纳米磷灰石颗粒表面修饰及其对聚合物复合材料性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对临床上骨缺损增多的现实问题,生物医用复合骨修复材料的研究日益深入和广泛。随着纳米技术的发展,研究人员期待利用纳米材料的特殊效应,提高骨修复材料的综合性能,以满足骨科临床应用的需要。目前广泛研究的一类骨修复材料是磷灰石/聚合物复合材料,尤以纳米磷灰石(n-HA)与聚合物的复合材料为热点,其目的是模拟自然骨n-HA与胶原的纳米复合结构。然而,人们在制备n-HA/聚合物复合材料时,由于纳米颗粒易于团聚为大颗粒,不利于其在聚合物基体中均匀分散,且整体上将减少纳米颗粒与基体的接触面积,降低填充相与基体的界面结合强度,成为提高该类复合材料性能特别是力学性能的难点。因此,对n-HA颗粒采用物理吸附和化学结合等表面修饰手段改性成为防止或降低其在聚合物中团聚,以期有效地改善该类复合材料的综合性能特别是力学性能,是纳米生物复合材料领域的重要研究方向。本论文着重点就在于系统地研究不同特性的表面修饰改性剂对n-HA表面的修饰效果及其在纳米颗粒/聚合物复合生物材料修饰改性中的作用。
     整个论文一方面选用生物相容性好的聚乙二醇(PEG)系聚合物如PEG以及在PEG分子中分别引入疏水链段丙交酯的PEG-b-PLA共聚物(PELA)以及疏水链段聚氧乙烯的PPO-PEG-PPO共聚物(F127)对n-HA颗粒表面分别进行物理吸附修饰处理,采用溶液共混-热压成型技术将三种表面修饰的n-HA颗粒与降解速率适当的外消旋聚乳酸(PDLLA)复合制备成PEG系表面修饰n-HA/PDLLA复合材料,研究了表面修饰对该类复合材料的力学性能、亲水性与生物相容性的影响。论文另一方面选用三种硅烷偶联剂如γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷((KH570)及N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷(KH792)对n-HA颗粒表面分别进行化学结合修饰处理,采用溶液/热双共混-热压成型技术将硅烷表面修饰的n-HA颗粒与生物相容性好的聚己内酯(PCL)复合制备成硅烷表面修饰的n-HA/PCL复合材料,研究了硅烷修饰对该类复合材料的力学性能、亲水性、生物活性与生物相容性的作用。
     论文第二章首先将PEG分别溶于尺度为0.45μm-1.32μm和50nm-200nm范围的HA水溶胶中进行表面修饰,考察PEG对不同尺度HA颗粒的修饰效果。结果表明,50nm-200nm尺度范围的HA比0.45μm-1.32μm的HA表面活性大,与水分子结合更紧密,在水溶胶中形成的网络结构更牢固,使水溶胶中PEG与50nm-200nm尺度范围的HA形成的氢键较弱,PEG对该尺度范围HA表面修饰作用比0.45μm-1.32μm尺度范围的HA差。随后,为考察PEG表面修饰对HA纳米晶粒形成的影响,在化学沉淀法合成HA前后分别加入PEG对n-HA颗粒进行表面修饰。结果表明,两个不同阶段的表面修饰均使PEG吸附在HA表面,低温烧结后晶粒结构趋同。HA合成前加入PEG妨碍了HA晶粒的生长、减小其晶粒。HA合成后加入PEG不影响HA晶粒的生长发育。
     论文第三章研究了PEG系物理吸附和硅烷系化学结合表面修饰对聚合物纳米复合材料力学性能的影响。首先用三种表面活性剂PEG.PELA及F127分别对n-HA颗粒进行表面修饰处理,然后采用溶液共混-热压成型技术与PDLLA复合成n-HA/PDLLA新材料。研究发现,PEG表面修饰的n-HA/PDLLA复合材料具有1293%的高延伸性。表面能高n-HA颗粒与线形PDLLA分子链段形成了新的吸附点而使二者更加牢固连接,使得PDLLA结构交联化,在外力的拉伸作用下,交联化的PDLLA与n-HA吸附交叉点依次解吸而使复合材料具有高的延伸率。随后,采用溶液/热双共混-热压成型法制备了KH560.KH570及KH792化学结合表面修饰的n-HA/PCL复合材料,研究了该类复合材料的力学性能和结晶温度。结果表明,硅烷化学结合表面修饰有效提高了该类复合材料力学强度、杨氏模量和结晶化温度。
     论文第四章研究了PEG系表面修饰对n-HA/PDLLA复合材料的亲水性的作用。结果表明,PEG系表面修饰改善了聚合物纳米材料的亲水性。同时,也研究了硅烷化学结合表面修饰对n-HA/PCL复合材料的亲水性的影响。研究发现,含量为2%KH560硅烷偶联剂表面修饰改善了n-HA/PCL复合材料的亲水性。含量为5%KH792硅烷偶联剂表面修饰减低了n-HA/PCL复合材料的亲水性。其它含量的硅烷偶联剂表面修饰对n-HA/PCL复合材料的亲水性没有显著影响。
     论文第五章研究了PEG系表面修饰对n-HA/PDLLA复合材料的细胞相容性的影响。结果表明,PEG系表面修饰的复合材料与骨髓瘤细胞相互作用的alamar blue和ALP活性值均大于相应地对照组复合材料与骨髓瘤细胞相互作用值,PEG表面修饰提高了n-HA/PCL复合材料的细胞相容性。同时,也研究了硅烷化学结合表面修饰对n-HA/PCL复合材料的生物活性和细胞相容性的作用。结果发现,含量为2%的三种硅烷偶联剂表面修饰的HA/PCL复合材料在2倍的模拟体液中能够沉积出类骨磷灰石,具有良好的生物活性,但沉积出类骨磷灰石时间相对较长。硅烷表面修饰一定程度地降低了n-HA/PCL复合材料的细胞相容性。
Great attention is paid to nano-apatite/polymer composite biomaterials for bone repair, as a result of an increasing number of patients suffered from bone defects in clinic practice. It is of vital importance to improve properties such as mechanical characteristics and biological property of apatite/polymer biocomposites. Some special effects brought by apatite nano-particles are introduced to composite biomaterials by imitating chemical composition and structure of organic bone and expected to explore new applications in bone repair. However, nano-apatite (n-HA) particles tend to become bigger aggregates, and thus the aggregates of n-HA particles can not be equably dispersed in polymer matrix in fabricating functional composites and interfacial bonding strength between aggregate and polymer matrix is lessened, which result in weakening mechanical and biological properties of biocomposites. Surface modifications in physical, chemical or engineering ways have been suggested to weaken the aggregates of n-HA particles, therefore, it is necessary to innovate traditional ways in surface modifications to weak aggregates of n-HA particles and improve compositive properties nano-apatite/polymer composites.
     This dissertation stresses two hands about surface modification of n-HA partices and effects of physical or chemical modification on improving properties of polymeric composite biomaterials. On the one hand, it focused on inpact of physical adsorption modification of surface coating agents with n-HA particles in mechnical strength, elongation rate,hydrophile and cell compatibility of n-HA/poly (D,L-lactide) (PDLLA) composite biomaterials. On the other hand, it emphasized influence of chemical reaction modification of silane coupling agents to n-HA particles on mechnical strength, elasticity modulus, hydrophile, bioactivity and cell compatibility of n-HA/poly (ε-polycaprolacton) (PCL) composites.
     Polyethylene Glycol (PEG) was firstly selected to coat n-HA and micro-sized apatite(m-HA) particles to understand effects of PEG on surface modification of different size HA. Results showed that with scale of HA rising, Hydrogen bonding between two molecules of PEG and HA would change stronger, and therefore bonding strength between them was weaker than between m-HA and PEG. in aqueous slurry. Secondly, PEG was coated on the surface of n-HA particles by two physical adsorption technical routes to discuss the formation of HA nano-crystals. Results showed that morphology of the HA particles exhibited acicular shape and the same size as without coating HA. PEG appeared on the surface of HA crystals and crystallization of HA particles sintered up to 800℃was not evidently different by two methods. PEG as a medium reagent could inhibit their growth in some directions, and reduced size of HA crystals. However, HA crystals in the second route were not influenced by the modifier.
     Three kinds of surface coating agents like Polyethylene glycol (PEG), poly (propyl oxide)-poly (ethyl oxide)-co-poly(propyl oxide)(Pluronic F127) and poly(D, L-lactide)-co-poly (ethylene glycol) (PELA) were firstly employed to modify the surfaces of n-HA particles, respectively, and then modified n-HA/PDLL A composites were prepared by combining solvent-blend with hot-pressing method. The results showed that PEG-modified n-HA/PDLLA composite displayed 1242.93 % ultrahigh elongation rate.Mechanism of ultrahigh elongation rate of modified n-HA/PDLLA composite was firstly suggested.The linear structure of molecular chain of PDLLA polymer matrix was changed into cross-linked one by interaction with molecules of the modifiers and nano-apatite, and this cross-liked structure of PDLLA molecular chain led to the high elastic and plastic deformation.On the other hand,3-Methylacryloxy propyl-trimethoxy silane (KH560),γ-Methacryloxy propyltrimethoxy silane (KH570) and N-(β-aminoethyl)-γ-aminopropyltrimethoxy silane (KH792) were emloyed to modi- fy the surfaces of n-HA particles, respect-ively, and then the silane modified n-HA/ PCL composites were prepared by combining solvent dispersion, melting-blend and hot-pressing methods. Results showed that three silane coupling agents successfully graft to the surfaces of HA nano-particles. Crystalline temperatures of KH560, KH570 and KH792 modified n-HA/PCL composites were heightened. Measurements of mechanical properties proved that ultimate tensile strength of the silane modified composite was higher than one of the contrastive group.Three silane modifications improve interfacial quality between nano-fillers and PCL polymers. In addition, n-HA particles present uniformly and de-agglomerative dispersion in PCL composites, which resulted from our fabrication technique. Two major factors discussed above lead to an enhanced mechanical properties of PCL matrix composite biomaterials.
     Hydrophile, Alamar Blue and ALP activity of PEG, PELA and F127 modified n-HA/ PDLLA composites were carefully examined. Results showed that good hydrophile was found on three kinds of PEG polymer modified n-HA/PDLLA composite biomaterials and it suggested that PEG modification of n-HA had positive effects on enhancing hydrophile of PDLL-matrix composites. Besides, PEG surface modification of n-HA particles could elevate values of Alamar Blue and ALP activity and this hinted that PEG modification promoted cell compatibility of n-HA/PDLLA composite with cancer of bone.
     Hydrophile, bioactivity, Alamar Blue and ALP activity of the KH560、KH570 and KH792 modified n-HA/PCL composite were carefully mearsured. Results showed that three silane modified n-HA/PCL composites was bioactive materials, through there are longer time to induced like-bone apatite on the surfaces of the silane modified composites. Besides, contents of three kinds of the silane coating agents had the important effects on hydrophile of modified composites. For examples, 2% contents of KH560 in the modified materials were propitious to improve hydrophile, while 5% contents of KH79 were prone to counterwork hydrophile. On the whole, three kinds of of the silane coating agents baffled to improve the cell compatibility of n-HA/PCL composite with cancer of bone.
引文
[1]L F Nielsen.Composite materials.Springer science inc.,2005:1-14.
    [2]M Wang, N Pang. Prediction of effective physical properties of complex multiphase materials.Mater.Sci.Eng R:report,2008,63:1-30
    [3]J K Wessel.Handbook of advanced materials. A john wiley & sons, inc.,2004: 1-64.
    [4]G S Brady.Materials handbook.Fifteenth edition.2006:1-107.
    [5]师昌绪.材料科学技术百科全书.中国大百科全书出版社,1995:1-124.
    [6]严东生,冯端.材料新星——纳米材料科学.长沙湖南科学技术出版社.1997:1-56.
    [7]张立德,牟季美.纳米材料和纳米结构.科学出版社,2002,1:345-354.
    [8]崔福斋,冯庆玲.生物材料学.第二版.清华大学出版社,2004:210-219.
    [9]P Fratzl, R Weinkamer. Nature's hierarchical materials. Progress in Mater. Sci., 2007,52:1263-1334.
    [10]M A Meyers, P Y Chen, A Y M Lin, et al. Biological materials:Structure and mechanical properties.Progress in Mater. Sci.,.2008,53:1-206.
    [11]俞耀庭,张兴栋.生物医用材料.天津大学出版社,2000:137-142.
    [12]F Z Cui, Y Li, J Ge. Self-assembly of mineralized collagen composites. Mater. Sci. Eng.R,2007,57:1-27.
    [13]M J Olszta, X G Cheng, S S Jee, R Kumar, et al. Bone structure and formation: A new perspective.Mater. Sci. Eng. R:report,2007,58:77-116.
    [14]徐国才,张立德.纳米复合材料.化学工业出版社.2001,12:1-147.
    [15]L Y Sun, R F Gibson, F Gordaninejad and J Suhr. Energy absorption capability of nanocomposites:A review. Composite Sci.Tech,2009, in press.
    [16]S V N T Kuchibhatla, A S Karakoti, D Bera and S Seal. One dimensional nanostructured materials.Progress in Mater. Sci..2007,52 (5):699-913.
    [17]J Shen and Y C Chan. Research advances in nano-composite solders. Micro-electronic reliability,2009,49:223-234
    [18]G G Tibbetts, M L. Lake, K L. Strong and B P Rice. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Comp. Sci.Tech,2007,67:1709-1718.
    [19]K Lau, C Gu and D Hui. A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Comp. Part B:Eng.,2006,37:425-436.
    [20]B Fiedler, F H Gojny, M HG Wichmann, M C M Nolte and K Schulte. Fundamental aspects of nano-reinforce dcomposites. Comp. Sci.Tech.,2009,66: 3115-3125.
    [21]I A Guz, A A Rodger, A N Guz and J J Rushchitsky. Developing the mechanical models for nanomaterials. Comp. Part A:Appl. Sci Manuf.,2007,38:1234-1250
    [22]H R Tabar.Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations. Phys. Reports,2000,325:239-310
    [23]S G Mogilevskaya, S L Crouch and H K Stolarski. Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mechanics and Physics of Solids,2008,56:2298-2327.
    [24]G M Odegard, TS Gates, L M Nicholson and K E Wise. Equivalent-continuum modeling of nano-structured materials. Comp. Sci.Tech.,2002,62:1869-1880.
    [25]J B Donnet. Nano and microcomposites of polymers elastomers and their reinforcement. Comp. Sci. Tech.,2003,63:1085-1088.
    [26]刘吉平,郝向阳.聚合物基纳米改性材料.科学出版社.2009,8:2-3.
    [27]S H Chen, L Liu and T C Wang. Small scale, grain size and substrate effects in nano-indentation experiment of film-substrate systems. Int. J. Solids and Structures,2007,44:4492-4504.
    [28]P Ebert.Nano-scale properties of defects in compound semiconductor surfaces. Surf. Sci. Reports,1999,33:121-303.
    [29]王韶晖,赵树高,张萍。聚合物基纳米复合材料的结构与性能.特种橡胶制品,2001,22(6):13-17.
    [30]王一中,武保毕,余鼎声.聚苯己烯/蒙脱土嵌入混杂材料的研究.合成树脂及塑料,2000,17(2):22-24。
    [31]Z P Luo,J H koo.Quantification of layer dispersion degree in polymer layered silicate nanocomposites by transmission electron microscopy.Polym.,2008,49: 1841-1852
    [32]吴秋菊.薛志坚、潦宗能.王怫松.具有伸展链构象聚苯胺/蒙脱土混杂纳米复台物的台成与表征.高分子学报,1999,(5):551-554.
    [33]章永化,龚克成。Sol-Gel法制备有机/无机纳米复台材料的进展。高分子材料科学与工程,1997,13(4):14-18.
    [34]E Manias, A Touny, L Wu, et al. Polypropylene/montmorillonite nano comp-osites. Review of the synthetic routes and materials properties. Chem, Mater,20 01,13:3516-3523.
    [35]M Eskandarany, M Sherif. Mechanical solid state mixing for synth-esizing of SiCp/A1 nano-composites. J Alloys and Compound,1998,279(2):263-271.
    [36]S Hwang, C Nisimura, P Mccromick, et al. Compressive mechanical properties of Mg-Ti-C nano-composite synthesized by mechanical milling. Scripta Matefialia,2001,44(10):2457-2462.
    [37]魏凤琴,薛涛,曾舒,房春燕.改性nano-SiO2/HDPE复合体系性能的研究.化工新型材料,2009,37:63-65.
    [38]赵贵哲,刘亚青.纳米SiO2增强增韧聚丙烯(PP)的研究。吉林大学学报,2005,35:205-209.
    [39]陈艳,王新宇,高宗明,等。聚酰亚胺/二氧化硅纳米尺度复合材料的研究。高分子学报,1997,3(1):73-76.
    [40]何海蜂,崔作林.蒜克正.纳米导电纤维填充天然胶乳复合材料的电性能研究。功能材料,2000,31(2):202-203。
    [41]高延敏,汪萍,王绍明,陈立庄,缪文桦。聚合物基纳米复合材料的研究进展。材料科学与工艺,2008,16(4):551-554。
    [42]刘亚青,赵贵哲。纳米SiO2增强增韧HDPE的研究。华北工学院学报,2005,26:196-199.
    [43]T Xu, C A Gregory, P Molnar, et al. Viability and electrophysiology of neural cell structures generatedby the inkjet printing method. Biomater.,2006,27:3580-35 88.
    [44]P Prang, R Muller, A Eljaouhari,et al.The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based aniso-tropic capillary hydrogels. Biomater.,2006:27:3560-3569.
    [45]G X Ni, W W Lu,B Xu,et al.Interfacial behaviour of strontium containing hydroxyapatite cementwith cancellous and cortical bone. Biomater.,2006,27: 5127-5133.
    [46]L Reclaru,R Ziegenhagen,PY Eschler. Comparative corrosion study of "Ni-free"austenitic stainless steelsin view of medical applications.Acta Biomater., 2006,2:433-444
    [47]S Padilla, J Roman,S S Salcedo,et al. Hydroxyapatite/SiO2-CaO-P2O5 glass materials:In vitrobioactivity and biocompatibility. Acta Biomater..2006,2:331-342.
    [48]H Zreiqat,S M Valenzuela, B B Nissanc,et al. The effect of surface chemistry modification of titanium alloy onsignalling pathways in human osteo blasts.Biomater.,2005,26:7579-7586.
    [49]M Rouahi,E Champion, P Hardouin, K Anselme.Quantitative kinetic analysis of gene expression during humanosteoblastic adhesion on orthopaedic materials. Biomater.,2006,27:2829-2844.
    [50]K Hata,K Ikebe,M Wada,T Nokubi. Osteoblast response to titanium regulates transcriptionalactivity of Runx2 through MAPK pathway. J Biomed. Mater. Res. Part A.,2006,11:446-452.
    [51]L Saldan, V Barranco, J L GCarrasco, et al. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. J. Biomed Mater. Res. Part A.,2006,11:334-344.
    [52]G M Zhao, K L Wang, C G Li. Efect of La2O3 on Corrosion Resistance of Laser Clad Ferrite-Based Alloy Coating. J. Rare earths,2004,22:215-220.
    [53]H wkim, H E Kim, V Salih, J C Knowles. Dissolution control and cellular res-ponses of calcium phosphate coatings on zirconia porous scaffold. J Biomed Mater Res A.2004,68 (3):522-530.
    [54]C Deng, Y Wang, Y P Zhang, J C Gao. In situ laser coating of calcium phosph-ate on TC4 surface for enhancing bioactivity. J Iron and steel Res, intern.,2007, 14(3):73-78.
    [55]F Lusquinos, De Carlos A, J Pou,et al. Calcium phosphate coatings obtained by Nd:YAG laser cladding:physicochemical and biologic properties.J Biomed Mater Res A.2003,64(4):630-637.
    [56]Y Yang, J L Ong, J Tian. Deposition of highly adhesive ZrO(2) coating on Ti and CoCrMo implant materials using plasma spraying. Biomater.2003,24 (4):619-627.
    [57]J Wang, P Layrolle, M Stigter, de Groot K. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy:physicochemical characteristics and cell attachment.Biomater.2004,25(4):583-592.
    [58]B Feng, J Y Cheng, X D Zhang. Interaction of Calcium and Phosphate in Apa-ptite Coating on Titanium. Biomaterials,2002,23:2499-2507.
    [59]J C Gao, Y P Zhang,J Wen, et al. Laser surface Coating of RE Bioceramic Layer on TC4.Trans nonferrous Met Soc China,2000,10 (4):477-480.
    [60]赵荻,黄文.骨修复用生物玻璃复合材料研究进展.功能材料。2008,39:353-357.
    [61]韩艳君,李木森,吕宇鹏.羟基磷灰石生物复合材料的应用进展.化工进展,2004,23,(9):968-971.
    [62]李玉宝,魏杰。纳米生物医用材料及其应用。中国医学科学院学报。2002,24:203-206。
    [63]朱振安,毛远青.骨科生物医用材料.生物骨科材料与临床研究.2005,2:21-23.
    [64]Y M Lee, Y J Park. Substrate Material for Hard Biotissue Biomater,2000,21 (2):153-159.
    [65]光善仪,沈玉华,戴晨伟,张进,徐洪耀.羟基磷灰石/高分子复合生物材料的研究进展.高分子材料科学与工程.2008,24:10-13.
    [66]韩长菊,陈庆华,杨喜昆,叶金凤,高伟。纳米羟基磷灰石/胶原蛋白复合支架材料的制备与性能研究。材料导报,2007,21:139-150。
    [67]李瑞琦,张国平,任立中,沙子义,高宏阳,董威,赵峰,王伟。纳米羟基磷灰石及其复合生物材料的特征及应用。中国组织工程研究与临床康复,2008,12:3746-3750。
    [68]S Manara, F Paolucci, B. Palazzo,et al. Electrochemically-assisted deposition of biomimetic hydroxyapatite-collagen coatings on titanium plate. Inorganica Chimica Acta,2008,361,(6,5):1634-1645
    [69]彭超。纳米羟基磷灰石/壳聚糖复合BMP再血管化的初步实验研究。四川大学硕士论文,2007。
    [70]A Jungwirth, J Pinski, G Galvan, et al. Inhibition of growth of androgen-indep-endent DU-145 prostate cancer in vivo by luteinising hormone-releasing hormone antagonist cetrorelix and bombesin antagonists RC-3940-Ⅱ and RC-3950-II.The J.Steroid Biochem. Molecular Biology,1990,37 (6):1061-1067.
    [71]南开辉,王迎军。复合纳米生物医用材料的研究。材料科学与工程学报.2006,24:156-159。
    [72]刘爱红,孙康宁,李爱民,魏源,孙昌.CNTs/HAp复合材料及其动物离体组织热效应研究。功能材能,2006,37:1322-1324。
    [73]B Fiedler, F H Gojny, M H G Wichmann, M C M Nolte and K Schulte。 Fundamental aspects of nano-reinforced composites.Composites Sci. Tec., 2006,66:3115-3125
    [74]Y F Yang, G S Gai and S M Fan.Surface nano-structured particles and characterization. International Journal of Mineral Processing,2006,78:78-84
    [75]B Jiang and G J Weng. A theory of compressive yield strength of nano-grained ceramics. International Journal of Plasticity,2004,20:2007-2026
    [76]E T Thostenson, Z F Ren and T W Chou. Advances in the science and techn-ology of carbon nanotubes and their composites:a review. Composites Sci. Tec., 2001,61:1899-1912.
    [77]J Luo and X Wang.On the anti-plane shear of an elliptic nano in-homogeneity European Journal of Mechanics-A/Solids,2009,28:926-934.
    [78]Y L Tai, J S Qian, Y C Zhang and J D Huang.Study of surface modi-fication of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). Chemical Engineering Journal,2008,141:354-361.
    [79]S M Mukhopadhyay, R V Pulikollu and A K Roy. Surface modification of a microcellular porous solid:carbon foam. Applied Surface Sci.,2004,225: 223-228
    [80]S Jacobson and S Hogmark. Surface modifications in tribological cont-tacts. Wear,2009,266:370-378
    [81]T Xu, J H Yang, J W Liu and Q Fu.Surface modification of multi-walled carbon nanotubes by 02 plasma. Applied Surface Science,2007,253:8945-8951
    [82]E Ruckenstein and Z F Li. Surface modification and functionalize-tion through the self-assembled monolayer and graft polymerization. Advances in colloid and interface Sci.,2005,113:43-63
    [83]T S Dong, CX Cui, SJ Liu, W Yang and FC Liu.Preparation of nano crystal modificator and its modification mechainsm.Transactions of non-ferrous metals society of China,2007,17:823-827.
    [84]T Yokoi, S Iwamatsu, S Komai, T Hattori and S Murata.Chemical modification of carbon nanotubes with organic hydrazines. Carbon,2005,43:2869-2874.
    [85]C A Orta, V J Delgado, M G Velazquez, E H Hernandez, M G Padilla and F J Rodriguez. Surface modification of carbon nanotubes with ethylene glycol plasma. Carbon,2009,47:1916-1921.
    [86]S Novak, J Kovac, G Drazic, J M F Ferreira and S Quaresma. Surface characterisation and modification of submicron and nanosize sili-con carbide powders. J. European Ceramic Society,2007,27:3545-3550.
    [87]M Z Rong, M Q Zhang, H C Liang and H M Zeng. Surface modification and particles size distribution control in nano-CdS/polystyrene composite film. Chem.l physics,2003,286:267-276.
    [88]Y L Tai, J S Qian, Y C Zhang and J D Huang. Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). Chem Eng J,141:354-361.
    [89]S M Mukhopadhyay, P Joshi and R V Pulikollu. Thin Films for Coating Nanomaterials.Tsinghua Science & Technology,2005,10:709-717.
    [90]G Goncalves, P A A P Marques, R J B Pinto, T Trindade and C P Neto. Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Composites Science and Technology.2009,69:1051-1056.
    [91]Y Wang, Y C Ke, J Z Li, S Q Du and Y F Xia.Dispersion behavior of core-shell silica-polymer nanoparticles. China particuology,2007,5:300-304
    [92]L M Hamming, R Qiao, P B Messersmith and L C Brinson.Effects of dispersion and interfacial modification on macroscale properties of TiO2 polymer-matrix nano-composites. Composites Sci.Tech,2009,69:1880-1886
    [93]M Z Rong, M Q Zhang, H C Liang and H M Zeng. Surface modification and particles size distribution control in nano-CdS/polystyrene composite film. Chemical Physics,2003,286:267-276
    [94]Y Y Sun, Z Q Zhang and C P Wong. Study on mono-dispersed nano-size silica by surface modification for underfill applications. Journal of Colloid and Interface Science,2005,292:436-444
    [95]A P Zhu, Z H Shi, A Y Cai, F Zhao and T Q Liao. Synthesis of core-shell PMMA-SiO2 nanoparticles with suspension-dispersion-polymerizati-on in an aqueous system and its effect on mechanical properties of PVC composites. Polymer Testing,2008,27:540-547
    [96]W Liu. Catalyst technology development from macro-micro-down to nano-scale.China Particuology,2005,3:383-394
    [97]C J McHargue, S X Ren, P S Sklad, L F Allard and J Hunn. Preparation of nanometer-size dispersions of iron in sapphire by ion implant-ation and annealing. Nuclear Instruments and Methods in Physics research Section B: Beam Interactions with Materials and Atoms,1996,116:173-177.
    [98]J Foster, S Singamaneni, R Kattumenu and V Bliznyuk. Dispersion and phase separation of carbon nanotubes in ultrathin polymer films. Journal of Colloid and Interface Sci.,2005,287:167-172.
    [99]C J McHargue, S X Ren and J D Hunn.Nanometer-size dispersions of iron in sapphire prepared by ion implantation and annealing. Mater.Sci. Eng. A,1998, 253:1-7.
    [100]V Castelvetro and CD Vita.Nanostructured hybrid materials from aqueous polymer dispersions. Advances in Colloid Interf. Sci.,2004,108-109:167-185.
    [101]Y C Ke and P Stroeve. Polymer-Layered Silicate and Silica Nano-compo-sites: modification and Dispersion of Silicate and Silica.2005:69-118.
    [102]J H Park, P S Alegaonkar, S Y Jeon and J B Yoo. Carbon nanotube composite: Dispersion routes and field emission parameters. Compo-sites Sci.Tech,2008, 68:753-759
    [103]S M Gallegos, M Herrero, C Barriga, F M Labajos and V Rives. Dispersion of layered double hydroxides in poly(ethylene tereph-thalate) by in situ polymerization and mechanical grinding. Applied Clay Science,2009,45: 44-49
    [104]N H Tran, M A Wilson, A S Milev, G R Dennis, G S K Kannangara and R N Lamb. Dispersion of silicate nano-plates within poly (acry lic acid) and their interfacial interactions. Sci.Tech. Advanced Mater.,2006:786-791.
    [105]S Wang, R Liang, B Wang and C Zhang. Dispersion and thermal conductivity of carbon nanotube composites. Carbon,2009,47:53-57.
    [106]A Esawi and K Morsi.Dispersion of carbon nanotubes (CNTs) in aluminum powder.Composites Part A:Applied Science and Manufacturing,2007,38:646-650.
    [107]B Wetzel, P Rosso, F Haupert and K Friedrich. Epoxy nanocomposites fracture and toughening mechanisms.Engineering Fracture Mechan-ics.2006,73: 2375-2398.
    [108]X L Xie, Y W Mai and X P Zhou. Dispersion and alignment of carbon nano tubes in polymer matrix:A review. Materials Sci.Eng.R:Reports,2005,49: 89-112
    [109]B Bittmann, F Haupert and A K Schlarb.Ultrasonic dispersion of inorganic nano-particles in epoxy resin.Ultrasonics sonochemi-stry,2009,16:622-628
    [110]B J Blaiszik, N R Sottos and S RWhite. Nanocapsules for selfhealing materials. Comp. Sci. Tech.,2008,68:978-986
    [111]F A Bottino, G D Pasquale, E Fabbri, A Orestano and A Pollicino. Influence of montmorillonite nano-dispersion on polystyrene photo-oxidation. Polymer Degradation and Stability,2009,94:369-374
    [112]S W Shang,J W Williams and K J M Soderholm. Work of adhesion influence on the rheological properties of silica filled polymer composites. Work of adhesion influence on the rheological properties of silica filled polymer composites. Journal of Materi-als Science,1995,30:1573-4803.
    [113]A P MarquesT,R L Reis. Hydroxyapatite reinforcement of different starch-based polymers affectsosteoblast-like cells adhesion/spr-eading and proliferation. Materials Science and Engineering C,2005,25:215-229.
    [114]M Sumita, Y Tsukumo, K Miyasaka and K Ishikawa. Tensile yield stress of polypropylene composites filled with ultrafine particles. Journal of Materials Science,1983,18:1758-1764.
    [115]B C Kim, S W Park and DG Lee。Fracture toughness of the nano-particle reinforced epoxy composite. Composite Structures,2008,86:69-77.
    [116]LM P Li, J H Wang and M Gong.High strength and high fracture toughness ceramic-iron aluminide (Fe3Al) composites. Materials Letters,2006,60:883-887.
    [117]S W Kim, W S Chung, K S Sohn, CY Son and S Lee.Improvement of flexure strength and fracture toughness in alumina matrix composites rein-forced with carbon nano-tubes. Materials Science and Engineering:A,2009,517:293-299
    [118]A Carpinteri, N Pugno and S Puzzi.Strength vs.toughness optimi-ztion of microstructured composites.Chaos, Solitons & Fractals,2009,39:1210-1223.
    [119]候鹏。磁性纳米复合生物材料的制备及表征,西南交通大学硕士论文,1997.
    [120]全大萍,袁润章,卢泽俭,廖凯荣,王海华。高分子量聚DL-丙交酯的合成及热降解。应用化学,2000,17(3):268-271。
    [121]C Aparicio,1J M Manero,F Conde,M Pegueroles,et al. Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants. Journal of Biomedical Materials Research Part A.2007,9:521-529.
    [122]O D Schneider, S Loher,T J Brunner, et al. Cotton Wool-Like Nano-composite Biomaterials Preparedby Electrospinning:In vitro Bioactivity and osteogenic differentiation of human mesenchymal stem cells.J. Biomed. Mater. Res. Part A.2008,3:350-362.
    [123]E Bodrumlu,M Muglali,M Sumer,T Guvenc. The Response of subcutaneous Connective Tissue to a New Endodontic filling Material J Biomed Mater. Res.Part A.2008,9:463-467.
    [124]M Schuler, G R Owen,D W Hamilton,et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: A cell morphology study. Biomater.,2006,27:4003-4015
    [125]P Miranda,E Saiz,K Gryn,A P Tomsia.Sintering and robocasting of β-tricalcium phosphate scaVolds for orthopaedic applications. Acta Bio-materialia.2006,2:457-466.
    [126]A Doraiswamy,C Jin, R J Narayan,et al. Two photon induced poly merization of organic-inorganic hybrid biomaterials for micro structured medical devices. Acta Biomaterialia.2006,2:267-275.
    [127]Y Cao, G Mitchell, A Messina,et al.The influence of architecture on degradation and tissue ingrowth into three-dimensional poly (lactic-co-glycolic acid) scaffolds in vitro and in vivo. Biomater.2006,27:2854-2864.
    [128]T Ganno, S Yamada, N Ohara,et al. Early gene expression analyzed by cDNA microarray and real-time PCR in osteoblasts cultured with chitosan monomer. 2007,1:188-194.
    [129]戴建国.生物材料生物相容性的分子生物学研究进展.国外医学生物医学工程分册.2004,27:360-364
    [130]杨晓芳.生物相容性评价的发展趋势.国外医学生物医学工程分册.199
    9,22:236-242.
    [131]M Ho,D Yu,M C Davidsion,G A Silva, et al. Comparison of standard surface chemistries for culturing mesenchymal stem cells prior to neural different tiation.Biomater.,2006,27:4333-4339.
    [132]奚廷斐,杨晓芳。生物材料生物相容性的分子水平评价研究.生物医学工程学杂志,1999,16(增刊):63-66。
    [133]杨晓芳,奚廷斐。生物材料生物相容性评价研究进展。生物医学工程学杂志,2001,18(1):123-128。
    [134]J Ni, M Wang. In vitro evaluation of hydroxyapatite reinforced polyhudro-butyrate composite. Materials science and engineering C,2002,20:101-109.
    [135]T Kokubo, T Matsushita, H Takadama,T Kizuki. Development of bio-active materials based on surface chemistry.Journal of the European ceramic socity.2009,29:1267-1274.
    [136]G Stylios, T Wan, P Giannoudis. Present status and future potential of en hancing bone healing using nanotechnology.Injury.2007,38:63-74
    [137]卢志华,孙康宁。生物材料体外评价方法研究进展。生物骨科材料与临床研究。2008,5:40-42。
    [138]梁卫东,石应康。细胞培养法评价生物材料生物相容性研究进展。生物医学工程学杂志,1999:16(1):86-90。
    [139]陈建洪,唐倩,田词,梁焕友,陈晓,吴刚。新型纳米仿生骨植入材料的生物相容性的初步研究。中山大学学报(医学科学版),2008,29:629-632。
    [140]竺亚斌.高分子材料表面化学改性的方法:提高材料的生物相容性.宁波大学学报(理工版),2001,14:77-80。
    [140]郝建原,邓先模.复合生物材料的研究进展.高分子通报.2000,5:1-8.
    [141]Y Liu, M Wang. Developing a composite material for bone tissue repair. Current appl. phys.,2007,5:547-554.
    [142]W P Cao, L L Hench.Bioactive materials.Ceramics international.1996,22: 493-507.
    [143]R Murugan,S Ramakrishna. Aqueous mediated synthesis of biore-sorblable nanocrystalline hydroxyapaptite. J crystal growth,2005,274:209-213.
    [144]CJ Liao,FH Lin,K S chen,J S Sun.Thermal decomposition and re-constitution of hydorxyapatite in air atmosphere.Biomaterials.1999,20:1807-1813.
    [145]R Langer, D Atirrell. Designing materials for biology and medicine. Nature, 428:487-492.
    [146]R A Varia, H D Wagner. Framework for nanocomposites. Mater. today,2004, 23:32-37.
    [147]A L Oliveira,I B Leonor, P B Malafaya,et al.Taioring the bioacti-vity of natural origin inorganic-polymeric based systems.Key Eng. Mater.2003,240-242:111-142.
    [148]K Anselme. Osteoblast adhesion on biomaterials. Biomater.,2000,21:667-681.
    [147]A L Oliveira, I B Leonor,P B Malafaya,et al.Taioring the bioactivity of natural origin inorganic-polymeric based systems.Key Eng. Mater.2003,240-24 2:111-142.
    [148]H Fischer. Polymer nanocomposites:from fundamental research to specific ap-plications. Mater. Sci. Eng. C.2003,23:763-772
    [149]沈钟,王果庭.胶体与表面化学(第二版),化学工业出版,1997:125—150.
    [150]张立德,牟季美.纳米材料学.辽宁科学技术出版社,1994:24—43.
    [151]N Thouraya, H Beama, M S Jean, et al. Substitution mechanism of alkali metals for strontium in strontium hvdroxyapatiteMater. Res. Bulletin.2003,38: 221-227.
    [152]张敏,高家诚,王勇,陈功明.HA生物陶瓷的掺杂改性研究进展.材料 导报.2005,19(2):20-22.
    [153]徐振华,张永专,颜涛,等.羟基磷灰石生物陶瓷改性研究进展.生物骨科材料与临床研究.2006,3(3):26-29.
    [154]江捍平.纳米羟基磷灰石的研究进展.中国医学工程.2004,12(6):32-35.
    [155]任卫,曹献英,冯凌云,等.纳米羟基磷灰石合成与表面改性的途径和方法.硅酸盐通报.2002,1:38-43.
    [156]S C Liu, Q Wang. Solid phase grafting of n-hydroxymethy lacrylamide onto polypropylene during pan milling. J Appl.Polym Sci,2000,78:2191-2197.
    [157]GC Dong, JS Sun, et al.A study on grafting and characterizeation of HMDI-modified calcium hydrogenphosphate.Biomater.,2001,22 (23):3179-89.
    [158]L B Nicholas,J Wilson.Surface modification of hydroxylapatite. Part Ⅰ:Dode-cyl alcohol. Biomater.,2003,24(21):3671-3679.
    [159]崔阳,刘一,黄威.聚乳酸/羟基磷灰石复合骨修复材料的改性及应用特征.中国组织工程研究与临床康复,2007,11:6243-6247.
    [160]E D Vega, J C Pedregosa and G E Narda. Interaction of oxovanadium(IV) with crystalline calcium hydroxyapatite:surface mechanism with no structural mo-dification. Journal of Physics and Chemistry of Solids,1999,60:759-766.
    [161]韩长菊,陈庆华,杨喜昆,叶金凤,高伟。纳米羟基磷灰石/胶原蛋白复合支架材料的制备与性能研究。材料导报,2007,21:139-150。
    [162]李瑞琦,张国平,任立中,沙子义,高宏阳,董威,赵峰,王伟。纳米羟基磷灰石及其复合生物材料的特征及应用。中国组织工程研究与临床康复,2008,12:3746-3750。
    [163]彭超。纳米羟基磷灰石/壳聚糖复合BMP再血管化的初步实验研究。四川大学硕士论文,2007.
    [164]南开辉,王迎军。复合纳米生物医用材料的研究。材料科学与工程学报.2006,24:156-159。
    [165]刘爱红,孙康宁,李爱民,魏源,孙昌.CNTs/HAp复合材料及其动物离体组织热效应研究。功能材能,2006,37:1322-1324。
    [166]K Anselme.Osteoblast adhesion on biomaterials.Biomater.,2000,21:667-681.
    [167]V erheyen C C PM,W ijn J R de,Blittersw ijk C A V an,et al.Evaluation of hydroxyapatiteopoly (l2lactide) composites Mechanical beha-vior. J Biomed Mater Res.1992,26:1277-1296.
    [168]F Nagata, T Miyajima, Y Yokogawa. A method to fabricate hydroxyl apatite/ poly(lactic acid)microspheres intended for biomedical application. J European Ceramic Soc.,2006,26 533-535.
    [169]C C PM Erheyen, W ijn J R de, Blittersw ijk C A V an, et al. Hydroxy-apatite /poly(L-actide) composites:An animal study on push-out strengths and interfa-ce histology.J Biomed Mater Res.1993,27:433-444.
    [170]S B Zhou,X T Zheng,X J Yu,et al. Hydrogen Bonding Interaction of Poly(D,L-Lactide)/hydroxyapatiteNanocomposites. Chem. Mater.2007,19:247-253.
    [171]全大萍,李世普,袁润章.聚DL 2丙交酯/羟基磷灰石(PDLLA/HA)复合材料—Ⅱ:硅烷偶联剂处理羟基磷灰石表面的作用研究.复合材料学报,2000,17(4):114-118.
    [172]全大萍,廖凯荣,卢泽俭,王海华.聚DL-丙交酯o羟基磷灰石(PDLLA/HA)复合材料:(Ⅳ)HA表面处理及PDLLA界面作用研究。复合材料学报,2001,18:22-26。
    [173]J F Hoffmann. Update on biodegradable plating systems:theory and results. Otolaryngol Head Neck Surg,2000,8(4):288-293.
    [174]W Bonfield.Composites for bone replacement.J biomed. Eng.,1988,10:522-
    [175]杨安乐,孙康,吴人洁.聚ε-己内酯的合成、改性和应用进展.高分子通报.2000,2:52-64.
    [176]H W Kim. Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydr-oxyapatite porous bone scaffold for drug delivery. Biomater.,2004,25:1279-1287.
    [177]S C Wong, A Baji.Fracture strength and adhesive strength of hydroxyapatite-filled polycaprolactone。J Mater Sci:Mater in Med.,2008,19:929-936.
    [178]JY Hao, M L Yuan, X M Deng. Biodegradable and biocompatible nano-com posites of poly (a-caprolactone) with hydroxyapatite nano-crystals:Thermal and mechanical propeties. J Appl.Polym.Sci.,2002,86:676-683.
    [179]L Fambri,C Migliaresi,E Piskin.Poly(D,L-lcactide/s-caprolactone)/hydroxy-apatite composites.Biomaterials.2000,21:2147-2154.
    [180]徐艺展,何丹,肖秀峰,刘榕芳.羟基磷灰石/聚己内酯生物复合材料的制备及其生物相容性.华东理工大学学报.2006.32(6):709-713.
    [181]G F Payne. Biopolymer-based materials:the nanoscale components and their hierarchical assembly. Current opinion in chemical biology,2007,11:214-219.
    [182]P Lecle're, M Surin,P Brocorens,M Cavallini,F Biscarini,R Lazzaroni. Supra molecular assembly of conjugated polymers:From molecular engineering to solid-state properties. Materials Science and Engineering R.2006,55:1-56.
    [183]J M Park, D S Kim,S R Kim.Interfacial properties and microfailure degradation mechanisms of bioabsorbable fibers/poly-l-lactide composites using micromechanical test and nondestructive acoustic emission. Composites Science and Technology.2003,63:403-419.
    [184]X M Deng, J Y Hao, C S Wang. Peparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxylapatite nano crysals. Biomater.,2001,22:867-2873.
    [185]Y Shikinami,M O kuno. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA):Part I Basic charac teristics. Biomater.,1999,20:859-877.
    [186]I Nenad, U Dragan.Synthesis andapplication of hydroxyapatite//polylactide composite biomaterial. Appl.surf. Sci.,2004,238:314-319.
    [187]Laurence M M, Thomas L M, Pierre E B et al. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials,2006,27:905-916.
    [188]Z K Hong, P B Zhang, C L He, et al. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite:Mechanical properties and biocompatibility. Biomaterials.2005,26:6296-6304.
    [189]Z K Hong, X Y Qiu, J R Sun, et al. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals.Polymer.2004,45:6699-6706.
    [190]P S Uskokovic, C Y Tang, C P Tsui, et al. Micromechanical properties of a hydroxyapatite/poly-l-lactide biocomposite using nanoindentation and modu-lus mapping.Journal of the Euro.ceramic Soc.,2007,27:1559-1564.
    [191]M Baro, E Sa'nchez, A Delgado, A Perera, C E'vora, In vitro-in vivo chara cterization of gentamicin bone implants.J Contr. Rele.,2002,83:353-364
    [192]X L Xu, X S Chen, A X Liu, Z K Hong, X B Jin. Electrospun poly (L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocompositefibers. Euro. Polym. J., 2007,43:3187-3196
    [193]I Balac, P S Uskokovic, N Ignjatovic, R Aleksic, D Uskokovic. Stress analysis in hydroxyapatite/poly-L-lactide composite Biomaterials.Computational Mater. Sci..2001,20:275-283.
    [194]E Suljovrujic', N Ignjatovic', D skokovic', M Mitric',M Mitrovic, STomic'. Radiation-induceddegradationof hydroxyapatite/polyL-lactide composite bio-materials. Radiation Phy. Chem.,2007,76:722-728
    [195]J M Park,D S Kim,S R Kim.Interfacial properties and microfailure degradation mechanisms of bioabsorbable fibers/poly-l-lactide composites using micro mechanical test and nondestructive acoustic emission. Comp. Sci. Tech.,20 03,63:403-419.
    [196]S M Zhang, J Liu, W Zhou, L. Cheng, X D Guo. Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fix-ation composites. Current Applied Physics.2005,5:516-518.
    [197]M Todo, S D Park, K Arakawa, Y Takenoshita. Relationship between micro structure and fracture behavior of bioabsorbable HA/PLLA composites. Composites:Part A.2006,37:2221-2225.
    [198]T Kaito, A Myoui, K Takaoka, et al. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyl apatite composite. Biomater.,2005,26:73-79.
    [199]I Balac', M Milovancvevic', C Y Tang, et al. Estimation of elastic properties of a particulate polymer composite using a face-centered cubic FE model. Mater. Letters.2004,58:2437-2441.
    [200]Q Liu, JRD Wijn,CAV Blitterswijk. Nano-apatite/polymer composites:mecha nical and physicochemical characteristics.Biomaterials.1997,18:1263-1270.
    [201]Y X Pang,X Bao.Influence of temperature, repening time and calci-nations on the morphology and crystallinity of hydroxyapatite nanoparticls. Journal of the European ceramic society.2003,23:1697-1704.
    [202]Y M Jiang, X H Li, B Feng, J Weng. The Effect of Different Surface Modi-fication agentson The dispersion of nano-hydroxyapatite (n-HA) crystallites. Key Eng. Mater.,2004, (18):1046-1051.
    [203]姜永梅,姜萍,翁杰。羟基磷灰石(HA)表面改性对HA/聚乳酸复合材料力学性能的影响.功能材料增刊,2004,35:2424-2426.
    [204]S B Zhou, X T Zheng, X J Yu, et al. Hydrogen Bonding Interaction of Poly(D, L-Lactide)/hydroxyapatite Nanocomposites.Chem. Mater.,2007,19:247-253。
    [205]C F Qiu,X F Xiao,R F Liu. Biomimetic synthesis of spherical nano-hydroxyl apatite in the presence of polyethylene glycol.ceramics Intern.,2008,34:1747-1751.
    [206]A J Garci.Surface Modification of Biomaterials.Principles of regenerative medicine.2008:656-665
    [207]N C Bleach,S N Nazhat,K E Tanner.Effect of filler content on mechanical and dynamic mechanical properties of particulate bi phasic calcium phosphate-polylactide composites.Biomaterials.2002,23:1579-1585.
    [208]V B Chalivendra, S S Hong, I Arias, J Knap, et al. Experimental validation of large-scale simulations of dynamic fracture along weak planes.Intern J impact Eng.,2009,36:888-898.
    [209]U Icardi, L Ferrero. Impact analysis of sandwich composites based on a refined plate element with strain energy updating.Composite structure.2009,89:35-51.
    [210]E M Hunt, S Malcolm, M L Pantoya, F Davis.Impact ignition of nano-and micron composite energetic materials. International journal of impact engineering.2009,36:842-846.
    [211]A Siriruk, Y J Weitsman,D Penumadu. Polymeric foams and sandwich composites:Material properties, environmental effects, and shear-lag modelling.Comp. Sci Tech.,2009,69:814-820.
    [212]K Anselme.Osteoblast adhesion on biomaterials.Biomater.,2000,21:667-681.
    [213]C J Liao,F H Lin, K S Chen,J S Sun. Thermal decomposition and recon stitution of hydroxy patite in air atmosphere. Biomater,1999,20:1807-1813.
    [214]H M Kim. Ceramic bioactivity and related biomimetic strategy. Current opinion in solid state and materials science,2003,7:289-299.
    [215]R Murugan, S Ramakrishna.Aqueous mediated synthesis of bio resor-bable nanocrystalline hydroxyapatite. Journal of crystal growth,2005,274:209-213.
    [216]Yoshihiro Hojo, Yoshihisa Kotani, Manabu Ito, Kuniyoshi Abumi,et al.A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion cage. Biomaterials 26 (2005) 2643-2651.
    [217]Y Shikinami, Y Matsusue, Takashi Nakamura.The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles poly L-lactide (F-u-HA/PLLA).Biomaterials 26(2005) 5542-5551.
    [218]N Ignjatovic, S Tomic, M Dakic,et al. Synthesis and properties of hydroxy apatite/poly-L-lactidecomposite biomaterials.Biomater,1999,20:809-816.
    [219]T Furukawa, Y Matsusue, TYasunaga, Y Shikinami, et al. Biodegrad-ation behavior of ultra-high-strength hydroxyapatite/poly (L-lact ide) composite rods for internal "xation of bone fractures. Bio-materials.2000,21:889-898.
    [220]C Deng, J Weng, X Lu, S B Zhou, J X Wan, et al. Preparation and in vitro bioactivity of poly(D,L-lactide) composite containing. Materials Science and Engineering C,2008,28:1304-1310.
    [221]J K Pandey, K RReddy, A P Kumar, R P Singh.An overview on the degradability of polymer nanocomposites.Polymer Degradation and Stability. 2005,88:234-250.
    [222]J Russias, E Saiz, R K Nalla, K Gryn, R O Ritchie,A P Tomsia. Fabrication and mechanical properties of PLA/HA composites:A study of in vitro degradation. Materials Science and Engineering C,2006,26:1289-1295.
    [223]I B Leonor, A Ito,K Onuma,N Kanzaki,R L Reis.In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials:an in situ study using atomic force microscopy. Biomaterials.200324:579-585.
    [224]E Mavropoulos, A M Rossi,N C C Rocha, G A Soares,et al.Dissolution of calcium-deficient hydroxyapatite synthesized at different conditions.Materials characterization.2003,50:203-207.
    [225]全大萍,卢泽俭,等.聚d1-丙交酯/羟基磷灰石复合材料Ⅲ.体内外降解性能研究.功能高分子学报,2000,13:41-45.
    [226]X M Li, Q L Feng, F Z Cui.In vitro degradation of porous nano-hydroxy apatite/collagen/PLLA scaffold reinforced by chitin fibres. Mater. Sci. Eng. C.2006,26:716-720.
    [227]D R Paul, L M Robeson.Polymer nanotechnology:Nanocomposites. Polym., 2007,49:3187-3204。
    [228]J M Pachence, M P Bohrer,J Kohn.Biodegradable polymers.Third edition.2007: 323-339.
    [229]M Wang, CY Yue,B Chua. Production and evaluation of hydroxyapatite rein forced polysulfone for tissue replacement. J Mater Sci:Mater Med.,2001,9: 821-826.
    [230]K Y Chang, C C Lin, G H Ho, Y P Huang, Y D Lee. Synthesis and self-assembly of comb-like amphiphilic Doxifluridine-poly(ε-caprolactone)-gra ft-poly(y-glutamic acid) copolymer.Polymer,2009,50:1755-1763.
    [231]BQ Chen, K Sun. Mechanical and dynamic viscoelastic properties of hydroxy apatite reinforced poly(ε-caprolactone).Material Properties.2005,24:978-982
    [232]B Q Chen, K Sun. Poly (ε-caprolactone)/hydroxyapatite composites:effectsof particle size, molecular weight distribution and irra-diation on interfacial inter action and properties.Polymer testing.2005,24:64-70
    [233]X W Wei, C Y Gong, S Shi, S Z Fu, et al. Self-assembled honokiol-loaded micelles based on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolac tone) copolymer. Inter national journal of pharmaceutics.2009,369:170-175.
    [234]Y Wan, X L Lu, S Q Dala, J Zhang。Thermophysical properties of poly capro-lactone/chitosan blend membranes.Thermochimica Acta.2009:487:33-38
    [235]E Lbarboure, A Baron, E Papon,J R Hernandez. Self-assembly of graft poly urethanes having both crystallizable poly (ε-caprolac-tone) blocks and soft poly (n-butyl acrylate)segments.Thin solid film,2009,517:3281-3286.
    [236]F Qiu, J Feng, D Q Wu, X-Z Zhang,R X Zhuo.Nano-sized Micelles Self ass embled from amphiphilic dextran-graft-methoxypolyethylene glycol/poly (ε-caprolactone) copolymers.Euro. Polym. J.,2009,45:1024-1031.
    [237]K Zeng,L Wang, SX Zheng, XF Qian. Self-assembly behavior of hepta (3,3,3-trifluoropropyl) polyhedral oligomeric silse squioxane-capped poly(ε-capro-lactone) in epoxy resin:Nanostructures and surface properties.Polymer,2009, 50:685-695.
    [238]X D Wang, Y J Wang, K Wei, et al. Drug distribution within poly (ε-capro lactone) microspheres and in vitro release.Journal of materials processing tech., 2009,209:349-354.
    [239]B T Lee, D V Quang, M H Youn et a. Fabrication of biphasic calcium phos phates/poly(ε-caprolactone) composites by melt infiltration process.J Mater Sci: Mater Med.2008,19:2223-2229.
    [240]S C Wong,A Baji. Fracture strength and adhesive strength of hydroxylapatite-filled polycaprolactone.J Mater Sci:Mater Med.2008,19:929-936
    [241]M Neumann,M Epplel.Composites of Calcium Phosphate and Polymers as Bone Substitution Materials. European Journal of Trauma.2006,2:124-130.
    [242]X.Deng, S.Zhou,X.Li,J.Zhao,M.Yuan. In vitro degradation and re-lease pro-files for poly-dl-lactide-poly(ethylene glycol) micro-spheres containing human serum albumin. J Control Release,2001,71:165-73.
    [243]C Deng,J Weng,X Lu,S B Zhou,J X wan,S X Qu,B Feng,X H Li,Q Y Cheng. Mechanism of ultrahigh elongation rate of poly (D, L-lactide)-matrix composite biomaterial containing nano-apatite fillers, Materials letter,2008,62: 607-612
    [244]X B Yang, X Lu, J J Ge, J Weng.Effect of a Silane Coupling Agent on Mech-anical Properties of Hydroxyapatite/Polycaprolactone Composites. Key Eng. Mater.,2008,361-363:531-534
    [245]廖建国,王学江,左奕,等。硅烷偶联剂对纳米羟基磷灰石表面改性的研究。无机材料学报,2008,23:145-149.
    [246]全大萍,卢泽俭,李世普,袁润章.聚DL2丙交酯/羟基磷灰石(PDLLA/ HA)
    复合材料(Ⅰ):制备及力学性能.中国生物医学工程学报.2001,6:485-488.
    [247]Y Shikinami,M Okuno.Mechanical evaluation of novel spinal inter body fusi-on cages made of bioactive, resorbable composites. Biomater.,2003,24:3161-3170.
    [248]X T Zheng, S B Zhou, X H Li, J Weng. Shape memory properties of Poly (D, L-lactide)/hydroxyapatite composites. Biomaterials.2006,27:4288-4295
    [249]H Tanaka,T Watanabe, M Chikazawa, K Kandori, T Ishikawa。TPD, FTIR, and Molecular Adsorption Studies of Calcium Hydroxyapatite Surface Modified with Hexanoic and Decanoic Acids。Journal of Colloid and Interface Sci.1999,214:31-37
    [250]H Tanaka,T Watanabe, M Chikazawa, K Kandori, T IshikawaSurface. Structure and properties of calcium hydroxyapatite modified by Hexa methyldisilazan.J Coll.Interf Sci,1998,206:205-211.
    [251]M Hashimoto,H Takadama, M Mizuno,T Kokubo. Enhancement of mech-anical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment.Materials research bulletin.2006.41:515-524.
    [252]J Z Luo, R Seghi, J Lannutti.Effect of silane coupling agents on the wear resistance of polymer-nanoporous silica gel dental composites. Materials science and engineering C,1997,5:15-22
    [253]E P Plueddemann.Principles of interfacialcouplingin fibre-rein forced plastics. Intern J adhesion and adhesives,1981,1:305-310.
    [254]Y Gang, Z Liu, J Zhan, F X Ding, N J Yuan.Impacts of the surface charge property on protein adsorption on hydroxyapatite. Chemical Engineering Journal.2002,87:181-186.
    [255]Z H Dong, Y B Li, Q Zou.Degradation and biocompatibility of porous nano-hydroxylapatite/polyurethane composite scaffold for bone tissue engineering。 Appl. Surf. Sci.2009,255:6087-6091.
    [256]T Kokubo,T Matsushita, H Takadama,T Kizuki.Development of bioactive materials based on surface chemistry.Journal of the European ceramic socity.2009,29:1267-1274.
    [257]R Murugan,S Ramakrishna. Aqueous mediated synthesis of biore-sorbable na-nocrystalline hydroxyapatite. Journal of Crystal Grow-th.2005,274:209-213
    [258]T Kokubo.Design of bioactive bone substitutes based on biominer-alization pro cess. Materials Science and Engineering c.2005,25:97-104.
    [259]H P Zhang, X Lu, Y Leng, L M Fang, et al. Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coup ling agents. Acta materialia.2009.in corre-cted proof.
    [260]S Lazic, J K Popovic,S Zec,N Miljevic. Property of hydroxyapap tite crystal-llized from high temperature alkaline solutions.J.crystal growth,1996,165:124-128.
    [261]S W K Kweh, K A Khor, P Cheang.The production and characterization of hy-droxyapatite (HA) powders. Journal of Materials Processing Tech.,1999,89-9 0:373-377.
    [262]H Morgan, R M Wilson, J C Elliott, S E P Dowker,P Anderson. Preparat-ation and characterisation of monoclinic hydroxyapatite and its precipitated carbona-te apatite intermediate. Biomaterials.2000,21:617-627.
    [263]Y Lei, B Rai, K H Ho, S H Teoh. In vitro degradation of novel bioactive poly caprolactone-20% tricalciumphosphate composite scaffolds for bone engineer-ing.. Mater. Sci. Eng. C.2007,27:293-298.
    [264]F Causa, P A Netti, L Ambrosio, et al. Poly-caprolactone/hydroxyl apatite composites for boneregeneration:in vitro characterizat-ion and human osteo-blast response.J. Biomedical material research,2004:151-161
    [265][266] H W Kima, E J Leea, H E Kima, V Salihb, J C Knowles.Effect of fluoridetion of hydroxyapatite in Hydroxyapatite-polycaprolactone composite on osteoblast activity. Biomaterials.2005,26:4395-4404.
    [267]L Shor, SGc-eri, X J Wen, et al.Fabrication of three-dimensional polycaprolac-
    tone/hydroxyapatite tissue scaffolds and osteo-lasts caffold inter actions in vitro. Biomater.,2007,28:5291-5297.
    [268]G Stylios, T Wan,P Giannoudis. Present status and future potential of en hanc-ing bone healing using nanotechnology.Injury.2007,38:63-74
    [269]IC Bonzani, JH George, et al. Novel materials for bone and cartilage regener-ation.Current opinion in chemistry biology.2006,10:568-575.
    [270]P A Ramires, A Romito. The influence of titania/hydroxyapatite composite co-attings on in vitro osteoblasts behavior. Biomater.,2001,22:1467-1474
    [271]K L Kipadi, P L Chang, S L Bellis. Hydroxylapatite binds more serum protein, purified integrins, and osteoblast precursor cells than titanium or steel.J Biom-ed Mater Res..2001,57:258-267.
    [272]K Webb,V Hlady,P A Tresco. Relative importance of surface wetta-bility and charged functional groups on NIH 3T3 fibroblast attachment,spreading, and cytoskeletal organization. J Biomed Mater Res.1998,41:422-430.
    [273]S A Redey,C Rey, G Leroy, et al. Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite and natural calcium carbonate: relationship to surface energies. J Biomed Mater Res.1999,45:140-147.
    [274]H M Kim, T Miyazaki, T Kokubo, T Nakamura. Revised simulated body fluid.Key engineering materials.2001,192-195:47-50.
    [275]Y R Liu, S X Qua, M F Maitz, R Tan, J Weng.The effect of the major components of Salvia Miltiorrhiza Bunge on bone marrow cells. Journal of Ethnopharmacology.2007,111:573-583
    [276]杨晓斌。羟基磷灰石增强聚已内酯复合材料的制备及其性能研究。西南交通大学硕士论文,2008,6。
    [277]Dupraz A M P, Meer S A T,et al. Biocompatibilityscreening of silane-treated hydroxyapatite powders for use as filler in resorbable composites. J. Mater. Sci.:Mater in Med.,1996,7(12):731-738.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700