溶胶-凝胶法制备BOPP基阻隔性包装复合薄膜及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚烯烃类薄膜由于透明、易加工、价格低廉等优点而被广泛应用于食品、药品及电子元器件等商品的包装方面,但是,氧气、二氧化碳、水蒸气和有机小分子等物质易透过这些包装薄膜而影响被包装物的品质与寿命。
     因此,为了提高常用的双向拉伸聚丙烯(BOPP)薄膜的阻隔性能以满足阻隔性包装的需要,本文采用溶胶-凝胶法,以正硅酸乙酯(TEOS)为前驱体、添加硅烷偶联剂γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)以提高涂层与基体的附着牢度、无水乙醇为共溶剂、盐酸为催化剂,在BOPP薄膜上负载SiO_2层。再以聚乙烯醇(PVA)和壳聚糖(CS)为有机物,制备PVA/SiO_2有机-无机杂化层和CS/SiO_2有机-无机杂化层。最终,制备了三种BOPP基阻隔性包装复合薄膜,并表征和测试其结构与性能。主要结论如下:
     在SiO_2/BOPP阻隔性复合薄膜中,通过正交试验和单因素试验,分别讨论了KH560/TEOS摩尔比、无水乙醇量、去离子水量和盐酸量四个因素对复合薄膜阻隔性能的影响。确定制备SiO_2阻隔性复合薄膜原料的最佳摩尔配比为:(TEOS+KH560):乙醇:去离子水:盐酸=1:4:3:1.2,KH560:TEOS =2:3。此时,SiO_2复合薄膜的氧气阻隔性能是纯BOPP薄膜的21倍;水蒸气阻隔性能是纯BOPP薄膜的1.7倍;拉伸强度、断裂伸长率和透光率均优于纯BOPP薄膜。
     在PVA/SiO_2/BOPP杂化阻隔性复合薄膜中,随PVA含量的增加,杂化复合薄膜的氧气阻隔性能提高,但水蒸气阻隔性能降低。当PVA质量分数为80%时,杂化复合薄膜的氧气阻隔性能是纯BOPP薄膜的308倍;但水蒸气阻隔性能是纯BOPP薄膜的一半;拉伸强度和断裂伸长率分别是纯BOPP薄膜的1.4倍和1.7倍;透光率大于90%,具有良好的透明性。
     在CS/SiO_2/BOPP杂化阻隔性复合薄膜中,杂化层与BOPP薄膜紧密附着,表面无分相或开裂现象。随CS含量的增加,杂化复合薄膜的氧气阻隔性能先提高后降低;水蒸气阻隔性能持续降低。当CS质量分数为18%时,杂化复合薄膜的氧气阻隔性能是纯BOPP薄膜的112倍;水蒸气阻隔性能是BOPP薄膜的1.3倍;拉伸强度和断裂伸长率分别是纯BOPP薄膜的1.5倍和1.8倍;透光率低于纯BOPP薄膜,但仍具有良好的透明性。
Polyolefin films have been used widely in the food, pharmaceutical and electronic devices packaging industry because of their transparency, easy processability, low cost, and so on. However, these packaging films are permeable to oxygen, carbon dioxide, water vapor and volatile organic compounds, which affect the quality and lifetime of the products.
     In order to improve the barrier property of the biaxially oriented polypropylene (BOPP) film and meet the barrier demands for packaging materials, SiO_2 coating, PVA/SiO_2 organic-inorganic hybrid coating and CS/SiO_2 organic-inorganic hybrid coating were prepared on BOPP film via sol-gel process, in our work. Tertaethoxysilane was used as the precursor. A silane-coupling agent ofγ-glycidoxypropyltrimethoxysilane (KH560) was used to improve the adhesion between the coated layer and the substrate film. In addition, absolute alcohol and hydrochloric acid were used as the co-solvent and the catalyst, respectively. Then, polyvinyl alcohol and chitosan were used as the organic compounds, respectively. As a result, three types of composite films compsosed of the coaing and the BOPP film were prepared. The structure and properties of these films were inspected. The main conclusions are as follows:
     For the SiO_2/BOPP barrier composite films, the influences of KH560/TEOS molar ratio, absolute alcohol content , deionized water content and hydrochloric acid content were investigated on the barrier properties of the composite films by the use of orthogonal experiment and single factor experiments.As a result, the optimal technological parameters of preparation SiO_2 barrier composite films had been obtained. The molar ratio of (TEOS+KH560): absolute alcohol: deionized water: hydrochloric acid was optimized at 1:4:3:1.2, and the molar ratio of KH560 to TEOS was 2:3. At the same time, oxygen and water vapor barrier properties of SiO_2 composite films was 21 times and 1.7 times that of the bare BOPP film, respectively. Tensile strength, breaking elongation and the transmittance of SiO_2 composite films were better than BOPP film.
     For the PVA/SiO_2/BOPP barrier hybrid composite films, with the increase of PVA content, the oxygen barrier property of the composite films was enhanced, while the water vapor barrier property of the composite films was dropped. As the mass ratio of PVA increased to 80%, the oxygen barrier property of the composite films was 308 times that of the pure BOPP film, however, water vapor barrier character was half of the BOPP film. At the same time, tensile strength and breaking elongation was 1.4 times and 1.7 times that of the pure BOPP film, respectively. The composite films had a good transparency due to the light transmission rate of was more than 90%.
     For the CS/SiO_2/BOPP barrier hybrid composite films, the adhesion between hybrid layer and the BOPP substrate film was satisfactory. No phase separation and no creaking were observed on the surface of the coating. With the increase of CS content, the oxygen barrier property of the composite films was enhanced firstly and then decreased, while the water vapor barrier property of the composite films was dropped. As the mass ratio of CS increased to 18%, the oxygen and water vapor barrier characters of the composite films was 112 times and 1.3 times that of pure BOPP film, respectivly. At the same time, tensile strength and breaking elongation was 1.5 times and 1.8 times that of BOPP film, respectively. Although, light transmission rate was lower than that of the BOPP film, the composite films had a good transparency.
引文
[1]周加彦,赵江.正确认识材料的阻隔性[J].包装工程, 2007, 28(8): 238-239.
    [2]丁运生,张志成,史铁钧.阻隔性高分子材料研究进展[J].功能高分子学报, 2001, 14(3): 360-364.
    [3]牛萍.阻隔包装材料及其技术[J].广东塑料, 2006(1): 21-24.
    [4] Zhu P, Teranishi M, Xiang J, et al. A novel process to form a silica-like thin layer on polyethylene terephthalate film and its application for gas barrier[J]. Thin Solid Films, 2005, 473(2): 351-356.
    [5] Abbas G A, Papakonstantinou P, Okpalugo T I, et al. The improvement in gas barrier performance and optical transparency of DLC-coated polymer by silicon incorporation[J], Thin Solid Films, 2005, 482(1-2): 201-206.
    [6]许德雄.聚烯烃/改性蒙脱土插层复合材料的制备与性能研究[D].华南理工大学, 2002.
    [7]涂志刚,吴增青,麦堪成.阻隔性塑料包装薄膜的发展[J].包装工程, 2003, 24(6): 1-3.
    [8]任强,周亚斌,史铁钧.层状结构改进塑料阻隔性技术研究进展[J].现代塑料加工应用, 2003, 15(5): 47-51.
    [9] Faisant J B, A?t-Kadi A, Bousmina M, et al. Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends[J]. Polymer, 1998, 39(3): 533-545.
    [10]邓剑如,盛亚俊. HDPE/PA6层状共混阻隔材料的研制[J].湖南大学学报:自然科学版, 2005, 32(5): 79-82.
    [11]丁运生,张志成.γ-射线辐照HDPE与PA-6共混物的结构与其对二甲苯阻隔性能的关系[J].应用化学, 2004, 21(3): 305-308.
    [12] Lape N K, Mao H, Camper D, et al. Barrier membranes of self-assembled lamellar poly(lactide-isoprene-lactide) triblock copolymers[J]. Journal of Membrane Science, 2005, 259(1-2): 1-9.
    [13] Wang J, Derocher J P, Wu L, et al. Barrier films made with various lamellar block copolymers[J]. Journal of Membrane Science, 2006, 270(1-2): 13-21.
    [14]王建清. SiOx镀膜包装材料的开发及发展[J].塑料包装, 2002, 12(2): 20-23.
    [15] Wang J, Derocher J P, Wu L, et al. Barrier films made with various lamellar block copolymers[J]. Journal of Membrane Science, 2006, 270(1-2): 13-21.
    [16] Madocks J, Rewhinkle J, Barton L. Packaging barrier films deposited on PET by PECVD using a new high density plasma source[J]. Materials Science and Engineering B, 2005, 119(3): 268-273.
    [17] Howells D G, Henry B M, Leterrier Y, et al. Mechanical properties of SiOx gas barrier coatings on polyester films[J]. Surface and Coatings Technology, 2008, 202(15): 3529-3537.
    [18] Abbas G A, Mclaughlin J A, Harkin-jones E. A study of ta-C, a-C:H and Si-a:C:H thin films on polymer substrates as a gas barrier[J]. Diamond and Related Materials, 2004, 13(4-8): 1342-1345.
    [19] Bieder A, Gruniger A, Von R R. Deposition of SiOx diffusion barriers on flexible packaging materials by PECVD[J]. Surface and Coatings Technology, 2005, 200(1-4): 928-931.
    [20] Gr A, Bieder A, Sonnenfeld A, et al. Influence of film structure and composition on diffusion barrier performance of SiOx thin films deposited by PECVD[J]. Surface and Coatings Technology, 2006, 200(14-15): 4564-4571.
    [21] Pham T T, Lee J H, Kim Y S, et al. Properties of SixNy thin film deposited by plasma enhanced chemicalvapor deposition at low temperature using SiH4/NH3/Ar as diffusion barrier film[J], Surface and Coatings Technology. 2008, 202(22-23): 5617-5620.
    [22] Saitoh K, Kumar R S, Chua S, et al. Estimation of moisture barrier ability of thin SiNx single layer on polymer substrates prepared by Cat-CVD method[J]. Thin Solid Films, 2008, 516(5): 607-610.
    [23] Gioti M, Logothetidis S, Schroeder J, et al. Real-time evaluation of thickness, optical properties and stoichiometry of SiOx gas barrier coatings on polymers[J]. Thin Solid Films, 2009, 517(23): 6230-6233.
    [24] Ogino A, Nagatsu M. Gas barrier properties of hydrogenated amorphous carbon films coated on polymers by surface-wave plasma chemical vapor deposition[J]. Thin Solid Films, 2007, 515(7-8): 3597-3601.
    [25] Iwamori S, Gotoh Y, Moorthi K. Characterization of silicon oxynitride gas barrier films[J]. Vacuum. 2002, 68(2): 113-117.
    [26] Lin M C, Chang L S, Lin H C. Gas barrier properties of titanium oxynitride films deposited on polyethylene terephthalate substrates by reactive magnetron sputtering[J]. Applied Surface Science, 2008, 254(11): 3509-3516.
    [27] Lau K, Weber J, Bartzsch H, et al. Reactive pulse magnetron sputtered SiOxNy coatings on polymers[J]. Thin Solid Films, 2009, 517(10): 3110-3114.
    [28] Erlat A G, Henry B M, Ingram J J, et al. Characterisation of aluminium oxynitride gas barrier films[J]. Thin Solid Films, 2001, 388(1-2): 78-86.
    [29] Henry B M, Erlat A G, Mcguigan A, et al. Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates[J]. Thin Solid Films, 2001, 382(1-2): 194-201.
    [30] Charton C, Schiller N, Fahland M, et al. Development of high barrier films on flexible polymer substrates[J]. Thin Solid Films, 2006, 502(1-2): 99-103.
    [31] Gioti M, Logothetidis S, Schroeder J, et al. Real-time evaluation of thickness, optical properties and stoichiometry of SiOx gas barrier coatings on polymers[J]. Thin Solid Films, 2009, 517(23): 6230-6233.
    [32]向莹,刘全校,张勇,等.聚合物/蒙脱土纳米复合材料及其在包装中的应用[J].北京印刷学院学报, 2008, 16(2): 32-36.
    [33]韩冰.尼龙66及聚氨酯/蒙脱土纳米复合材料的制备及性能研究[D].南京大学, 2003.
    [34]谢龙.聚对苯二甲酸乙二醇酯-蒙脱土高阻隔性薄膜的研究[D].哈尔滨工业大学, 2004.
    [35]殷勤俭.功能性聚醋(PET)复合材料的制备和性能研究[D].四川大学, 2007.
    [36]张英杰.聚乙烯醇/蒙脱土纳米复合材料的研究[D].青岛科技大学, 2005.
    [37] Ke Z, Yongping B. Improve the gas barrier property of PET film with montmorillonite by in situ interlayer polymerization[J]. Materials Letters, 2005, 59(27): 3348-3351.
    [38] Jiang T, Wang Y, Yeh J, et al. Study on solvent permeation resistance properties of nylon6/clay nanocomposite[J]. European Polymer Journal, 2005, 41(3): 459-466.
    [39] Picard E, Vermogen A, Gérard J-F, et al. Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state: Consequences on modelling[J]. Journal of Membrane Science, 2007, 292(1-2): 133-144.
    [40] Gorrasi G, Tortora M, Vittoria V, et al. Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion[J]. Polymer, 2003, 44(8): 2271-2279.
    [41]杨南如,余桂郁.溶胶—凝胶法的基本原理与过程[J].硅酸盐通报, 1993, 12(2): 56-63.
    [42] Zarzycki J. Past and Present of Sol-Gel Science and Technology[J]. Journal of Sol-Gel Science and Technology, 1997, 8(1): 17-22.
    [43]李彬.溶胶—凝胶薄膜科学与技术的由来和发展[J].材料导报, 1992(6): 42-47.
    [44]陈琦丽,唐超群,肖循. TiO_2纳米微粒的溶胶—凝胶法制备及XRD分析[J].材料科学与工程, 2002, 20(2): 224-226.
    [45]曾庆冰,李效东.溶胶—凝胶法基本原理及其在陶瓷材料中的应用[J].高分子材料科学与工程, 1998, 14(2): 138-143.
    [46]黄传真,艾兴.溶胶—凝胶法的研究和应用现状[J].材料导报, 1997, 11(3): 8-9.
    [47]潘群雄,潘晖华,陈建华.溶胶—凝胶技术与纳米材料的制备[J].材料导报, 2001, 15(12): 40-42.
    [48]甘国友,郭玉忠.溶胶—凝胶法薄膜制备工艺及其应用[J].昆明理工大学学报:理工版, 1997, 22(1): 142-145.
    [49] Matsuda A, Kotani Y, Kogure T, et al. Photocatalytic Decomposition of Acetaldehyde with Anatase Nanocrystals-Dispersed Silica Films Prepared by the Sol-Gel Process with Hot Water Treatment[J]. Journal of Sol-Gel Science and Technology, 2001, 22(1): 41-46.
    [50] Guo B, Liu Z, Hong L, et al. Sol gel derived photocatalytic porous TiO_2 thin films[J]. Surface and Coatings Technology, 2005, 198(1-3): 24-29.
    [51] Chang C C, Chen J Y, Hsu T L, et al. Photocatalytic properties of porous TiO_2/Ag thin films[J]. Thin Solid Films, 2008, 516(8): 1743-1747.
    [52] Dhayal M, Sharma S D, Kant C, et al. Role of Ni doping in surface carbon removal and photo catalytic activity of nano-structured TiO_2 film[J]. Surface Science, 2008, 602(6): 1149-1154.
    [53] Zaleska A, Sobczak J W, Grabowska E, et al. Preparation and photocatalytic activity of boron-modified TiO_2 under UV and visible light[J]. Applied Catalysis B: Environmental, 2008, 78(1-2): 92-100.
    [54] Nimittrakoolchai O U, Supothina S. Deposition of organic-based superhydrophobic films for anti-adhesion and self-cleaning applications[J]. Journal of the European Ceramic Society, 2008, 28(5): 947-952.
    [55] Shirtcliffe N J, Mchale G, Newton M I, et al. Superhydrophobic to superhydrophilic transitions of sol-gel films for temperature, alcohol or surfactant measurement[J]. Materials Chemistry and Physics, 2007, 103(1): 112-117.
    [56] Kiyoharu T, Junichi M, Tsutomu M. Formation of Superhydrophobic-Superhydrophilic Pattern on Flowerlike Alumina Thin Film by the Sol-Gel Method[J]. Journal of Sol-Gel Science and Technology, 2000, 19(1): 211-214.
    [57] Sharma S D, Singh D, Saini K K, et al. Sol-gel-derived super-hydrophilic nickel doped TiO_2 film as active photo-catalyst[J]. Applied Catalysis A: General, 2006, 314(1): 40-46.
    [58] Yamashita H, Nishio S, Katayama I, et al. Photo-induced super-hydrophilic property and photocatalysis on transparent Ti-containing mesoporous silica thin films[J]. Catalysis Today, 2006, 111(3-4): 254-258.
    [59] Hamdy A S, Butt D P. Environmentally compliant silica conversion coatings prepared by sol-gel method for aluminum alloys[J]. Surface and Coatings Technology, 2006, 201(1-2): 401-407.
    [60] Pathak S S, Khanna A S. Synthesis and performance evaluation of environmentally compliant epoxysilane coatings for aluminum alloy[J]. Progress in Organic Coatings, 2008, 62(4): 409-416.
    [61] Parola S, Verdenelli M, Sigala C, et al. Preparation and properties of anti-reflection/anti-static thin films formed on organic film by photo-assisted sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2003, 26(1-3): 803-806.
    [62] Shen G X, Chen Y C, Lin C J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method[J]. Thin Solid Films, 2005, 489(1-2): 130-136.
    [63] Sangaj N S, Malshe V C. Permeability of polymers in protective organic coatings[J]. Progress in Organic Coatings, 2004, 50(1): 28-39.
    [64] Ohishi T. Preparation and properties of anti-reflection/anti-static thin films formed on organic film by photo-assisted sol-gel method[J]. Journal of Non-Crystalline Solids, 2003, 332(1-3): 87-92.
    [65] Yamaguchi N, Tadanaga K, Matsuda A, et al. Formation of anti-reflective alumina films on polymer substrates by the sol-gel process with hot water treatment[J]. Surface and Coatings Technology, 2006, 201(6): 3653-3657.
    [66] Hwang D K, Kim H J, Han H S, et al. Development of Photochromic Coatings on Polycarbonate[J]. Journal of Sol-Gel Science and Technology, 2004, 32(1): 137-141.
    [67] Li H, Zhao G, Han G, et al. Hydrophilicity and photocatalysis of Ti_(1-x)V_xO_2 films prepared by sol-gel method[J]. Surface and Coatings Technology, 2007, 201(18): 7615-7618.
    [68] Messori M, Toselli M, Pilati F, et al. Flame retarding poly(methyl methacrylate) with nanostructured organic-inorganic hybrids coatings[J]. Polymer, 2003, 44(16): 4463-4470.
    [69] Zhao M, Yao X, Shi P, et al. Effect of poly(vinyl acetate) on structure and property of bismuth-doped strontium titanate thin films derived by sol-gel method[J]. Ceramics International, 2008, 34(4): 997-1001.
    [70] Dubois G, Volksen W, Magbitang T, et al. Superior mechanical properties of dense and porous organic/inorganic hybrid thin films[J]. Journal of Sol-Gel Science and Technology, 2008, 48(1): 187-193.
    [71] Agoudjil N, Kermadi S, Larbot A. Synthesis of inorganic membrane by sol-gel process[J]. Desalination, 2008, 223(1-3): 417-424.
    [72] Alem A, Sarpoolaky H, Keshmiri M. Titania ultrafiltration membrane: Preparation, characterization and photocatalytic activity[J]. Journal of the European Ceramic Society, 2009, 29(4): 629-635.
    [73]皮中卫.溶胶-凝胶法制备SiO_2/环氧树脂涂料的研究[D].哈尔滨工业大学, 2007.
    [74]韩磊.溶胶-凝胶法制备SiO_2/有机硅杂化材料及其性能研究[D].西北工业大学, 2005.
    [75]李传峰,邵怀启,钟顺和.有机无机杂化膜材料的制备技术[J].化学进展, 2004, 16(1): 83-89.
    [76]王华林.有机聚合物/SiO_2有机无机杂化材料的研究[D].合肥工业大学, 2006.
    [77]杨振坤.有机-无机杂化亲水涂层的制备及性能表征[D].大连理工大学, 2007.
    [78] Sun J, Akdogan E K, Klein L C, et al. Characterization and optical properties of sol-gel processed PMMA/SiO_2 hybrid monoliths[J]. Journal of Non-Crystalline Solids, 2007, 353(29): 2807-2812.
    [79] Zulfikar M A, Mohammad A W, Kadhum A A, et al. Synthesis and characterization of poly(methyl methacrylate)/SiO_2 hybrid membrane[J]. Materials Science and Engineering: A, 2007, 452-453: 422-426.
    [80] Kim D S, Park H B, Rhim J W, et al. Preparation and characterization of crosslinked PVA/SiO_2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications[J]. Journal of Membrane Science, 2004, 240(1-2): 37-48.
    [81] Nakajima H, Kawano K. Preparation and evaluation of the rare earth doped nanoparticle SiO_2-PVP hybridthin film by sol-gel method[J]. Journal of Alloys and Compounds, 2006, 408-412: 701-705.
    [82] He J P, Li H M, Wang X Y, et al. In situ preparation of poly(ethylene terephthalate)-SiO_2 nanocomposites [J]. European Polymer Journal, 2006, 42(5): 1128-1134.
    [83] Wang H, Zhong W, Xu P, et al. Polyimide/silica/titania nanohybrids via a novel non-hydrolytic sol-gel route[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(7): 909-914.
    [84]张晔,周贵恩.纳米TiO_2—甲基丙烯酸甲酯聚合物均匀分散系的制备和结构[J].材料研究学报, 1998, 12(3): 291-294.
    [85] Gu G, Zhang Z, Dang H. Preparation and characterization of hydrophobic organic-inorganic composite thin films of PMMA/SiO_2/TiO_2 with low friction coefficient[J]. Applied Surface Science, 2004, 221(1-4): 129-135.
    [86] Tsai M H, Liu S J, Chiang P C. Synthesis and characteristics of polyimide/titania nano hybrid films[J]. Thin Solid Films, 2006, 515(3): 1126-1131.
    [87] Lai S Q, Li T S, Wang F D, et al. The effect of silica size on the friction and wear behaviors of polyimide/silica hybrids by sol-gel processing[J]. Wear, 2007, 262(9-10): 1048-1055.
    [88] Zhang Y H, Li Y, Fu S Y, et al. Synthesis and cryogenic properties of polyimide-silica hybrid films by sol-gel process[J]. Polymer, 2005, 46(19): 8373-8378.
    [89] Sakka S. Sol–gel technology as representative processing for nanomaterials: case studies on the starting solution[J]. Journal of Sol-Gel Science and Technology, 2008, 46(3): 241-249.
    [90] Shang H M, Wang Y, Limmer S J, et al. Optically transparent superhydrophobic silica-based films[J]. Thin Solid Films, 2005, 472(1-2): 37-43.
    [91]魏杰,马勉军,黄良甫,等.光学塑料表面有机硅耐划伤涂层的制备及其性能研究[J].材料导报, 2005, 19: 335-337.
    [92]陈世容,瞿晚星,徐卡秋.硅烷偶联剂的应用进展[J].有机硅材料, 2003, 17(5): 28-31.
    [93] Miller A C, Berg J C. Effect of silane coupling agent adsorbate structure on adhesion performance with a polymeric matrix[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(4): 327-332.
    [94] Song K C, Park J K, Kang H U, et al. Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane[J]. Journal of Sol-Gel Science and Technology, 2003, 27(1): 53-59.
    [95] Gao B, He S, Guo J, et al. Preparation and antibacterial character of a water-insoluble antibacterial material of grafting polyvinylpyridinium on silica gel[J]. Materials Letters, 2007, 61(3): 877-883.
    [96] Makita K, Akamatsu Y, Takamatsu A, et al. Sol-Gel Preparation of Silica Films with Controlled Surface Morphology and Their Application to a Low Reflective Glass[J], Journal of Sol-Gel Science and Technology. 1999, 14(2): 175-186.
    [97] Daoud W A, Xin J H, Tao X. Synthesis and characterization of hydrophobic silica nanocomposites[J]. Applied Surface Science, 2006, 252(15): 5368-5371.
    [98] Murakami Y, Tanaka K, Takechi Y, et al. Microporous Silica Particles Prepared by the Salt-Catalytic Sol-Gel Process with Extremely Low Content of Water[J]. Journal of Sol-Gel Science and Technology, 2004, 29(1): 19-24.
    [99] Martins O, Almeida R M. Sintering Anomaly in Silica-Titania Sol-Gel Films[J]. Journal of Sol-Gel Science and Technology, 2000, 19(1): 651-655.
    [100] Stefanescu M, Stoia M, Stefanescu O. Thermal and FT-IR study of the hybrid ethylene-glycol-silica matrix[J]. Journal of Sol-Gel Science and Technology, 2007, 41(1): 71-78.
    [101] Chou T P, Cao G. Adhesion of Sol-Gel Derived Organic-Inorganic Hybrid Coatings on Polyester[J]. Journal of Sol-Gel Science and Technology, 2003, 27(1): 31-41.
    [102]刘羽,张建民,牛志睿. Sol-Gel法二氧化硅溶胶的制备及性能影响研究[J].过滤与分离, 2008(3): 21-23.
    [103] Mine E, Nagao D, Kobayashi Y, et al. Solvent Effects on Particle Formation in Hydrolysis of Tetraethyl Orthosilicate[J]. Journal of Sol-Gel Science and Technology, 2005, 35(3): 197-201.
    [104] Donatti D A, Vollet D R. Effects of the Water Quantity on the Solventless TEOS Hydrolysis Under Ultrasound Stimulation[J]. Journal of Sol-Gel Science and Technology, 2000, 17(1): 19-24.
    [105]林健.催化剂对正硅酸乙酯水解—聚合机理的影响[J].无机材料学报, 1997, 12(3): 363-369.
    [106] Kim S M, Chakrabarti K, Oh E O, et al. Effects of pH During the Base Catalyzed Reaction of Two-Step Acid/Base Catalyzed Process on the Microstructures and Physical Properties of Poly(dimethylsiloxane) Modified Silica Xerogels[J]. Journal of Sol-Gel Science and Technology. 2003, 27(2): 149-155.
    [107]王平.具有光催化活性的TiO_2溶胶的低温制备及影响因素研究[D].浙江大学, 2006.
    [108]余桂郁,杨南如.溶胶——凝胶法简介:第三讲溶胶—凝胶法工艺过程[J].硅酸盐通报, 1993, 12(6): 60-66.
    [109]曲忠先.溶胶-凝胶法制备SiO_2/环氧树脂杂化材料的研究[D].西北工业大学, 2003.
    [110]王华林,盛敏刚,翟林峰,等.聚乳酸/聚乙烯醇共混膜的制备[J].高分子材料科学与工程, 2006, 22(5): 229-231.
    [111] Sapalidis A A, Katsaros F K, Romanos G E, et al. Preparation and characterization of novel poly-(vinyl alcohol)-Zostera flakes composites for packaging applications[J]. Composites Part B: Engineering, 2007, 38(3): 398-404.
    [112]郭瑞丽.新型渗透蒸发膜分离乙二醇水溶液[D].天津大学, 2007.
    [113]孙慧,全凤玉,纪全,等.阻燃PVA/SiO_2复合膜的研究[J].化工新型材料, 2008, 36(2): 28-30.
    [114] Xu Y, Li Z, Fan W, et al. Density fluctuation in silica-PVA hybrid gels determined by small-angle X-ray scattering[J]. Applied Surface Science, 2004, 225(1-4): 116-123.
    [115]宋秋生,史铁钧,王华林,等. PVA/SiO_2杂化纤维的制备与表征[J].高分子材料科学与工程, 2007, 23(6): 216-219.
    [116] Anjali D D, Smitha B, Sridhar S, et al. Dehydration of 1,4-dioxane through blend membranes of poly(vinyl alcohol) and chitosan by pervaporation[J]. Journal of Membrane Science, 2006, 280(1-2): 138-147.
    [117] Chen C H, Wang F Y, Mao C F, et al. Studies of chitosan: II. Preparation and characterization of chitosan/poly(vinyl alcohol)/gelatin ternary blend films[J]. International Journal of Biological Macromolecules, 2008, 43(1): 37-42.
    [118]崔玮.壳聚糖/聚乙烯醇复合水凝胶的制备及药物释放研究[D].浙江大学, 2008.
    [119]蒋挺大.壳聚糖[M].北京:化学工业出版社, 2001.
    [120] Zhao Q, Cheng X, Ji Q, et al. Effect of organic and inorganic acids on chitosan/glycerophosphate thermosensitive hydrogel[J]. Journal of Sol-Gel Science and Technology, 2009, 50(1): 111-118.
    [121] Chao A C. Preparation of porous chitosan/GPTMS hybrid membrane and its application in affinitysorption for tyrosinase purification with Agaricus bisporus[J]. Journal of Membrane Science, 2008, 311(1-2): 306-318.
    [122] Rashidova S S, Shakarova D S, Ruzimuradov O N, et al. Bionanocompositional chitosan-silica sorbent for liquid chromatography[J]. Journal of Chromatography B, 2004, 800(1-2): 49-53.
    [123] Li W, Yuan R, Chai Y, et al. Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor[J]. Journal of Biochemical and Biophysical Methods, 2008, 70(6): 830-837.
    [124] Zou Y, Xiang C, Sun L X, et al. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO_2 sol-gel[J]. Biosensors and Bioelectronics, 2008, 23(7): 1010-1016.
    [125] Yeh J T, Chen C L, Huang K S. Synthesis and properties of chitosan/SiO_2 hybrid materials[J]. Materials Letters, 2007, 61(6): 1292-1295.
    [126] Wang J, Zhang H, Jiang Z, et al. Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix[J]. Journal of Power Sources, 2009, 188(1): 64-74.
    [127]沈良.高分子有机/无机纳米复合材料的制备及其结构性能研究[D].复旦大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700