抑制p53与MDM2结合的抗肿瘤多肽设计与靶向递送
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物体内蛋白质之间的相互作用在生命过程中起着至关重要的作用。据此设计和制备抑制剂的策略,目前已在多种疾病的干预性治疗中得到验证。抑瘤蛋白p53及其负性调节蛋白MDM2之间的相互作用与众多肿瘤发生、发展密切相关。通过抑制p53与MDM2的结合,可恢复p53抑瘤活性而达到抗肿瘤效果。据保守估计,至少25%的肿瘤患者有望经此类策略治疗而受益,因此p53-MDM2抑制剂具有成为今后主要抗肿瘤药物的潜力。p53-MDM2抑制剂主要分为小分子化合物和多肽两大类,其中多肽与小分子化合物相比,具有高亲合力和高选择性。但目前针对p53-MDM2的多肽抑制剂研究仅停留在分子水平,主要原因在于:1)生理环境下多肽稳定性差,易被酶降解而丧失活性;2)靶点位于细胞内,一般多肽不具备入胞能力,无法实现其药效。为此,我们以此作为切入点,设计和制备稳定性好、对p53-MDM2抑制能力强的多肽,并采用主动靶向递药策略,实现肿瘤细胞内的多肽递送,发挥其抗肿瘤作用。本论文分为两大部分介绍。
     第一部分主要开展了抑制p53与MDM2结合的多肽设计、制备和表征。采用蛋白“嫁接”策略,以能够与MDM2蛋白特异性结合的序列为模拟对象,选用具有三维结构的微型蛋白毒素为模板,通过关键位点的“嫁接”,以期得到稳定性好、对p53-MDM2抑制能力强的多肽。
     首先,以天然p53序列为模拟对象,以蝎毒毒素BmBKTx1为模板,将p53上结合MDM2的关键位点“嫁接”到蝎毒微型蛋白上,经分子水平表征,设计产物stoppin-1能特异性结合MDM2,具有抑制p53与MDM2结合的能力;借鉴阳离子穿膜肽入胞原理,设计具有穿膜能力的微型蛋白stoppin-2,经细胞水平表征,stoppin-2可通过抑制p53与MDM2结合而选择性杀伤肿瘤细胞;稳定性实验显示,与直链短肽(17-28)p53相比,stoppin-2在近似生理环境下的稳定性大大增强。结果提示,以微型蛋白毒素为模板设计p53-MDM2多肽抑制剂的策略是可行的。
     其次,开展了p53-MDM2多肽抑制剂的优化设计,选用具有更强MDM2结合能力的PMI序列为模拟对象,以结构更简洁、制备更容易的蜂毒明肽apamin为模板,通过丙氨酸扫描和端基截取技术获取PMI的关键位点和区域信息,进行蛋白“嫁接”优化,获得抑制p53与MDM2结合的微型蛋白stingin。表征结果表明,stingin结合MDM2能力强(Kd=17nM),具有制备容易、产率高、应用前景好的特点。
     最后,根据镜像噬菌体展示技术筛选结果,制得了全D型的p53-MDM2多肽抑制剂D-PMIα并进行了表征。D-PMIα结合MDM2的能力(Kd=200nM)尽管低于stingin,但因其分子全部由D型氨基酸构成,其稳定性大幅提高,具有深入研究价值。
     第二部分主要开展了p53-MDM2多肽抑制剂的肿瘤细胞靶向递送和抗肿瘤药效研究。选用能与肿瘤细胞表面整合素ανβ3特异性结合的RGD序列多肽,并修饰于脂质体给药系统表面,将p53-MDM2多肽抑制剂递送至体内外肿瘤细胞内,以期发挥其抗肿瘤效果,提升多肽的应用价值。
     首先,制备了功能性脂质膜材料c(RGDDYK)-PEG3400-DSPE,采用逆向蒸发法构建了包载stingin-5(L型多肽)和D-PMIα(D型多肽)的c(RGDDYK)-脂质体给药系统。结果表明,c(RGDDYK)-脂质体能有效包载多肽,该脂质体给药系统平均粒径为70-90nm,包封率约30%,可用于后续药物递送研究。
     其次,以人脑胶质瘤U87为模型,对多肽经递送入胞后的体内外抗肿瘤活性进行评价。细胞水平试验结果表明,stingin-5抑制肿瘤细胞生长活性(IC50≈4.5μM)与阳性对照Nutlin-3 (IC50≈4.0μM)相当,D-PMIα(IC50≈1.9μM)明显强于Nutlin-3,提示c(RGDDYK)-脂质体能有效递送多肽入胞并发挥其抗肿瘤活性,D型多肽D-PMIα综合抑制肿瘤生长效果好于L型。以U87皮下移植瘤和脑部原位肿瘤为模型,选用D型多肽D-PMIα进行体内靶向递送药效评价。结果表明,c(RGDDYK)-脂质体-D-PMIα能显著抑制皮下移植瘤生长、延长脑部原位肿瘤裸小鼠的生存时间。细胞和体内水平均验证了多肽通过抑制p53与MDM2结合、释放p53蛋白而发挥抗肿瘤作用。结果提示,通过主动靶向给药策略,可解决p53-MDM2多肽抑制剂在体内发挥抗肿瘤药效问题。
     最后,在上述研究工作基础上,以D-PMIα经优化得到的的D-PMIβ为研究对象,在多肽N端修饰脂肪酸以提高其脂溶性,采用薄膜水化法构建了包载该多肽的c(RGDDYK)-脂质体,并进行了体内外药效评价和作用机制探讨。结果表明,多肽脂肪酸化后有利于脂质体包载,且载药量高、稳定性好、制备工艺简单,体内外抗肿瘤药效良好,具有较好的应用前景。
     综上所述,本文通过多学科的研究手段,设计和制备了抗肿瘤多肽,尤其是D型多肽,解决了多肽药物稳定性问题、提高了其抑制p53与MDM2结合的活性;借助主动靶向递送策略,解决了该类多肽进入细胞的问题,使其在体内外表现出良好的抗肿瘤药效和较理想的治疗指数。高效低毒是抗肿瘤药物研究的长远目标,本研究工作可能为抗肿瘤药物研发带来有益的启示。
Protein-protein interactions play a crucial role in biological processes, representing important therapeutic targets for disease intervention. The interaction between the tumor suppressor protein p53 and its negative regulator MDM2 promotes tumorgenesis, thus providing a promising anti-cancer strategy through antagonizing MDM2 to re-activate the p53 pathway. It was estimated that at least 25% of human cancers could be treated by inhibitors of p53-MDM2 binding, which might be the main drugs of tomorrow for cancer therapy therefore. Since protein-protein interfaces tend to be relatively large, potent and selective inhibition necessitates the use of peptide inhibitors rather than low molecular weight compounds. However, most peptide inhibitors of the p53-MDM2 interaction suffer two limitations:1) poor stability in physiological environments and 2) inability to traverse the cell membrane. Our study aims to design stable, high-affinity peptide inhibitors of the p53-MDM2 interaction that are capable of traversing the cell membrane either actively or passively to achieve specific antitumor effects in vitro and in vivo.
     Our work is divided into two parts. Part one entails the design, preparation, and characterization of three different classes of peptide inhibitors of the p53-MDM2 interaction,which are based on (1) scorpion toxin BmBKTx1 of xx amino acid residues with three disulfides, (2) bee venom toxin apamin of yy amino acid residues with two disulfides, and (3) duodecimal D-peptides, respectively.
     First, the natural (17-28)p53 sequence was chosen as a donor and scorpion toxin BmBKTx1 as a scaffold. After grafting key residues of p53 to the scorpion toxin, the resultant product, termed stoppin-1, specifically bound MDM2. Inspired by cationic cell-permeable peptides, we re-engineered stoppin-1 by replacing five residues near its C terminus with arginines, creating a second-generation inhibitor capable of permeabilizing the cell membrane (stoppin-2). Stoppin-2 showed p53-dependent tumor-killing activity with enhanced proteolytic stability in cell media. These results illustrated the feasibility of using peptide toxins as scaffold in general to design miniature protein inhibitors of the p53-MDM2 interaction with antitumor activity.
     Second, we further optimized the miniprotein design approach by using a phage-selected, high-affinity MDM2-binding peptide termed PMI as a donor and apamin as a template with improved properties. A systematic mutational analysis of PMI was also performed to elucidate the molecular basis of peptide inhibition of the p53-MDM2 interaction. Grafting xx critical residues of PMI to apamin resulted in several potent miniprotein inhibitors, termed stingins, that directly competed with p53 for MDM2 binding at low nanomolar affinities as verified by X-ray crystallography and biochemical and biophysical studies.
     Third, a duodecimal D-peptide inhibitor of the p53-MDM2 interaction, termed D-PMIa, was designed based on mirror image phage screening. Structural and functional studies validated D-PMIa as a competitive inhibitor of p53 binding to MDM2 with a binding affinity for MDM2 of 200 nM. D-PMIa is a promising candidate for therapeutic development as it is fully resistant to proteolytic degradation.
     The second part of the thesis describes targeted delivery and functional evaluation of peptide inhibitors of the p53-MDM2 interaction in vitro and in vivo. An integrin-binding RGD peptide ligand was used as a tumor-targeting moiety; RGD-decorated liposomes were constructed to encapsulate peptide inhibitors to achieve their tumor-specific intracellular delivery.
     First, functionalized membrane materials c(RGDDYK)-PEG34oo-DSPE were synthesized, followed by the preparation of peptide-loaded liposomes through the reverse evaporation method. Two liposomal delivery systems were constructed, encapsulating stingin-5 (L-peptide inhibitor) and D-PMIα(D-peptide inhibitor), respectively. The mean particle sizes of peptide-loaded liposomes were 70-90 nm with a-30% encapsulation efficiency, indicative of an efficient encapsulation of the peptide inhibitors.
     Second, the antiumor efficacy of liposomal peptides, after intracellular delivery, were evaluated using human glioblastoma U87 cell line. The L-peptide (stingin-5) killed tumor cells with an IC50 value of 4.5μM, simialr in potency to the small-molecule positive control Nutlin-3 (IC50≈4.0μM). By contrast, D-PMIa was more active, displaying an IC50 value of 1.9μM. Further, Western blot analysis indicated that the peptide inhibitors induced tumor cell death by activating the p53 pathway. Collectively, these results demonstrate the efficiency of intracellular delivery of peptide inhibitors using the RGD-coated liposomal vehicle.Then the antitumor activity of c(RGDDYK)-liposomal D-PMIαwas evaluated in vivo. Administered intravenously, this formulation showed strong inhibitory activity against tumor growth in a subcutaneous U87 glioblastoma-bearing nude mice model, and significantly prolonged the survival of mice with intracranial glioblastoma. Our work demonstrates antitumor therapeutic efficacy of D-PMIa in combination with a targeted delivery vehicle, thus validating D-peptide activation of the p53 pathway as a promising therapeutic paradigm for the treatment of malignant neoplasms.
     Finally, the D-peptide inhibitor D-PMIβwas N-terminally palmitylated and then encapsulated by c(RGDDYK)-PEG-liposome through thin film hydration method. This improved formulation showed high encapsulation efficiency and significant antitumor efficacy both in vitro and in vivo with low toxicity, thus might be a potential therapeutic strategy for treating according tumors.
     In conclusion, we have combined contemporary synthetic protein chemistry, phage display, structural biology, cancer biology, drug delivery, and various biochemical and biophysical techniques, and showcased a powerful, innovative, and integrated approach to drug discovery of a novel class of p53 activators for cancer therapy. This work may ultimately lead to the addition of new weapons to the existing anticancer arsenal, and will broadly impact the development of D-peptide therapeutics for targeted molecular therapy of a great variety of human diseases.
引文
[1]Brown, C.J., Lain, S., Verma, C.S et al. Awakening guardian angels:drugging the p53 pathway [J]. Nat Rev Cancer,2009 (9):862-873.
    [2]Vousden, K. H., Lane, D. P. p53 in health and disease [J].Nat. ReV. Mol. Cell Biol.2007 (8):275-283.
    [3]Toledo, F., Wahl, G. M. Regulating the p53 pathway:in vitro hypotheses, in vivo veritas [J].Nat. ReV. Cancer.2006 (6):909-923.
    [4]Hainaut, P., Hollstein., M. p53 and Human Cancer:The First ten Thousand Mutations [J]. Adv Cancer Res.2000 (77):81-137.
    [5]詹启敏.分子肿瘤学[M].北京:人民卫生出版社,2005.
    [6]Haupt, Y., Maya, R., Kazaz, A., Oren, M. Mdm2 promotes the rapid degradation of p53 [J]. Nature,1997 (387):296-299.
    [7]Honda, R., Tanaka, H., Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53 [J]. FEBS Lett,1997 (420):25-27.
    [8]Kubbutat, M.H., Jones, S.N., Vousden, K.H. Regulation of p53 stability by Mdm2 [J]. Nature,1997(387):299-303.
    [9]Momand, J., Zambetti, G.P, Olson, D.C et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation [J]. Cell,1992 (69):1237-1245.
    [10]Wu, X., Bayle, J.H., Olson, D., Levine, A.J. The p53-mdm2 autoregulatory feedback loop [J]. Genes Dev,1993 (7):1126-1132.
    [11]Marine, J.C., Dyer, M.A., Jochemsen,A.G. MDMX:from bench to bedside [J].J Cell Sci, 2007 (120):371-8.
    [12]Kussie, P.H., Gorina, S., Marechal, V et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain [J]. Science,1996,274 (5289):948-53.
    [13]陈凯先、蒋华良、嵇汝运,计算机辅助药物设计:原理、方法及应用[M].上海:上海科学技术出版社,2000.
    [14]杜冠华.高通量药物筛选[M].北京:化学工业出版社,2000.
    [15]Shangary, S. et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition [J]. Proc Natl Acad Sci U S A,2008 (105):3933-3938.
    [16]Vassilev, L.T., Vu, B.T., Graves,B. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2 [J].Science.2004,303:844-848.
    [17]Toledo,F., Wahl,G.M., Regulating the p53 pathway:in vitro hypotheses, in vivo veritas. [J]. Nat Rev Cancer.2006,6(12):909-23.
    [18]Hu, B., Gilkes, D. M., Chen, J. Efficient p53 Activation and Apoptosis by Simultaneous Disruption of Binding to MDM2 and MDMX [J]. Cancer Res,2007(67):8810-8817.
    [19]Kritzer, J. A., Zutshi, R., Cheah, M et al.Miniature Protein Inhibitors of the p53-hDM2 Interaction [J]. ChemBioChem,2006,7(1):29-31.
    [20]Bottger, A., Bottger.V., Sparks, A et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo[J].Curr. Biol,1997,7(11):860-869.
    [2l]管华诗,韩玉谦,冯晓梅.海洋活性多肽的研究进展[J].中国海洋大学学报,2004,34(5):761-766.
    [22]Vita, C., Drakopoulou, E., Vizzavona, J. Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein [J]. Proc. Natl. Acad. Sci. U.S.A,1999,96(23):13091-13096.
    [23]Martin, L., Stricher, F., Misse, D.et al. Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes[J]. Nat. Biotechnol.2003, 21(1):71-76.
    [24]Wu, Z., Li, X., Ericksen, B et al. Impact of pro segments on the folding and function of human neutrophil a-defensins[J]. J. Mol. Biol.2007,368(2):537-549.
    [1]Sia, S.K., Kim, P.S. Protein grafting of an HIV-1-inhibiting epitope [J].Proc Natl Acad Sci USA.2003,100(17):9756-61.
    [2]Murray, J. K., Gellman, S. H. Targeting protein-protein interactions:Lessons from p53/MDM2 [J].Biopolymers.2007,88(5):657-686.
    [3]Kritzer, J. A., Zutshi, R., Cheah, M.et al.Miniature Protein Inhibitors of the p53-hDM2 Interaction. [J]. ChemBioChem.2006,7(1):29-31.
    [4]Bottger, A., Bottger,V., Sparks, A.et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. [J].Curr. Biol.1997,7(11):860-869.
    [5]Fazelinia, H., Cirino, P.C., Maranas, C.D. OptGraft:A computational procedure for transferring a binding site onto an existing protein scaffold.[J].Protein Science,2009, 18(1):180-195.
    [6]Fittipaldi, A., Giacca, M. Transcellular protein transduction using the Tat protein of HIV-1.[J]. Adv. Drug Delivery Rev.2005,57(4):597-608.
    [7]Wadia, J. S., Dowdy, S. F. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer.[J]. Adv. Drug Delivery Rev.2005, 57(4):579-596.
    [8]Brooks, H., Lebleu, B., Vives, E. Tat peptide-mediated cellular delivery:back to basics.Adv.Drug Deliv.Rev.[J]. Adv. Drug Delivery Rev.2005,57(4):559-577.
    [9]Smith, B. A., Daniels, D. S., Coplin, A. E..et al. Stimuli-Responsive Polyguanidino-Oxanorbornene Membrane Transporters as Multicomponent Sensors in Complex Matrices. [J]. J. Am. Chem. Soc.2008,130:2948-2949.
    [10]Daniels, D. S., Schepartz, A. Minimally Cationic Cell-Permeable Miniature Proteins via n a-Helical Arginine Display. [J].J. Am. Chem. Soc.2007,129:14578-14579.
    [11]Xu, C. Q., Brone, B., Wicher, D. et al. BmBKTx1, a Novel Ca2+-activated K+ Channel Blocker Purified from the Asian Scorpion Buthus martensi Karsch. [J]. J. Biol. Chem. 2004,279(33):34562-34569.
    [12]Cai, Z., Xu, C., Xu, Y. et al. Solution Structure of BmBKTx1, a New BKCa1 Channel Blocker from the Chinese Scorpion Buthus martensi Karsch [J].Biochemistry 2004, 43(13):3764-3771.
    [13]Szyk, A., Lu, W., Xu, C., Lubkowski, J. Structure of the scorpion toxin BmBKTx1 solved from single wavelength anomalous scattering of sulfur. [J].J. Struct. Biol.2004, 145:289-294.
    [14]Barry, J.K.,Matthews, K.S. Ligand-induced conformational changes in lactose repressor: a fluorescence study of single tryptophan mutants.[J].Biochemistry.1997,36(50): 15632-42.
    [15]Zargarian,L., Le,Tilly V., Jamin,N et al. Myb-DNA recognition:role of tryptophan residues and structural changes of the minimal DNA binding domain of c-Myb. [J].Biochemistry.1999,38(6):1921-9.
    [16]Moens,P.D.,Helms,M.K.,Jameson,D.M.Detection of tryptophan to tryptophan energy transfer in proteins.[J].Protein J.2004,23(1):79-83.
    [17]Wu,Z., Hoover,D.M., Yang,D et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3.[J]. Proc Natl Acad Sci U S A. 2003,100(15):8880-5.
    [18]Liu,H., Boudreau,M.A., Zheng,J et al. Chemical synthesis and biological activity of the neopetrosiamides and their analogues:revision of disulfide bond connectivity.[J]J Am Chem Soc.2010,132(5):1486-7.
    [19]Vassilev, L.T., Vu, B.T., Graves,B. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2 [J].Science.2004,303:844-848.
    [1]Pazgier, M., Liu, M., Zou G. et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX.[J].Proc. Natl. Acad. Sci. USA 2009,106 (12): 4665-4670.
    [2]Habermann, E. Bee and Wasp Venoms.[J]. Science 1972,177,314-322.
    [3]Le-Nguyen, D., Chiche, L., Hoh, F. Role of Asn(2) and Glu(7) residues in theoxidative folding and on the conformation of the N-terminal loop of apamin.[J].Biopolymers.2007, 86(5-6):447-462.
    [4]Nicoll, A. J., Miller, D. J., Futterer, K. Designed high affinity Cu2+-binding alpha-helical foldamer[J]. J. Am. Chem. Soc.2006,128(28):9187-9193.
    [5]Pease, J. H., Storrs, R.W., Wemmer, D. E. Folding and activity of hybrid sequence, disulfide-stabilized peptides.[J].Proc. Natl. Acad. Sci. USA 1990,87(15):5643-5647.
    [6]He, M.M., Wood,Z.A., Baase,W.A.et al. Alanine-scanning mutagenesis of the beta-sheet region of phage T4 lysozyme suggests that tertiary context has a dominant effect on beta-sheet formation[J].Protein Sci.2004,13(10):2716-24.
    [7]Blaber, M., Baase,W.A., Gassner, N.et al. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme:effects on structure, stability and the binding of solvent[J].J Mol Biol.1995,246(2):317-30.
    [8]Vangelista,L., Secchi, M., Lusso,P. Rational Design of Novel HIV-1 Entry Inhibitors by RANTES Engineering[J].Vaccine.2008,26(24):3008-3015.
    [9]Vainshtein.I., Atrazhev, A., Eom, S.H.et al.Peptide rescue of an N-terminal truncation of the Stoffel fragment of taq DNA polymerase[J]. Protein Sci.1996,5(9):1785-1792.
    [10]Schon,O., Friedler,A., Bycroft,M.et al. Molecular mechanism of the interaction between MDM2 and p53[J].J Mol Biol.2002,323(3):491-50
    [11]Zondlo, S.C., Lee, A.E., Zondlo, N.J. Determinants of specificity of MDM2 for the activation domain of p53 and p65:proline27 disrupts the MDM2-binding motif of p53 [J].Biochemistry.2006,45:11945-57
    [12]Pace, C. N., Scholtz,J.M. A helix propensity scale based on experimental studies of peptides and proteins. [J].Biophys.J.1998,75:422-27
    [1]Woodley, J.F. Enzymatic barriers for GI peptide and protein delivery[J].Crit Rev Ther Drug Carrier Syst.1994, 11(2-3):61-95.
    [2]Zhou,X.H.Overcoming enzymatic and absorption barriers to non-parentally administrated protein and peptide drugs[J]. J Control Rel.1994,29:239-252.
    [3]Schumacher,T.N., Mayr,L.M., Mino,D.L.Jr.et al. Identification of D-peptide ligands through mirror-image phage display[J]. Science.1996,271(5257):1854-7.
    [4]Welch,B.D., VanDemark,A.P., Heroux,A.et al. Potent D-peptide inhibitors of HIV-1 entry[J].Proc Natl Acad Sci U S A.2007,104(43):16828-33.
    [5]Eckert,D.M., Malashkevich,V.N., Hong,L.H.et al. Inhibiting HIV-1 entry:discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell.1999,99(1):103-15.
    [6]Liu, M., Pazgier, Marzena., Li, C.et al. A left handed solution to peptide inhibition of the p53-MDM2 interaction[J]. Angew Chem Int Ed Engl.2010,49(21):3649-3652.
    [7]Chorev,M.,Goodman,M. On the concept of linear modified retro-peptide structures[J].Acc. Chem. Res.,1979,12 (1):1-7.
    [8]Van Regenmortel, M. H., Muller. S. D-peptides as immunogens and diagnostic reagents[J]. Curr. Opin. Biotechnol.1998,9:377-382.
    [9]Guichard, G., Benkirane, N., Zeder-Lutz, G.et al.Antigenic mimicry of natural L-peptides with retro-inverso-peptidomimetics[J]. Proc Natl Acad Sci U S A.1994,91:9765-9769.
    [10]Sakurai, K., Chung, H.S., Kahne, D. Use of a retroinverso p53 peptide as an inhibitor of MDM2[J]. J. Am. Chem. Soc.2004,126(50):16288-16289.
    [1]Fittipaldi, A., Giacca, M. Transcellular protein transduction using the Tat protein of HIV-1.[J] Adv. Drug Delivery Rev.2005,57(4):597-608.
    [2]Wadia, J. S., Dowdy, S. F. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer.[J]. Adv. Drug Delivery Rev.2005, 57(4):579-596.
    [3]Brooks, H., Lebleu, B., Vives, E. Tat peptide-mediated cellular delivery:back to basics. [J]. Adv. Drug Delivery Rev.2005,57(4):559-577.
    [4]Shen, G., Fang, H., Song, Y.et al. Phospholipid conjugate for intracellular delivery of peptide nucleic acids[J]. Bioconjug Chem.2009,20(9):1729-36.
    [5]Howl, J., Jones, S., Farquhar, M. Intracellular delivery of bioactive peptides to RBL-2H3 cells induces beta-hexosaminidase secretion and phospholipase D activation[J]. Chembiochem.2003,4(12):1312-6.
    [6]Dharap.S.S., Wang,Y., Chandna,P.et al. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide[J].Proc Natl Acad Sci U S A.2005,102(36):12962-7.
    [7]Saad, M., Garbuzenko.O.B., Ber,E.et al. Receptor targeted polymers, dendrimers, liposomes:which nanocarrier is the most efficient for tumor-specific treatment and imaging? J Control Release.2008,130(2):107-14.
    [8]张志荣.靶向治疗分子基础与靶向药物设计[M].北京:科学出版社,2005.
    [9]Ishida,O., Maruyama,K., Tanahashi,H., Iwatsuru,M., Sasaki,K., Eriguchi,M., Yanagie,H. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo[J]. Pharm Res.2001,18(7):1042-8.
    [10]Maruyama,K., Ishida,O., Kasaoka,S.et al. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT).J Control Release.2004,98(2):195-207.
    [11]邓英杰.脂质体技术[M].北京:人民卫生出版社,2007.
    [12]吴镭,平其能.药剂学发展与展望[M].北京:化学工业出版社,2002.
    [13]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社,2005.
    [14]Engler, O.B., Schwendener,R.A., Dai,W.J.et al. A liposomal peptide vaccine inducing CD8+ T cells in HLA-A2.1 transgenic mice, which recognise human cells encoding hepatitis C virus (HCV) proteins. Vaccine.2004,23(1):58-68.
    [15]Humphries, M.J. Intergrin structure. [J].Biochem. Soc. Trans.2000,28(4):311-39.
    [16]Nermut,M.V., Green, N.M., Eason, P., Yamada, S.S., Yamada, K.M. Electron microscopy and structural model of human fibronectin receptor. [J].EMBO J. 1988,7(13):4093-9.
    [17]Ruoslahti, S., Pierschbacher, M.D. New perspectives in cell adhesion:RGD and integrins.[J].Science.1987,238(4826):491-7.
    [18]Loftus, J.C., Liddington, R.C. Cell adhesion in vascular biology new insight into integrin ligand interaction [J].J Clin Invest. 1997,99(10):2302-2306.
    [19]Kim, M., Carmen, C.V., Springer, T.A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins [J].Science.2003,301(5640):1720-1725.
    [20]Silletti,S., Kessler,T., Goldberg, J. et al. Disruption of matrix metalloproteinase 2 binding to integrin alpha v beta 3 by an organic molecule inhibits angiogenesis and tumor growth in vivo [J].Proc Natl Acad Sci USA.2001,98(1):119-124.
    [21]Sethi, T., Rintoul, R.C., Moore, S.M. et al. Extracellular matrix proteins protect small cell lung cancer against apoptosis:a mechanism for small cell lung cancer growth and drug resistance in vivo. [J].Nat Med.1999,5(6):662-668.
    [22]Hazlehurst, L.A., Damiano, J.S., Buyuksalm,I.et al. Adhesion to fibronectin via β1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance[J].Oncogene.2000,19(38):4319-4327.
    [23]Ruoslahti, E. RGD and other recognition sequences for integrins.[J].Annu Rev Cell Dev Bio.1996,12:697-715.
    [24]Dubey,P.K., Mishra,V., Jain,S.et al. Liposomes modified with cyclic RGD peptide for tumor targeting[J].J Drug Target.2004,12(5):257-64.
    [25]Liu,S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging[J].Mol Pharm.2006,3(5):472-87.
    [26]Xiong, X.B.,Huang, Y.,Lu, W.L.,Zhang, X.,Zhang, H.,Nagai, T.,Zhang, Q. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic[J]. J Control Release. 2005,107:262-275.
    [27]F.C. Szoka, D.Papahadjopoulos, Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation[J]. Proc Natl Acad Sci U S A.1978,75:4194-4198.
    [1]Veeravagu, A., Liu, Z.,Niu,G.et al. Integrin alphavbeta3-targeted radioimmunotherapy of glioblastoma multiforme[J]. Clin Cancer Res.2008,14:7330-7339.
    [2]Magrini, R., Bakker, A., Gaviraghi, G.et al.Targeting the p53 tumor suppressor gene function in glioblatomas using small chemical molecules[J]. Drug Dev Res. 2006,67:790-800.
    [3]Zhan,C., Gu,B., Xie,C.et al. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect[J]. J Control Release. 2010,143:136-142.
    [4]Chen, X., Hou,Y., Tohme, M.et al,Pegylated Arg-Gly-Asp peptide:64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression[J]. J. Nucl. Med.2004,45: 1776-1783.
    [5]Naganuma,H., Satoh,E., Asahara,T.et al.Quantification of thrombospondin-1 secretion and expression of αvβ3 and α3β1 integrins and syndecan-1 as cell-surface receptors for thrombospondin-1 in malignant glioma cells[J]. J Neuro-Oncol.2004,70:309-317.
    [6]Chen.X., Park,R., Shahinian, A.H.et al.18F-labeled RGD peptide:initial evaluation for imaging brain tumor angiogenesis[J]. Nucl. Med. Biol.2004,31:179-189.
    [7]Wang, X.L., Xu, R., Wu,X.et al.Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice[J]. Mol Pharm. 2009,6:738-746.
    [8]Vassilev, L.T., Vu, B.T., Graves,B. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2 [J].Science.2004,303:844-848.
    [9]Shangary, S., Qin, D., McEachern, D.et al.Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition[J].Proc. Natl. Acad. Sci. U.S.A.2008,105:3933-3938.
    [10]Bernal, F., Tyler, A.F., Korsmeyer, S.J.et al. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide[J]. J Am Chem Soc.2007,129:2456-2457.
    [11]Madhankumar, A.B., Slagle-Webb,B., Wang,X., Yang, Q.X.et al. Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model[J]. Mol Cancer Ther.2009,8:648-654.
    [12]Gupta,B., Torchilin, V.P., Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol Immun. 2007,56:1215-1223.
    [13]Vassilev, L.T., Vu, B.T., Graves,B. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2 [J].Science.2004,303:844-848.
    [14]Pan, H., Han, L., Chen,W. et al. Targeting to tumor necrotic regions with biotinylated antibody and streptavidin modified liposomes [J].J Control Release..2008,125:228-235.
    [1]Martin,K., Meade, G., Moran, N., Shields, D.C., Kenny, D.A palmitylated peptide derived from the glycoprotein Ib beta cytoplasmic tail inhibits platelet activation [J]. J Thromb Haemost.2003,1(12):2643-2652.
    [2]Bernard,E., Parthasarathi, L., Cho, M. et al. Ligand switching in cell-permeable peptides: manipulation of the a-integrin signature motif. [J]. ACS Chem Biol.2009,4(6):457-471.
    [3]Honeycutt,L., Wang, J., Ekarami, H., Shen, W. Comparison of pharmacokinetic parameters of a polypeptide,the brown-birk protease inhibitor(BBI), and its palmitic acid conjugate[J]. Pharm Res.1996,13(9):1373-1377.
    [4]Su, X., Mi, J., Yan, J. et al. RGT, a synthetic peptide corresponding to the integrin β3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin αHbβ3 with Src kinase [J]. Blood. 2008,112:592-602.
    [5]Liu, M., Pazgier, Marzena., Li, C.et al. A left handed solution to peptide inhibition of the p53-MDM2 interaction[J]. Angew Chem Int Ed Engl.2010,49(21):3649-3652.
    [6]Zitzmann,S., Ehemann, V., Schwab, M. Arginine-Glycine-Aspartic acid(RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo[J]. Cancer Res. 2002,62:5139-5143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700