaro Muroshige, Tatsuo Oguchi, et al. Effect of molecular shape on rejection of uncharged organic compounds by nanofiltration membranes and on calculated pore radii [J]. Journal of Membrane Science,2010,358:101-113.
    [28]Stephen Mandale, Meirion Jones. Membrane transport theory and the interactions between electrolytes and non-electrolytes [J]. Desalination,2010,252:17-26.
    [29]Mika Manttari, Arto Pihlajamaki, Eero Kaipainen, et al. Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes [J]. Desalination,2002, 145(1-3):81-86.
    [30]Li Xu, Shiyong Wang, Xianyou Zeng. The maltitol purification and concentration by nanofiltration [J]. Desalination,2005,184(1-3):295-303.
    [31]张效林,薛伟明,:E康.侧柏叶乙醇提取液的超滤膜精制过程研究[J].现代化工,1998(7):22-24.
    [32]Szebeni J. Complement activation-related pseudoallergy:A new class of drug-induced acute immune toxicity [J]. Toxicology,2005,216(2-3):106-121
    [33]中华人民共和国海洋行业标准HY/T 050-1999.中空纤维超滤膜测试方法[S].北京:1999.
    [34]S.I.Nakao, Review:determination of pore size and pore size distribution 3:filtration membranes [J]. Journal of Membrane Science,1994 (96):131-165.
    [35]C. Zhao, X. Zhou, Y. Yue, Determination of pore size and pore size distribution on the surface of hollow fiber filtration membranes:a review of methods [J]. Desalination,2000,129(2):107-123.
    [36]K. J. Kim, A. G. Fan, C. J. D. Fell, et al. Quantitative microscopic study of surface characteristics of ultrafiltration membranes [J]. Journal of Membrane Science,1990,54(1-2):89-102.
    [37]S. Singh, K. C. Khulbe, T. Matsuura, et al. Membrane characterization by solute transport and atomic force miscroscopy [J]. Journal of Membrane Science,1998,142(1-2):111-127.
    [38]A. S. Michaels, Analysis and prediction of sieving curves for ultrafiltration membranes:a universal correlation [J]. Separation Science and Technology,1980,15(6):1305-1322.
    [39]R. P. Wendt, E. A. Mason, E. H. Bresler, Effect of heteroporosity on membrane rejection coefficients [J]. Journal of Membrane Science,1981,8 (1):69-90.
    [40]R. P. Wendt, E. Klein, Membrane heteroporosity and the probability function correlation [J]. Journal of Membrane Science,1984,17(2):161-171.
    [41]J. Kassotis, J. Shmidt, L. T. Hodgins, et al. Modeling of the pore size distribution of ultrafiltration membranes [J]. Journal of Membrane Science,1985,22(2):61-72.
    [42]J. K. Leypoldt, Determing pore size distributions of ultrafiltration membranes by solute sieving-mathematical limitations [J]. Journal of Membrane Science,1987,31(1):289-303.
    [43]E. L. Crow, K. Shimizu, Lognormal Distributions:Theory and Applications [M]. Marcel Dekker, New York and Basel,1998.
    [44]D. B. Mosqueda-Jimenez, M. Narbaitz, T. Matsuura, et al. Influence of processing conditions on the properties of ultrafiltration membranes [J]. Journal of Membrane Science,2004,231(1-2):209-224.
    [45]Fane A G, Fell C J D, Suki A. The effect of pH and ionic Environment on the ultrafiltration of protein solutions with retentive membranes [J]. Journal of Membrane Science,1983,16:195-210.
    [46]Fane A G, Fell C J D, Waters A G. Ultrafiltration of protein solutions through partially permeable membranes:The effect of adsorption [J]. Journal of Membrane Science,1983,16:211-224
    [47]Yasuda H, Tsai J T. Pore size of microporous polymer membranes [J]. Journal of Applied Polymer Science,1974,18:805-819.
    [48]Steven Allgeier, Brent Alspach, James Vickers. Membrane filtration guidance manual [M]. United States Environmental Protection Agency,2005:chapter4-chapter5.
    [49]Adham S. S., Jacangelo, J. G., Laine, J. M., Low-pressure membranes:assessing integrity [J]. Journal AWWA,1995,3:62-75.
    [50]Johnson W. T. Automatic monitoring of membrane integrity in microfiltration systems [J]. Desalination, 1997,113 (2-3):303-307.
    [51]Johnson W. T. Predicting log removal performance of membrane systems using in-situ integrity testing [J]. Filtration &Separation,1998, 1(35):26-29.
    [52]Randles N. Large scale operating experience in membrane systems for water and waste water reclamation [J]. Desalination,1997,108(1-3):205-211.
    [53]Farahbakhsh K., Smith D. W. Estimating air diffusion contribution to pressure decay during membrane integrity tests [J]. Journal of Membrane Science,2004,237 (1-2):203-212.
    [54]Cheryan M. Ultrafiltration and Microfiltration Handbook [M]. Technomic Publishing Company,1998, Lancaster, Pennsylvania.
    [55]DiLeo A. J., Phillips M. W. Integrity test for membranes [P]. US,1994. Patent 5,282,380.
    [56]Panglisch S., Deinert U., Dautzenberg W., et al. Monitoring the integrity of capillary membranes by particle counters [J]. Desalination,1998,119(1-3):65-72.
    [57]Landsness L.B. Accepting MF/UF Technology-Making a Final Cut [C]. The American Water Works Association, Membrane Technology Conference (2001),TX.
    [58]Farahbakhsh K., Adham S. S., Smith, D. W. Monitoring the integrity of low-pressure water treatment membranes. Journal AWWA,2004,95 (6):95-107.
    [59]Hirata T., Hashimoto A. Experimental assessment of the efficacy of microfiltration and ultrafiltration for Cryptosporidium removal [J]. Water Science and Technology,1998,38(12):103-107.
    [60]Bennett, A. Drinking water:pathogen removal from water-technologies and techniques [J]. Filtration & Separation,2008,45(10),14-16.
    [61]Gitis V., Adin, A., Nasser A., et al. Fluorescent dye labeled bacteriophages-a new tracer for the investigation of viral transport in porous media:1.Introduction and characterization [J].Water Research,2002,36(17):4227-4234.
    [62]Lohwacharin J., Takizawa S. Effects of nanoparticles on the ultrafiltration of surface water [J]. Journal of Membrane Science,2009,326(2):354-362.
    [63]Moulin, P.2008. Patent Number(s):FR2901607-A1 EP1862791-A2.
    [64]H. Guo, Y. Wyart, J. Perot, et al. Low-pressure membrane integrity tests for drinking water treatment:A review [J]. Water research,2010,44:41-57.
    [65]马朝阳,王洪新.超滤法纯化苦豆子酸提取物中的生物碱[J].郑州工程学院学报,2003,24(4):56-58.
    [66]彭国平,郭立玮,徐丽华等.超滤技术应用对中药成分的影响[J].南京中医药大学学报(自然科学版),2002,18(6):339-341.
    [67]林勇,郑云枫,李存玉,,等.吐温-80与羟丙基-p环糊精助溶丹皮酚的超滤适用性研究[J].医药导报,2010,29(2):144-148.
    [68]李存玉,郑云枫,段金廒,等.羟丙基-β-环糊精及其荆芥挥发油和丹皮酚包合物的超滤适用性[J].中国新药与临床杂志,2009,28(2):151-154.
    [69]林勇,郑云枫,尹楠,等.吐温-80及其助溶荆芥挥发油和丹皮酚的超滤适用性研究[J].中国中医药信息杂志,2009,16(12):43-45.
    [70]S. R. Jadhav, N. Verma, A. Sharma, et al. Flux and retention analysis during micellar enhanced ultrafiltration for the removal of phenol and aniline [J]. Separation and Purification Technology, 2001(24):541-557.
    [71]S. D. Christian, S. N. Bhat, E. E. Tucker, et al. Micellar-enhanced ultrafiltration of chromate anion from aqueous streams [J], AICHE Journal,1988,34(2):189-194.
    [72]K. Kandori, R.S. Schechter, Selection of surfactants for micellar-enhanced ultrafiltration [J]. Separation and Purification Technology,1990,25(1-2):83-108.
    [73]S.D. Christian, J.F. Scamhorn. Surfactant based separation processes [M].Marcel Dekker, New York, 1989.
    [74]J. Markels, S. Lynn, C.J. Radke, Micellar ultrafiltration in an unstirred batch cell at constant flux, Journal of Membrane Science,1994, (86):241.
    [75]J. Markels, S. Lynn, C.J. Radke, Cross-Flow Ultrafiltration of Micellar Surfactant Solutions, AICHE Journal,1995,41 (9):2058-2066.
    [76]Hatice Gecol, Erdogan Ergican, Alan Fuchs. Molecular level separation of arsenic (V) from water using cationic surfactant micelles and ultrafiltration membrane [J]. Journal of Membrane Science,2004,241(1): 105-119
    [77]Jin-hui Huang, Guang-ming Zeng, Yao-yao Fang, et al. Removal of cadmium ions using micellar-enhanced ultrafiltration with mixed anionic-nonionic surfactants [J]. Journal of Membrane Science, 2009,326(2):303-309
    [78]Jaekyung Yoon, Yeomin Yoon, Gary Amy, et al. Use of surfactant modified ultrafiltration for perchlorate (ClO4)removal [J]. Water Research,2003,37(9):2001-2012.
    [79]G. Morel, N. Ouazzani, A. Graciaa, et al. Surfactant modified ultrafiltration for nitrate ion removal [J]. Journal of Membrane Science,1997,134(1):47-57.
    [77]姜忠义,吴洪.超滤技术在中药生产中的应用[J].现代化工,2002,21(2):122-126.
    [78]王姣,姜忠义,吴洪.中药有效成份和有效部位分离用膜[J].中国中药杂志,2005,30(3):165-170.
    [79]赵晓娟,闫勇,蔡跃明.中草药领域中膜分离的应用[J].中国实验方剂学杂志,2004,10(5):64-65.
    [80]邹节明,李建华.超滤技术分离中药有效成分的实验研究[J].中国医药学报,2003,18(2):76-81.
    [81]侯东军,张健.超滤法制取大豆浓缩蛋白[J].粮油加工与食品机械,2002,8:44-45.
    [82]崔岸,朱峰,黄惠华,等.大豆分离蛋白超滤的研究[J].食品工业科技,1997,4:56-58.
    [83]樊晶,陈连旺,王巨存,等.应用萃取-超滤两步法从过期人血中提纯人血红蛋白[J].天津药学,2002,14(1):33-35.
    [84]Meredith Feins, Kamalesh K. Sirkar. Novel internally staged ultrafiltration for protein purification [J]. Journal of Membrane Science,2005,248(1-2):137-148.
    [85]郭丽霞,石晓霞.对注射剂中热原污染的探讨[J].海峡药学,2005,17(5):27-29.
    [86]崔颖,刘俊媛,王金兰等.内毒素的致热特性[J].天津药学,2002,14(5):29-30.
    [87]楼福乐,毛伟钢,陆晓峰,等.超滤技术在制药工业中除热原的应用[J].膜科学与技术,1999,91(3):8-12.
    [88]李贺敏,彭国平,郑云枫.不同材质及不同截留分子量超滤膜对三七总皂苷热原去除及成分的影响[J].中药材,2011,34(12):1943-1946.
    [89]陈伟,李贺敏,李存玉,等.三苷粉针中热原去除工艺的筛选[J].福建中医药,2012,43(2):40-45.
    [90]董声华,费美玲,田燕,等.用截留率-分子量曲线的变化表征超滤膜的污染[J].水处理技术,1992,18(4):261-265.
    [91]王晓昌,王锦.横向流超滤膜污染动力学模型[J].环境化学,2002,21(6):552-557.
    [92]T Matsuura, S Sourirajan. Reverse osmosis transport through capillary pores under the influence of surface forces [J]. Industrial & Engineering Chemistry Process Design and Development,1981, 20(2):273-282.
    [93]孙文基.天然药物成分提取分离和制备[M].北京:中国医药科技出版社,1999.
    [94]袁亮,周显宏,肖凯军,等.多级膜浓缩黄芩苷提取液的研究[J].现代食品科技,2008,24(3):237-240.
    [95]罗吉,钟美好,肖凯军,等.多级膜浓缩鼻炎康提取液的研究[J].中国中药杂志,2008,33(17):2108-2112.
    [96]贺立中.用两步超滤法制备伸筋草注射液的实验研究[J].中草药,1996,27(12):719-721.
    [97]何昌生,王炳南,朱娜姗.甜菊糖试超滤的应用研究[J].水处理技术,1994,20(2):89-94.
    [1]L. J. Zeman, A. L. Zydney. Microfiltration and Ultrafiltration:Principles and Applications [M], Marcel Dekker, Inc.,1996.
    [2]K. Ikeda, T. Nakano, H. Ito, et al. New composite charged reverse osmosis membrane [J]. Desalination,1988,2-3(68):109-119.
    [3]Wang X. L., Tsuru T., Togoh M., et al. Transport of organic electrolytes with electrostatic and steric-hindrance effects through nanofiltration membranes [J]. Journal of Chemical Engineering of Japan,1995, 28(2):186-192.
    [4]Haruhiko Ohya, Huang Jicai, Yoichi Negishi. Studies on distribution and reverse osmosis properties of cellulose acetate derivatives for organic compounds [J]. Journal of Membrane Science,1993, (85):1-11.
    [5]B. V. Derjaguin, N. V. Churaev, G. A. Martynov. The theory of the reverse osmosis separation of solutions using fine-porous membranes [J]. Journal of Colloid and Interface Science,1980, (75):419-434.
    [6]A. A. Merdaw, A. O. Sharif, G. A. W. Derwish. Water permeability in polymeric membranes Part Ⅰ [J]. Desalination,2010, (260):180-192.
    [7]M. Toffoletto, A. A. Merdaw, A. O. Sharif, et al. Experimental approaches to feed solution permeability in pressure-driven membrane separation processes [J]. Journal of Membrane Science,2010 (364):27-33.
    [8]U. Merten. Flow relationships in reverse osmosis [J]. Ind. Eng. Chem. Fundam.1963(2):229-232.
    [9]H. K. Lonsdale, U. Merten, M. Tagami. Phenol transport in cellulose acetate membranes [J], Journal of applied polymer science.1967,(11):1807-1820.
    [10]G. Scatchard, W. H. Orttung. Diffusion and the bi-ionic potential with an ion exchanger membrane [J]. Journal of Colloid and Interface Science,1966, (22):19-22.
    [11]O. Kedem, K.S. Spiegler. Thermodynamics of hyperfiltration (reverse osmosis):Criteria for efficient membranes [J], Desalination,1966 (1):311-326.
    [12]Yoshiaki Kiso, Kentaro Muroshige, Tatsuo Oguchi, et al. Effect of molecular shape on rejection of uncharged organic compounds by nanofiltration membranes and on calculated pore radii [J]. Journal of Membrane Science,2010, (358):101-113.
    [13]Stephen Mandale, Meirion Jones. Membrane transport theory and the interactions between electrolytes and non-electrolytes [J]. Desalination,2010, (252):17-26.
    [14]Jaekyung Yoon, Gary Amy, Jinwook Chung, et al. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes [J]. Chemosphere,2009 (77):22-235.
    [1]张福田.分子界面化学基础(第一版)[M].上海科学技术文献出版社,2006:1-3.
    [2]Dexin Lu.University Physics (second edition):Chapter 10 Temperature [M].Higher Education Press,2003: 182.
    [3]Cahn J.W.Thermodynamics of solid and build interfaces [M].In:Johnson W.C.,Blakely J.M.(cds)1979 interfacial segregation,American Society for Metals. Metal Park,3-23.
    [4]赵慕愚,宋利珠.相图的边界理论及其应用-相区及其边界构成相图的规律(第一版)[M].北京:科学出版社:25,28,132,147,169.
    [5]D. Vollhardt, V. Melzer, V. Fainerman. Phase transition in adsorption layers at the air-water interface: structure features of the condensed phase [J]. Thin Solid Films,1998, (327-329):842-845.
    [6]Gibbs J.W.The scientific papers.Vol.1 [M]. Dover, New York.
    [7]Alan Mackie, Peter Wilde.The role of interactions in defining the structure of mixed protein-surfactant interfaces [J]. Advances in Colloid and Interface Science,2005, (117):3-13.
    [8]F. Sanchez, L. Zhang. Interaction energies, structure, and dynamics at functionalized graphitic structure-liquid phase interfaces in an aqueous calcium sulfate solution by molecular dynamics simulation [J]. Carbon,2010,48(4):1210-1223.
    [9]Hideshi Okuda, Shoichi Ikeda. Preferential adsorption of ions on aqueous surfaces of NaCl solutions of dodecyldimethylammonium bromide [J]. Journal of Colloid and Interface Science,1989,131(2):333-348.
    [10]Alissa J. Prosser, Elias I. Franses. Adsorption and surface tension of ionic surfactants at the air-water interface:review and evaluation of equilibrium models [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,178(1-3):1-40.
    [1]Sun, H. X., Chen, Y. H., Ye, Y. P. Ginsenoside Re and Notoginsenoside Rl: immunologic adjuvants with low haemolytic effect [J]. Chemistry & biodiversity.2006,3,718-726.
    [2]Sun, H. X., Zheng, Q. F. Haemolytic activities and adjuvant effect of Gynostemma pentaphyllum saponins on the immune responses to ovalbumin in mice [J]. Phytotherapy Research.2005, (19):895-900.
    [3]Dou, D. Q. Prediagnostic methods for the hemolysis of herbal medicine injection [J]. Journal of Ethnopharmacology.2011, (138):445-450.
    [1]Stephen Mandale, Meirion Jones. Membrane transport theory and the interactions between electrolytes and non-electrolytes [J]. Desalination,2010, (252):17-26.
    [1]Adamson AW. Physical chemistry of surface,3th Edn [M]. Jahn Wiley. New York,1976.
    [2]Guggenheim EA. Trans [M]. Faraday Soc.,1940
    [3]Tadao Sugimoto. A new approach to interfacial energy [J]. Journal of collid and interface science,1996, 181:259-274.
    [4]Xu, G. H., Dong J., Zhang J., et al. Characterizing the distribution of nonylphenol ethoxylate surfactants in water-based pressure-sensitive adhesive films using atomic-force and confocal raman microscopy [J]. Journal of physical chemistry B,2008 (112):11907-11914.
    [1]David C. Grahame. The electrical double layer and the theory of electrocapillarity [J]. Chemical Reviews, 1947,41(3):441-501.
    [2]Guangming Luo, Sarka Malkova, Jaesung Yoon, et al. Ion Distributions near a Liquid-Liquid Interface [J]. Science,2006,311(5758):216-218.
    [3]Shavit U, Rosenzweig R, Assouline S. Free flow at the interface of porous surfaces:a generalization of the taylor brush configuration [J]. Transport in Porous Media,2004, (54):345-360
    [1]Vollhardt, D., Melzer, V, Fainerman, V. Phase transition in adsorption layers at the air-water interface: structure features of the condensed phase [J]. Thin Solid Films,1998, (327-329):842-845.
    [2]Good, R. J. Contact angle, wetting, and adhesion:a critical review [J]. Journal of Adhesion Science and Technology,1992 (6):1269-1302.
    [3]Hideshi Okuda, Shoichi Ikeda. Preferential adsorption of ions on aqueous surfaces of NaCl solutions of dodecyldimethylammonium bromide [J]. Journal of Colloid and Interface Science,1989,131(2):333-348.
    [4]Alissa J. Prosser, Elias I. Franses. Adsorption and surface tension of ionic surfactants at the air-water interface:review and evaluation of equilibrium models [J]. Colloids Surface A:physicochemistry engineering aspect,2001,178(1-3):1-40.
    [1]王志超,潘灏白.超滤法在中药注射剂的应用.中成药,1993,15(3):2.
    [2]张同星,李红阳,彭国平.超滤工艺对风痛宁注射液中有效成分的影响.中华中医药学刊.2010,28(11):2374-2375.
    [3]彭国平,郭立玮,超滤技术应用对中药成分的影响.南京中医药大学学报,2002,18(6),339-341.
    [4]宫凯敏,尹楠,彭国平.三黄片中黄芩苷与大黄酸的超滤适用性研究.辽宁中医药大学学报.2010,12(1):28-29.
    [5]廖华军,尹楠,李红阳,等.阿魏酸的超滤工艺适应性研究.现代中药研究与实践.2010,24(4):55-57.
    [6]付金柏,尹楠,李存玉,等.葛根素超滤适用性研究.辽宁中医药大学学报.2010,12(10):30-31.
    [1]Qingfeng Zan, Changan Wang, Yong Huang, et al. The interface-layer and interface in the Al2O3/Ti3SiC multilayer composites prepared by in situ synthesis [J]. Materials Letters,2003,57(24-25):3826-3832.
    [2]K.N. Braszczynska, L. Litynska, A. Zyska, W. Baliga. TEM analysis of the interfaces between the components in magnesium matrix composites reinforced with SiC particles [J]. Materials Chemistry and Physics,2003,81(2-3):326-328.
    [3]R. Timm, M. Hjort, A. Fian, et al. Interface composition of atomic layer deposited HfO2 and Al2O3 thin films on InAs studied by X-ray photoemission spectroscopy [J].Microelectronic Engineering,2011,88(7): 1091-1094.
    [4]A. Jagminas, I. Vrublevsky, J. Kuzmarskyte, et al. Composition, structure and electrical properties of alumina barrier layers grown in fluoride-containing oxalic acid solutions [J]. Acta Materialia,2008,56(6): 1390-1398.
    [5]Tze-Lee Phang, Elias I Franses. Expulsion of bovine serum albumin from the air/water interface by a sparingly soluble lecithin lipid [J]. Journal of Colloid and Interface Science,2004,275(2):477-487.
    [6]R. Miller, V.B. Fainerman, A.V. Makievski, et al. Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface [J]. Advances in Colloid and Interface Science,2000,86(1-2):39-82.
    [1]Xi Wei, Rong Wang, Zhansheng Li, et al. Development of a novel electrophoresis-UV grafting technique to modify PES UF membranes used for NOM removal [J]. Journal of Membrane Science,2006,273(1-2):47-57.
    [2]Xiangli Qiao, Zhenjia Zhang, Zhenghua Ping. Hydrophilic modification of ultrafiltration membranes and their application in Salvia Miltiorrhiza decoction [J]. Separation and Purification Technology,2007, (56):265-269.
    [3]Mizi Li, Jianhua Li, Xisheng Shao, et al. Grafting zwitterionic brush on the surface of PVDF membrane using physisorbed free radical grafting technique [J]. Journal of Membrane Science,2012, (405-406):141-148.
    [4]M. Picot, R. Rodulfo, I. Nicolas, et al. A versatile route to modify polyethersulfone membranes by chemical reduction of aryldiazonium salts [J]. Journal of Membrane Science,2012, (417-418):131-136.
    [5]Antonio Montes Rojas, Yeraldin Olivares Maldonado, Luz Maria Torres Rodriguez. An easy method to modify the exchange membranes of electrodialysis with electrosynthetized polyaniline [J]. Journal of Membrane Science,2007,300(1-2):2-5.
    [6]Theresa Sukkar, Maria Skyllas-Kazacos. Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery [J]. Journal of Membrane Science,2003,222(1-2): 249-264.
    [7]薛玉强,孙丽红.控制大输液生产过程中的热原污染体会[J].实用医技杂志,2004,11(7):1352.
    [8]宋晓坤,李利娟.5种中药注射液细菌内毒素检测方法的建立[J].中草药,2006,37(12):1819-1821.
    [9]E. Hannecart-Pokorni, D. Dekegel, F. Depuydt, Macromolecular structure of lipopolysaccharides from gramnegative bacteria [J]. European Journal of Biochemistry,1973 (38):6-13.
    [10]P. O. Magalhaes, A. M. Lopes, P. G. Mazzola, et al. Methods of Endotoxin Removal from Biological Preparations:A Review [J]. Journal of Pharmacy and Pharmaceutical Sciences,2007 (10):388-404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700