蜘蛛毒素与电压门控离子通道作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Jingzhaotoxin-Ⅲ(JZTX-Ⅲ)是从我国特有的敬钊缨毛蛛中分离得到的一种多肽毒素,它能够选择性的作用于大鼠心肌细胞并使心肌钠离子通道的激活往去极化方向漂移。我们采用酵母发酵系统成功的表达了JZTX-Ⅲ以及其18个突变体,其中除F7A表达量太低外其他的突变体表达量约为4 mg/L。表达的JZTX-Ⅲ以及突变体的CD图谱和天然JZTX-Ⅲ的基本一致,因此CD谱检测证明表达的毒素以及突变体并没有发生结构的改变。膜片钳检测发现表达的JZTX-Ⅲ能够选择性的抑制Nav1.5电流(IC50为348.0±67.9 nM),同时毒素能使Nav1.5往去极化方向漂移约+13 mV但不改变钠通道的稳态失活。因此,表达的JZTX-Ⅲ和天然的JZTX-Ⅲ在结构和功能上都保持一致。检测毒素突变体和Nav1.5的亲和力发现,两个酸性残基(Aspl.Glu3)和一个暴露在毒素表面由色氨酸构成的疏水性斑片(Trp8.Trp9.Trp28.Trp29.Trp30)是JZTX-Ⅲ和Nav1.5作用的关键残基,另外一个碱性残基Arg13突变成Glu后使毒素和通道的亲和力增强了十倍。对Nav1.5 DII S3-S4连接环上的氨基酸残基进行了丙氨酸扫描后,发现Nav1.5的突变体S799A.R800A. L804A能显著的降低JZTX-Ⅲ和Nav1.5的亲和力,这些氨基酸残基可能是JZTX-Ⅲ结合钠通道的关键残基。将Nav1.5和其他钠通道亚型的DIIS3-S4氨基酸序列对比,发现R800为Nav1.5所特有的氨基酸。Nav1.7上相应的位点D816突变成D816R增强了JZTX-Ⅲ和Nav1.7的亲和力,Nav1.5突变体R800D使毒素和通道的亲和力降低约72倍。JZTX-Ⅲ通过酸性氨基酸残基和Nav1.5 DII S3-S4链接环上的碱性氨基酸残基相互作用,这种作用机制不同于以往的毒素,因此JZTX-Ⅲ可以作为毒素和钠通道结构和功能研究的工具试剂。
     Huwentoxin-Ⅳ(MHWTX-Ⅳ)修饰体是从虎纹捕鸟蛛粗毒中分离得到的一种发生翻译后修饰的毒素。质谱检测表明mHWTX-Ⅳ分子量比天然HWTX-Ⅳ的分子量少18 Da。采用质谱进一步的分析毒素的氨基酸序列,发现HWTX-Ⅳ的N端谷氨酸脱水环化形成焦谷氨酸导致分子量减少18 Da。全细胞膜片钳显示,MHWTX-Ⅳ选择性的抑制大鼠DRG神经元上的TTX-S钠离子通道(IC50~54.16±7.3 nM),而对大鼠DRG细胞的TTX-R钠离子通道以及其他的电压门控离子通道都没有影响。和天然HWTX-Ⅳ一样,HWTX-Ⅳ修饰体不改变TTX-S钠离子通道的I-V曲线、电导曲线以及稳态失活曲线。HWTX-IV抑制的钠离子通道在高电压刺激下与钠离子通道解离,钠电流基本完全恢复,但被HWTX-Ⅳ修饰体抑制的钠电流在高电压(+200 mv,500 ms)刺激下依然没有恢复,证明HWTX-Ⅳ修饰体在高电压的刺激下与钠离子通道依然紧密结合。这有可能是谷氨酸环化形成焦谷氨酸后导致毒素缺失一个负电荷,从而使毒素和钠通道上的负电荷残基的结合更加紧密。这是第一次报道在蜘蛛毒素中有焦谷氨酸的存在,并且第一次证明焦谷氨酸能够增强HWTX-Ⅳ修饰体和钠离子通道的结合。
     JZTX-34是敬钊缨毛蛛中分离得到一种新的多肽毒素,由于该毒素在粗度中的含量较小,因此采用酿酒酵母表达该毒素。JZTX-34含有35个氨基酸残基其中包括三对半胱氨酸形成二硫键,推测其可能为ICK结构模体的多肽毒素。JZTX-34能选择性作用于大鼠DRG细胞上的TTX-S钠通道(IC50~85 nM),但是对TTX-R钠通道以及钙通道和钾通道无明显抑制作用。JZTX-34能选择性抑制大鼠DRG细胞上的TTX-S钠电流并使钠通道稳态失活往去极化方向漂移10 mV,但是毒素却不改变钠通道的激活。JZTX-34在高电压刺激(+120 mV)下与钠通道发生解离,抑制消除。因此,我们推测JZTX-34是一个位点4的毒素可能结合钠通道的电压敏感元件。
     虎纹捕鸟蛛(Ornithoctonus huwena)是分布于我国南方毒性最强的蜘蛛之一,其毒液中含有大量的多肽毒素能够快速的杀死猎物。HWTX-Ⅰ和HWTX-Ⅰ是虎纹捕鸟蛛粗毒中两种最丰富的成分,HWTX-Ⅰ是一个双功能活性分子既能抑制大鼠DRG神经元TTX-S钠通道(IC50~57.40±1.42 nM)又能专一抑制N-型钙通道(IC50~91 nM),但是10μM HWTX-Ⅱ对大鼠DRG神经元细胞上钠离子通道和钙离子通道均无明显作用。HWTX-Ⅱ和HWTX-Ⅰ混合后共同作用于TTX-S钠通道与N-型钙通道其活性分别增加10倍和6倍。进一步研究表明,HWTX-Ⅱ不仅增加HWTX-Ⅰ对TTX-S钠通道的抑制活性,也能使HHWTX-Ⅰ结合钠离子通道的速度提高约2倍,但是该毒素不改变HWTX-Ⅰ和钠通道以及钙通道的作用方式。HWTX-Ⅱ和HWTX-Ⅰ的协同作用显著的增强了HWTX-Ⅰ的活性,也揭示了毒液中毒性较弱分子的一个新功能。
Jingzhaotoxin-Ⅲ(JZTX-Ⅲ) is a unique sodium channel gating modifier from the tarantula Chilobrachys jingzhao, which can selectively inhibit the activation of cardiac sodium channel but not neuronal subtypes and cause a depolarization shift about 10 mV in activation. In this study, we showed that JZTX-Ⅲwas efficiently expressed by the secretary pathway in yeast. CD spectra of JZTX-Ⅲmutants and the expressed JZTX-Ⅲalmost overlapped completely with that of the native toxin, indicating that all expressed toxins did not significantly change the secondary structure of JZTX-Ⅲ. Like the native JZTX-Ⅲ, the expressed JZTX-Ⅲinhibited Nav1.5 channel with the IC50 value of 348.0±67.9 nM and cause a depolarization shift about+13 mV in activation. Alanine-scanning analysis indicated that two acidic residues (Asp1, Glu3) and an exposed hydrophobic patch, formed by four Trp residues (8,9,28 and 30), play very important roles in the binding of JZTX-III to Navl.5. JZTX-III docked to Nav1.5 DIIS3-S4 linker. Mutants S799A, R800A and L804A could additively reduce toxin sensitivity of Nav1.5. We also demonstrated that the unique Arg800, not emerging in other sodium channel subtypes, is responsible for JZTX-Ⅲselectively interacting with Nav1.5. The reverse mutants D816R in Nav1.7 greatly increased the sensitivity of the neuronal subtype to JZTX-Ⅲ. Conversely, the mutant R800D in Nav1.5 decreased JZTX-Ⅲ's IC50 by 72-fold. Therefore, our result indicated that JZTX-Ⅲis a site 4 toxin, but do not possess the same critical residues on sodium channels with other site 4 toxins.
     A variety of posttranslational modifications of peptides have been found in venomous animal, mostly in cone snails. A novel posttranslational modified spider toxin MHWTX-Ⅳwas purified from Chinese tarantula Ornithoctonus huwen. Mass spectrum showed than the molecular weight of MHWTX-Ⅳwas 18 Da lower than that of the native Huwentoxin-Ⅳ. Sequence analysis by mass spectrum indicated that it was highly similar to spider toxin Huwentoxin-Ⅳexcept that the N-terminal glutamic acid is replaced by pyroglutamic residue. Like the native HWTX-Ⅳ, the modified HWTX-Ⅳ(MHWTX-Ⅳ) could inhibit trodotoxin-resistant VGSCs with an IC50 value of 54.16±7.3 nM in dorsal root ganglion neurons, but not change the activation or inactivation kinetics. However, in contrast to the dissociation of HWTX-Ⅳfrom sodium channel at extreme depolarization, the inhibition of TTX-S sodium channels by MHWTX-Ⅳcould not reversed by even stronger depolarization (+200 mV,500ms). It is possible that the loss of negative charge induced by glutaminyl cyclization makes the modified toxin binding stronger. To our knowledge, this is the first report of pyroglutamic acid residue found in spider toxin and the modification could increase the trap ability to voltage sensor of sodium channel.
     We have isolated and characterized a novel neurotoxin named JZTX-34 from the tarantula Chilobrachys jingzhao and successfully expressed by yeast. JZTX-34 is a C-terminally amidated peptide composed by 35 amino acid residues including six cysteine residues with three disulfide bridges. JZTX-34 selectively inhibits TTX-Ssodium channels of DRG neurons with the IC50 value of 85 nM, while having no effect on TTX-R sodium channels. JZTX-34 shows no effect on activation of TTX-S sodium channels but causing a depolarization shift about 10 mV on steady-state sodium channel inactivation. The inhibition by JZTX-Ⅲwas completely reversed after a high depolarization (+120 mV). Based on those results, we propose that JZTX-34 may be a site 4 toxin and trap the voltage sensor of sodium channel.
     The Chinese tarantula Ornithoctonus huwena is one of the most venomous spiders in south China, its venom contains various peptide toxins and can quickly kill prey. Huwentoxin-Ⅰ(HWTX-Ⅰ) and huwentoxin-Ⅱ(HWTX-Ⅱ) are two abundant toxic components in the venom of O. huwena. HWTX-Ⅰinhibits both sodium channel (IC50~57.40±1.42 nM) and calcium channel (IC50~91 nM) of adult rat dorsal root ganglion (DRG) neurons. HWTX-Ⅱshows no effect on both sodium channel and calcium channel. When two toxins were mixed together, the activity of HWTX-Ⅰincreases 10 fold on sodium channel and 6 fold on calcium channel. HWTX-Ⅱnot only increases the activity of HWTX-Ⅰbut also accelerates the binding rate to sodium channel with about 2 fold, while having no effect on activation or inactivation kinetic. These results reveal synergistic interactions among insect and mammalian toxins and imply a new functional role for polypeptides toxins with weak activity.
引文
[1]King, G. F., The wonderful world of spiders:preface to the special Toxicon issue on spider venoms[J], Toxicon 2004,43,471.
    [2]Rash, L.D., Hodgson, W. C. Pharmacology and biochemistry of spider venoms [J]. Toxicon,2002,40(3):225-254.
    [3]N.A. Sosnina, Z. Golubenko, A.A. Akhunov, E.V. Kugaevskaia, E. Eliseeva Iu, V.N. Orekhovich, [Bradykinin-potentiating peptides from the spider Latrodectus tredecimguttatus--inhibitors of carboxycathepsin and of a preparation of karakurt venom kininase], Dokl Akad Nauk SSSR 315 (1990) 236-239.
    [4]Platnick NI. Dimensions of biodiversity:targeting megadiverse groups. In Cracraft, J.and F. T. Grifo (eds.). The Living Planet in Crisis:Biodiversity Science and Policy 1999,33-52. Jackson, R.R., Pollard, S.D. Predatory behavior of jumping spiders [J]. Annu. Rev. Entomol.,1996,41:287-308.
    [5]Foelix, R.F. Biology of Spiders [M]. New York:Oxford University Press,1996. Escoubas, P. L. Rash, Tarantulas:eight-legged pharmacists and combinatorial chemists [J], Toxicon 2004,43,555.
    [6]Coddington, J.A., Levi, H.W. Systematics and evolution of spiders (Araneae) [J]. Annu. Rev. Ecol. Syst.,1991,22:565-592.
    [7]Platnick, N.I. Advances in spider taxonomy,1992-1995:with redescriptions 1940-1980 [M]. New York:New York Entomological Society and The American Museum of Natural History,1997.
    [8]K. Morgan, E.B. Stevens, B. Shah, P.J. Cox, A.K. Dixon, K. Lee, R.D. Pinnock, J. Hughes, P.J. Richardson, K. Mizuguchi, A.P. Jackson, beta 3:an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics, Proc Natl Acad Sci U S A 97 (2000) 2308-2313.
    [9]Tedford, H.W., Sollod, B.L., Maggio, F., King, G.F. Australian funnel-web spiders:master I nsecticide chemists [J]. Toxicon,2004,43(5):601-618.
    [10]Usherwood, P. N., I. R. Duce, P. Boden, Slowly-reversible block of glutamate receptor-channels by venoms of the spiders, Argiope trifasciata and Araneus gemma[J], J Physiol (Paris) 1984,79,241
    [11]P.I. Silva, Jr., S. Daffre, P. Bulet, Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family, J Biol Chem 275 (2000) 33464-33470.
    [12]Y. Ishikawa, P. Charalambous, F. Matsumura, Modification by pyrethroids and DDT of phosphorylation activities of rat brain sodium channel, Biochem Pharmacol 38 (1989) 2449-2457.
    [13]J.R.H., J., K. K.J., J. J.H., K. R.M.,, Insecticidally effective s pider toxin, US Patent No 5,457,178.[J],1993.
    [14]Martinez AF, Muenke M, Arcos-Burgos M, From the black widow spider to human behavior:Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet.2011 Jan;156B(1):1-10
    [15]Dulubova, I. E., V. G. Krasnoperov, M. V. Khvotchev, K. A. Pluzhnikov, T. M. Volkova, E. V. Grishin, H. Vais, D. R. Bell, P.N.Usherwood,Cloning and structure of delta-latroinsectotoxin, a novel insect-specific member of the latrotoxin family:functional expression requires C-terminal truncation [J], J Biol Chem 1996,271,7535
    [16]Ushkaryov, Y. A., K. E. Volynski, A. C. Ashton, The multiple actions of black widow spider toxins and their selective use in neurosecretion studies[J], Toxicon 2004,43,527
    [17]Tambourgi, D. V, F. C. Magnoli, C. W. van den Berg, B. P. Morgan, P. S. de Araujo, E. W. Alves, W. D. Da Silva, Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement-dependent hemolysis[J], Biochem Biophys Res Commun 1998,251, 366.
    [18]Tambourgi DV, Magnoli FC, van den Berg CW, Morgan BP, de Araujo PS, Alves EW, Da Silva WD. Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement-dependent hemolysis. Biochem Biophys Res Commun.1998,251(1):366-73.
    [19]N. Ogata, H. Tatebayashi, Kinetic analysis of two types of Na+ channels in rat dorsal root ganglia, J Physiol 466 (1993) 9-37.
    [20]Jackson J.R.H., Krapcho K.J., Johnson J.H., Kral R.M.(1993). Insecticidally effective pider toxin, US Patent No 5,457,178.
    [21]Liang, S., Li, X., Cao, M., Xie, J. et al. (2000).Indentification of venom proteins of spider S. huwena on two-dimensional electrophoresis gel by N-terminal microsequencing and mass spectrometric peptide mapping. J. Protein Chem.19(3): 225-229.
    [22]Pallaghy, P.K., Nielsen, K.J., Craik, D.J., Norton, R.S. A common structural motif incorporating a cystine knot and a triple-stranded β-sheet in toxic and inhibitory peptides [J]. Protein Sci.,1994,3(10):1833-1839.
    [23]Shu, Q., Lu, S.Y., Gu, X. C., Liang, S.P. The structure of spider toxin huwentoxin-Ⅱ with unique disulfide linkage:evidence for structural evolution [J]. Protein Sci.2002,11 (2):245-252.
    [24]Wang, X., Connor, M., Smith, R., Maciejewski, M.W., Howden, M. E., Nicholson, G.M., Christie, M.J., King, G.F. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge [J]. Nat. Struct. Biol., 2000,7(6):505-513
    [25]Yuan, C.H., He, Q.Y., Peng, K., Diao, J.B., Jiang, L.P., Tang, X., Liang, S.P. Discovery of a Distinct Superfamily of Kunitz-Type Toxin (KTT) from Tarantulas [J]. PLoS One.,2008,3,e3414.
    [26]Liao, Z., Yuan, C.H., Peng, K., Xiao, Y.C., Liang, S.P. Solution structure of Jingzhaotoxin-Ⅲ, a peptide toxin inhibiting both Nav1.5 and Kv2.1 channels [J]. Toxicon,2007,50(1):135-143.
    [27]Wang M, Guan X, Liang S. The[86] Yan, L., Adams, M.E. Lycotoxins, Antimicrobial Peptides from Venom of the Wolf Spider Lycosa carolinensis [J]. J. Biol. Chem.,1998,273(4):2059-2066.
    [28]Kuhn-Nentwig, L., Mueller, J., Schaller, J., Walz, A., Dathe, M., Nentwig, W. Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae) [J]. J. Biol. Chem.,2002,277(13): 11208-11216.
    [29]Catterall WA, Chandy KG, Clapham DE, Gutman GA, Hofmann F, Harmar AJ, Abernethy DR, Spedding M. International Union of Pharmacology:Approaches to the Nomenclature of Voltage-Gated Ion Channels. Pharmacol Rev 2003,55: 573-574.
    [30]刘中华.两种蜘蛛多肽毒素的结构与功能研究[D].北京:北京大学生命科学学院,2006.
    [31]Escoubas P., De Weille J. R., Lecoq A., Diochot S., Waldmann R., Champigny G. et al.Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem,2000,275:25116-25121
    [32]Corzo, G., Gilles, N., Satake, H., Villegas, E., Dai, L., Nakajima, T., Haupt, J. Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel [J]. FEBS Lett.2003,547(1-3):43-50.
    [33]M. Milescu, J. Vobecky, S.H. Roh, S.H. Kim, H.J. Jung, J.I. Kim, K.J. Swartz, Tarantula toxins interact with voltage sensors within lipid membranes, J Gen Physiol 130(2007)497-511.
    [34]R. Newcomb, B. Szoke, A. Palma, G. Wang, X. Chen, W. Hopkins, R. Cong, J. Miller, L. Urge, K. Tarczy-Hornoch, J.A. Loo, D.J. Dooley, L. Nadasdi, R.W. Tsien, J. Lemos, G. Miljanich, Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas, Biochemistry 37 (1998) 15353-15362
    [35]Selden, P.A. Missing links between Argyroneta and Cybaeidae revealed by fossil spiders [J]. J. Arachnol,2002,30(2):189-200.
    [36]Ushkaryov, Y.A., Volynski, K.E., Ashton, A.C., The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon, 2004,43:527-542
    [37]Corzo, G., Villegas, E., Gomez-Lagunas, F., Possani, L. D., Belokoneva, O. S.,Nakajima, T. Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins [J]. J Biol Chem.,2002,277(26): 23627-23637.
    [38]Martin-Moutot, N., Mansuelle, P., Alcaraz, G, Dos Santos, R.G., Cordeiro, M.N., De Lima, M.E., Seagar, M., Van Renterghem, C. Phoneutria nigriventer toxin 1:a novel, state-dependent inhibitor of neuronal sodium channels that interacts with micro conotoxin binding sites [J]. Mol Pharmacol,2006,69(6):1931-1937.
    [39]Jackson J.R.H., DelMar E., Johnson J.H., Kral R.M.(1998). Insecticidally effective peptides isolatable from Phidippusspider venom, US Patent No 5,756, 459.
    [40]Ashcroft, F. Voltage-gated Ca2+ channels. In:Ion channels in disease [M]. San Diego, CA:Academic Press,2000.
    [41]Keizer DW, West PJ, Lee EF, Yoshikami D, Olivera BM, Bulaj G, Norton RS. Structural basis for tetrodotoxin-resistant sodium channel binding by mu-conotoxin SmIIIA. J. Biol. Chem.2003,278:46805-46813.
    [42]L.A. Ferreira, W.E. Alves, M.S. Lucas, G.G. Habermehl, Isolation and characterization of a bradykinin potentiating peptide (BPP-S) isolated from Scaptocosa raptoria venom, Toxicon 34 (1996) 599-603.
    [43]G.F. Lopreato, Y. Lu, A. Southwell, N.S. Atkinson, D.M. Hillis, T.P. Wilcox, H.H. Zakon, Evolution and divergence of sodium channel genes in vertebrates, Proc Natl Acad Sci U S A 98 (2001) 7588-7592.
    [44]S. Liang, An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)], Toxicon 43 (2004)575-585.
    [45]S.D. Heck, C.J. Siok, K.J. Krapcho, P.R. Kelbaugh, P.F. Thadeio, M.J. Welch, R.D. Williams, A.H. Ganong, M.E. Kelly, A.J. Lanzetti, et al., Functional consequences of posttranslational isomerization of Ser46 in a calcium channel toxin, Science 266(1994)1065-1068.
    [46]L. Cohen, N. Lipstein, D. Gordon, Allosteric interactions between scorpion toxin receptor sites on voltage-gated Na channels imply a novel role for weakly active components in arthropod venom, FASEB J 20 (2006) 1933-1935.
    [47]A.C. Rigby, E. Lucas-Meunier, D.E. Kalume, E. Czerwiec, B. Hambe, I. Dahlqvist, P. Fossier, G. Baux, P. Roepstorff, J.D. Baleja, B.C. Furie, B. Furie, J. Stenflo, A conotoxin from Conus textile with unusual posttranslational modifications reduces presynaptic Ca2+ influx, Proc Natl Acad Sci U S A 96 (1999)5758-5763.
    [48]A. Fisyunov, K. Pluzhnikov, A. Molyavka, E. Grishin, N. Lozovaya, O. Krishtal, Novel spider toxin slows down the activation kinetics of P-type Ca2+channels in Purkinje neurons of rat, Toxicology 207 (2005) 129-136.
    [49]G.F. Lopreato, Y. Lu, A. Southwell, N.S. Atkinson, D.M. Hillis, T.P. Wilcox, H.H. Zakon, Evolution and divergence of sodium channel genes in vertebrates, Proc Natl Acad Sci U S A 98 (2001) 7588-7592.
    [50]Escoubas, P., Diochot, S., Corzo, G.Structure and pharmacology of spider venom neurotoxins. Biochimie,2000,82,893-907.
    [51]R.E. Middleton, V.A. Warren, R.L. Kraus, J.C. Hwang, C.J. Liu, G. Dai, R.M. Brochu, M.G. Kohler, Y.D. Gao, V.M. Garsky, M.J. Bogusky, J.T. Mehl, C.J. Cohen, M.M. Smith, Two tarantula peptides inhibit activation of multiple sodium channels, Biochemistry 41 (2002) 14734-14747.
    [52]G. Bulaj, O. Buczek, I. Goodsell, E.C. Jimenez, J. Kranski, J.S. Nielsen, J.E. Garrett, B.M. Olivera, Efficient oxidative folding of conotoxins and the radiation of venomous cone snails, Proc Natl Acad Sci U S A 100 Suppl 2 (2003) 14562-14568.
    [53]B.T. Priest, K.M. Blumenthal, J.J. Smith, V.A. Warren, M.M. Smith, ProTx-I and ProTx-Ⅱ:gating modifiers of voltage-gated sodium channels, Toxicon 49 (2007) 194-201.
    [54]V.J. Venema, K.M. Swiderek, T.D. Lee, G.M. Hathaway, M.E. Adams, Antagonism of synaptosomal calcium channels by subtypes of omega-agatoxins, J Biol Chem 267 (1992) 2610-2615.
    [55]J.J. Smith, T.R. Cummins, S. Alphy, K.M. Blumenthal, Molecular interactions of the gating modifier toxin ProTx-II with NaV 1.5:implied existence of a novel toxin binding site coupled to activation, J Biol Chem 282 (2007) 12687-12697.
    [56]肖玉成.作用于电压门控钠通道的蜘蛛毒素结构和功能的研究.[D].湖南:湖南师范大学生命科学学院,2004.
    [57]C.A. Rohl, F.A. Boeckman, C. Baker, T. Scheuer, W.A. Catterall, R.E. Klevit, Solution structure of the sodium channel inactivation gate, Biochemistry 38 (1999) 855-861.
    [58]P. Escoubas, S. Diochot, G. Corzo, Structure and pharmacology of spider venom neurotoxins, Biochimie 82 (2000) 893-907.
    [59]S. Cestele, W.A. Catterall, Molecular mechanisms of neurotoxin action on voltage-gated sodium channels, Biochimie 82 (2000) 883-892.
    [60]Fozzard HA, Lipkind G. The guanidinium toxin binding site on the sodium channel. Jpn Heart J.1996,37:683-692.
    [61]Penzotti JL, Fozzard HA, Lipkind GM, Dudley SC Jr. Differences in saxitoxin and tetrodotoxin binding revealed by mutagenesis of the Na+ channel outer vestibule. Biophys J.1998,75:2647-2657.
    [62]Nielsen KJ, Watson M, Adams DJ, Hammarstrom AK, Gage PW, Hill JM, Craik DJ, Thomas L, Adams D, Alewood PF, Lewis RJ. Solution structure of u-conotoxin PIIIA, a preferential inhibitor of persistent tetrodotoxin-sensitive sodium channels. J Biol Chem.2002,277:27247-27255.
    [63]R.P. Hartshorne, D.J. Messner, J.C. Coppersmith, W.A. Catterall, The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits, J Biol Chem 257 (1982) 13888-13891.
    [64]Wakamatsu K, Kohda D, Hatanaka H, Lancelin JM, Ishida Y, Oya M, Nakamura H, Inagaki F, Sato K. Structure-activity relationships of mu-conotoxin GIIIA: structure determination of active and inactive sodium channel blocker peptides by NMR and simulated annealing calculations. Biochemistry 1992,31:12577-12584.
    [65]Hill JM, Alewood PF, Craik DJ. Three-dimensional solution structure of mu-conotoxin GIIIB, a specific blocker of skeletal muscle sodium channels. Biochemistry 1996,35:8824-8835.
    [66]B.S. Shah, E.B. Stevens, M.I. Gonzalez, S. Bramwell, R.D. Pinnock, K. Lee, A.K. Dixon, beta3, a novel auxiliary subunit for the voltage-gated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain, Eur J Neurosci 12 (2000) 3985-3990.
    [67]Y. Xiao, J. Tang, W. Hu, J. Xie, C. Maertens, J. Tytgat, S. Liang, Jingzhaotoxin-I, a novel spider neurotoxin preferentially inhibiting cardiac sodium channel inactivation, J Biol Chem 280 (2005) 12069-12076.
    [68]R.E. Middleton, V.A. Warren, R.L. Kraus, J.C. Hwang, C.J. Liu, G. Dai, R.M. Brochu, M.G. Kohler, Y.D. Gao, V.M. Garsky, M.J. Bogusky, J.T. Mehl, C.J. Cohen, M.M. Smith, Two tarantula peptides inhibit activation of multiple sodium channels, Biochemistry 41 (2002) 14734-14747.
    [69]D.D. Sheumack, R. Claassens, N.M. Whiteley, M.E. Howden, Complete amino acid sequence of a new type of lethal neurotoxin from the venom of the funnel-web spider Atrax robustus, FEBS Lett 181 (1985) 154-156.
    [70]M.R. Brown, D.D. Sheumack, M.I. Tyler, M.E. Howden, Amino acid sequence of versutoxin, a lethal neurotoxin from the venom of the funnel-web spider Atrax versutus, Biochem J 250 (1988) 401-405.
    [71]S.K. Maier, R.E. Westenbroek, T.T. Yamanushi, H. Dobrzynski, M.R. Boyett, W.A. Catterall, T. Scheuer, An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node, Proc Natl Acad Sci USA 100(2003) 3507-3512.
    [72]D.M. Lorenzini, A.H. Fukuzawa, P.I. da Silva, Jr., G. Machado-Santelli, A.T. Bijovsky, S. Daffre, Molecular cloning, expression analysis and cellular localization of gomesin, an anti-microbial peptide from hemocytes of the spider Acanthoscurria gomesiana, Insect Biochem Mol Biol 33 (2003) 1011-1016.
    [73]Y. Xiao, J. Tang, Y. Yang, M. Wang, W. Hu, J. Xie, X. Zeng, S. Liang, Jingzhaotoxin-Ⅲ, a novel spider toxin inhibiting activation of voltage-gated sodium channel in rat cardiac myocytes, J Biol Chem 279 (2004) 26220-26226.
    [74]S. Cestele, Y. Qu, J.C. Rogers, H. Rochat, T. Scheuer, W.A. Catterall, Voltage sensor-trapping:enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain Ⅱ, Neuron 21 (1998) 919-931.
    [75]S. Cestele, V. Yarov-Yarovoy, Y. Qu, F. Sampieri, T. Scheuer, W.A. Catterall, Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin, J Biol Chem 281 (2006) 21332-21344.
    [76]W.A. Catterall, Structure and function of voltage-sensitive ion channels, Science 242(1988)50-61.
    [77]Y. Xiao, J.P. Bingham, W. Zhu, E. Moczydlowski, S. Liang, T.R. Cummins, Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration, J Biol Chem 283 (2008) 27300-27313.
    [78]B.S. Shah, E.B. Stevens, M.I. Gonzalez, S. Bramwell, R.D. Pinnock, K. Lee, A.K. Dixon, beta3, a novel auxiliary subunit for the voltage-gated sodium channel, is expressed preferentially in sensory neurons and is upregulated in the chronic constriction injury model of neuropathic pain, Eur J Neurosci 12 (2000) 3985-3990.
    [79]V.J. Auld, A.L. Goldin, D.S. Krafte, W.A. Catterall, H.A. Lester, N. Davidson, R.J. Dunn, A neutral amino acid change in segment IIS4 dramatically alters the gating properties of the voltage-dependent sodium channel, Proc Natl Acad Sci U S A 87 (1990)323-327.
    [80]M. Wang, X. Guan, S. Liang, The cross channel activities of spider neurotoxin huwentoxin-I on rat dorsal root ganglion neurons, Biochem Biophys Res Commun 357 (2007) 579-583.Liang, S.P., Pan, X. A lectin-like peptide isolated from the venom of the chhinese bird spider selenocosmia huwena [J]. Toxicon,1995,33(7): 875-882
    [81]K.J. Shon, B.M. Olivera, M. Watkins, R.B. Jacobsen, W.R. Gray, C.Z. Floresca, L.J. Cruz,D.R. Hillyard, A. Brink, H. Terlau, D. Yoshikami, mu-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes, J Neurosci 18 (1998) 4473-4481.
    [82]Hille, B. Voltage-gated calcium channels. In:Ion channels of excitable membranes [M]. Sunderland, MA:Sinauer Associates,2001.
    [83]O.D. Uchitel, Toxins affecting calcium channels in neurons, Toxicon 35 (1997) 1161-1191.
    [84]W.A. Catterall, Structure and regulation of voltage-gated Ca2+ channels, Annu Rev Cell Dev Biol 16 (2000) 521-555.
    [85]R.S. Norton, S.I. McDonough, Peptides targeting voltage-gated calcium channels, Curr Pharm Des 14 (2008) 2480-2491.
    [86]M.E. Adams, V.P. Bindokas, L. Hasegawa, V.J. Venema, Omega-agatoxins:novel calcium channel antagonists of two subtypes from funnel web spider (Agelenopsis aperta) venom, J Biol Chem 265 (1990) 861-867.
    [87]E.A. Ertel, V.A. Warren, M.E. Adams, P.R. Griffin, C.J. Cohen, M.M. Smith, Type III omega-agatoxins:a family of probes for similar binding sites on L-and N-type calcium channels, Biochemistry 33 (1994) 5098-5108.
    [88]J.L. Penzotti, H.A. Fozzard, G.M. Lipkind, S.C. Dudley, Jr., Differences in saxitoxin and tetrodotoxin binding revealed by mutagenesis of the Na+ channel outer vestibule, Biophys J 75 (1998) 2647-2657.
    [89]] I.M. Mintz, V.J. Venema, K.M. Swiderek, T.D. Lee, B.P. Bean, M.E. Adams, P-type calcium channels blocked by the spider toxin omega-Aga-IVA, Nature 355(1992)827-829.
    [90]M.E. Adams, I.M. Mintz, M.D. Reily, V. Thanabal, B.P. Bean, Structure and properties of omega-agatoxin IVB, a new antagonist of P-type calcium channels, Mol Pharmacol 44 (1993) 681-688.
    [91]F.H. Yu, R.E. Westenbroek, I. Silos-Santiago, K.A. McCormick, D. Lawson, P. Ge, H. Ferriera, J. Lilly, P.S. DiStefano, W.A. Catterall, T. Scheuer, R. Curtis, Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2, J Neurosci 23 (2003) 7577-7585.
    [92]R.M. Leao, J.S. Cruz, C.R. Diniz, M.N. Cordeiro, P.S. Beirao, Inhibition of neuronal high-voltage activated calcium channels by the omega-phoneutria nigriventer Tx3-3 peptide toxin, Neuropharmacology 39 (2000) 1756-1767.
    [93]D.M. Miranda, M.A. Romano-Silva, E. Kalapothakis, C.R. Diniz, M.N. Cordeiro, T.M. Santos, M.A. Prado, M.V. Gomez, Phoneutria nigriventer toxins block tityustoxin-induced calcium influx in synaptosomes, Neuroreport 9 (1998) 1371-1373.
    [94]E. Kalapothakis, C.L. Penaforte, R.M. Leao, J.S. Cruz, V.F. Prado, M.N. Cordeiro, C.R. Diniz, M.A. Romano-Silva, M.A. Prado, M.V. Gomez, P.S. Beirao, Cloning, cDNA sequence analysis and patch clamp studies of a toxin from the venom of the armed spider (Phoneutria nigriventer), Toxicon 36 (1998) 1971-1980.
    [95]A.C. Cassola, H. Jaffe, H.M. Fales, S.C. Afeche, F. Magnoli, J. Cipolla-Neto, omega-Phonetoxin-IIA:a calcium channel blocker from the spider Phoneutria nigriventer, Pflugers Arch 436 (1998) 545-552.
    [96]X. Wang, R. Smith, J.I. Fletcher, H. Wilson, C.J. Wood, M.E. Howden, G.F. King, Structure-function studies of omega-atracotoxin, a potent antagonist of insect voltage-gated calcium channels, Eur J Biochem 264 (1999) 488-494.
    [97]S.I. McDonough, R.A. Lampe, R.A. Keith, B.P. Bean, Voltage-dependent inhibition of N-and P-type calcium channels by the peptide toxin omega-grammotoxin-SIA, Mol Pharmacol 52 (1997) 1095-1104.
    [98]E. Bourinet, S.C. Stotz, R.L. Spaetgens, G. Dayanithi, J. Lemos, J. Nargeot, G.W. Zamponi, Interaction of SNX482 with domains Ⅲ and Ⅳ inhibits activation gating of alpha(1E) (Ca(V)2.3) calcium channels, Biophys J 81 (2001) 79-88.
    [99]H.C. Siebert, S.Y. Lu, R. Wechselberger, K. Born, T. Eckert, S. Liang, C.W. von der Lieth, J. Jimenez-Barbero, R. Schauer, J.F. Vliegenthart, T. Lutteke, S. Andre, H. Kaltner, H.J. Gabius, T. Kozar, A lectin from the Chinese bird-hunting spider binds sialic acids, Carbohydr Res 344 (2009) 1515-1525.
    [100]K.G. Sutton, C. Siok, A. Stea, G.W. Zamponi, S.D. Heck, R.A. Volkmann, M.K. Ahlijanian, T.P. Snutch, Inhibition of neuronal calcium channels by a novel peptide spider toxin, DW13.3, Mol Pharmacol 54 (1998) 407-418.
    [101]A. Fisyunov, K. Pluzhnikov, A. Molyavka, E. Grishin, N. Lozovaya, O. Krishtal, Novel spider toxin slows down the activation kinetics of P-type Ca2+ channels in Purkinje neurons of rat, Toxicology 207 (2005) 129-136.
    [102]Y. Oh, S. Sashihara, J.A. Black, S.G. Waxman, Na+ channel beta 1 subunit mRNA:differential expression in rat spinal sensory neurons, Brain Res Mol Brain Res 30 (1995) 357-361.
    [103]邓梅春.敬钊缨毛蛛毒素与虎纹捕鸟蛛毒素的结构与功能研究[D].湖南:湖南师范大学生命科学学院,2010.
    [104]Z. Liu, J. Dai, L. Dai, M. Deng, Z. Hu, W. Hu, S. Liang, Function and solution structure of Huwentoxin-X, a specific blocker of N-type calcium channels, from the Chinese bird spider Ornithoctonus huwena, J Biol Chem 281 (2006) 8628-8635.
    [105]W. Rajendra, A. Armugam, K. Jeyaseelan, Toxins in anti-nociception and anti-inflammation, Toxicon 44 (2004) 1-17.
    [106]J.G. McGivern, Targeting N-type and T-type calcium channels for the treatment of pain, Drug Discov Today 11 (2006) 245-253.
    [107]T.M. Suchyna, S.E. Tape, R.E. Koeppe,2nd, O.S. Andersen, F. Sachs, P.A. Gottlieb, Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers, Nature 430 (2004) 235-240.
    [108]P. Escoubas, Molecular diversification in spider venoms:a web of combinatorial peptide libraries, Mol Divers 10 (2006) 545-554.
    [109]C.Ⅰ. Spencer, Actions of ATX-Ⅱ and other gating-modifiers on Na(+) currents in HEK-293 cells expressing WT and DeltaKPQ hNa(V) 1.5 Na(+) channels, Toxicon 53 (2009) 78-89.
    [110]A.L. Goldin, R.L. Barchi, J.H. Caldwell, F. Hofmann, J.R. Howe, J.C. Hunter, R.G. Kallen, G. Mandel, M.H. Meisler, Y.B. Netter, M. Noda, M.M. Tamkun, S.G. Waxman, J.N. Wood, W.A. Catterall, Nomenclature of voltage-gated sodium channels, Neuron 28 (2000) 365-368.
    [111]J.A. Black, S. Dib-Hajj, K. McNabola, S. Jeste, M.A. Rizzo, J.D. Kocsis, S.G. Waxman, Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs, Brain Res Mol Brain Res 43 (1996) 117-131.
    [112]J. Spampanato, A. Escayg, M.H. Meisler, A.L. Goldin, Generalized epilepsy with febrile seizures plus type 2 mutation W1204R alters voltage-dependent gating of Na(v)1.1 sodium channels, Neuroscience 116 (2003) 37-48.
    [113]D.S. Krafte, A.W. Bannon, Sodium channels and nociception:recent concepts and therapeutic opportunities, Curr Opin Pharmacol 8 (2008) 50-56.
    [114]J.J. Clare, Targeting voltage-gated sodium channels for pain therapy, Expert Opin Investig Drugs 19 (2010) 45-62.
    [115]S. Cestele, V. Yarov-Yarovoy, Y. Qu, F. Sampieri, T. Scheuer, W.A. Catterall, Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin, J Biol Chem 281 (2006) 21332-21344.
    [116]N. Yang, R. Horn, Evidence for voltage-dependent S4 movement in sodium channels, Neuron 15 (1995)213-218.
    [117]B. Chanda, F. Bezanilla, Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation, J Gen Physiol 120 (2002) 629-645.
    [118]Q.X. Jiang, D.N. Wang, R. MacKinnon, Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation, Nature 430 (2004) 806-810.
    [119]G.R. Benzinger, J.W. Kyle, K.M. Blumenthal, D.A. Hanck, A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B, J Biol Chem 273 (1998) 80-84.
    [120]G.R. Benzinger, J.W. Kyle, K.M. Blumenthal, D.A. Hanck, A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B, J Biol Chem 273 (1998) 80-84.
    [121]S. Cestele, Y. Qu, J.C. Rogers, H. Rochat, T. Scheuer, W.A. Catterall, Voltage sensor-trapping:enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain Ⅱ, Neuron 21 (1998) 919-931.
    [122]S. Cestele, T. Scheuer, M. Mantegazza, H. Rochat, W.A. Catterall, Neutralization of gating charges in domain Ⅱ of the sodium channel alpha subunit enhances voltage-sensor trapping by a beta-scorpion toxin, J Gen Physiol 118 (2001) 291-302.
    [123]Saez, N. J., Senff, S., Jensen, J. E., Er, S. Y., Herzig, V, Rash, L. D., and King, G. F. (2010) Spider-Venom Peptides as Therapeutics. Toxins 2,2851-2871
    [124]G.F. King, M.C. Gentz, P. Escoubas, G.M. Nicholson, A rational nomenclature for naming peptide toxins from spiders and other venomous animals, Toxicon 52 (2008) 264-276.
    [125]B.T. Priest, K.M. Blumenthal, J.J. Smith, V.A. Warren, M.M. Smith, ProTx-Ⅰ and ProTx-Ⅱ:gating modifiers of voltage-gated sodium channels, Toxicon 49 (2007) 194-201.
    [126]O. Moran, F. Conti, Skeletal muscle sodium channel is affected by an epileptogenic betal subunit mutation, Biochem Biophys Res Commun 282 (2001) 55-59.
    [127]D. Li, Y. Xiao, W. Hu, J. Xie, F. Bosmans, J. Tytgat, S. Liang, Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana, FEBS Lett 555 (2003) 616-622.
    [128]S. Dutertre, R.J. Lewis, Use of venom peptides to probe ion channel structure and function, J Biol Chem 285 (2010) 13315-13320.
    [129]J.J. Smith, S. Alphy, A.L. Seibert, K.M. Blumenthal, Differential phospholipid binding by site 3 and site 4 toxins. Implications for structural variability between voltage-sensitive sodium channel domains, J Biol Chem 280 (2005) 11127-11133.
    [130]R. Halai, R.J. Clark, S.T. Nevin, J.E. Jensen, D.J. Adams, D.J. Craik, Scanning mutagenesis of alpha-conotoxin Vc1.1 reveals residues crucial for activity at the alpha9alphalO nicotinic acetylcholine receptor, J Biol Chem 284 (2009) 20275-20284.
    [131]L. Cohen, I. Karbat, N. Gilles, N. Ilan, M. Benveniste, D. Gordon, M. Gurevitz, Common features in the functional surface of scorpion beta-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels, J Biol Chem 280 (2005) 5045-5053.
    [132]Y. Xiao, J.P. Bingham, W. Zhu, E. Moczydlowski, S. Liang, T.R. Cummins, Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration, J Biol Chem 283 (2008) 27300-27313.
    [133]O. Buczek, G. Bulaj, B.M. Olivera, Conotoxins and the posttranslational modification of secreted gene products, Cell Mol Life Sci 62 (2005) 3067-3079.
    [134]O. Buczek, D. Yoshikami, G. Bulaj, E.C. Jimenez, B.M. Olivera, Post-translational amino acid isomerization:a functionally important D-amino acid in an excitatory peptide, J Biol Chem 280 (2005) 4247-4253.
    [135]J.A. Jakubowski, J.V. Sweedler, Sequencing and mass profiling highly modified conotoxins using global reduction/alkylation followed by mass spectrometry, Anal Chem 76 (2004) 6541-6547.
    [136]K.A. Witt, T.J. Gillespie, J.D. Huber, R.D. Egleton, T.P.Davis, Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability, Peptides 22 (2001) 2329-2343.
    [137]O. Buczek, D. Yoshikami, M. Watkins, G. Bulaj, E.C. Jimenez, B.M. Olivera, Characterization of D-amino-acid-containing excitatory conotoxins and redefinition of the I-conotoxin superfamily, FEBS J 272 (2005) 4178-4188.
    [138]A.G. Craig, T. Norberg, D. Griffin, C. Hoeger, M. Akhtar, K. Schmidt, W. Low, J. Dykert, E. Richelson, V. Navarro, J. Mazella, M. Watkins, D. Hillyard, J. Imperial, L.J. Cruz, B.M. Olivera, Contulakin-G, an O-glycosylated invertebrate neurotensin, J Biol Chem 274 (1999) 13752-13759.
    [139]B. Schmidt, T. Selmer, A. Ingendoh, K. von Figura, A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency, Cell 82(1995)271-278.
    [140]D.M. Roden, A.L. George, Jr., Structure and function of cardiac sodium and potassium channels, Am J Physiol 273 (1997) H511-525.
    [141]S. Dutertre, N.G. Lumsden, P.F. Alewood, R.J. Lewis, Isolation and characterisation of conomap-Vt, a D-amino acid containing excitatory peptide from the venom of a vermivorous cone snail, FEBS Lett 580 (2006) 3860-3866.
    [142]Han, Y., Huang, F., Jiang, H., Liu, L., Wang, Q., Wang, Y, Shao, X., Chi, C., Du, W., and Wang, C. (2008) Purification and structural characterization of a D-amino acid-containing conopeptide, conomarphin, from Conus marmoreus. FEBS J 275,1976-1987
    [143]K.M. Blumenthal, A.L. Seibert, Voltage-gated sodium channel toxins:poisons, probes, and future promise, Cell Biochem Biophys 38 (2003) 215-238.
    [144]A.G. Craig, E.C. Jimenez, J. Dykert, D.B. Nielsen, J. Gulyas, F.C. Abogadie, J. Porter, J.E. Rivier, L.J. Cruz, B.M. Olivera, J.M. McIntosh, A novel post-translational modification involving bromination of tryptophan. Identification of the residue, L-6-bromotryptophan, in peptides from Conus imperialis and Conus radiarus venom, J Biol Chem 272 (1997) 4689-4698.
    [144]R.E. Morty, P. Bulau, R. Pelle, S. Wilk, K. Abe, Pyroglutamyl peptidase type I from Trypanosoma brucei:a new virulence factor from African trypanosomes that de-blocks regulatory peptides in the plasma of infected hosts, Biochem J 394 (2006)635-645.
    [145]E. Van Coillie, P. Proost, I. Van Aelst, S. Struyf, M. Polfliet, I. De Meester, D.J. Harvey, J. Van Damme, G. Opdenakker, Functional comparison of two human monocyte chemotactic protein-2 isoforms, role of the amino-terminal pyroglutamic acid and processing by CD26/dipeptidyl peptidase IV, Biochemistry 37 (1998) 12672-12680.
    [146]H.J. Goren, L.G. Bauce, W. Vale, Forces and structural limitations of binding of thyrotrophin-releasing factor to the thyrotrophin-releasing receptor:the pyroglutamic acid moiety, Mol Pharmacol 13 (1977) 606-614.
    [147]E.A. Nillni, Regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin, Endocrinology 148 (2007) 4191-4200.
    [148]S. Cestele, W.A. Catterall, Molecular mechanisms of neurotoxin action on voltage-gated sodium channels, Biochimie 82 (2000) 883-892.
    [149]D. Li, Y. Xiao, W. Hu, J. Xie, F. Bosmans, J. Tytgat, S. Liang, Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana, FEBS Lett 555 (2003) 616-622.
    [150]M.J. Little, C. Zappia, N. Gilles, M. Connor, M.I. Tyler, M.F. Martin-Eauclaire, D. Gordon, G.M. Nicholson, delta-Atracotoxins from australian funnel-web spiders compete with scorpion alpha-toxin binding but differentially modulate alkaloid toxin activation of voltage-gated sodium channels, J Biol Chem 273 (1998)27076-27083.
    [151]O. Buczek, G. Bulaj, B.M. Olivera, Conotoxins and the posttranslational modification of secreted gene products, Cell Mol Life Sci 62 (2005) 3067-3079.
    [152]Z. Liao, C. Yuan, M. Deng, J. Li, J. Chen, Y. Yang, W. Hu, S. Liang, Solution structure and functional characterization of jingzhaotoxin-XI:a novel gating modifier of both potassium and sodium channels, Biochemistry 45 (2006) 15591-15600.
    [153]M. Wang, J. Diao, J. Li, J. Tang, Y. Lin, W. Hu, Y. Zhang, Y. Xiao, S. Liang, JZTX-IV, a unique acidic sodium channel toxin isolated from the spider Chilobrachys jingzhao, Toxicon 52 (2008) 871-880.
    [154]R.E. Oswald, T.M. Suchyna, R. McFeeters, P. Gottlieb, F. Sachs, Solution structure of peptide toxins that block mechanosensitive ion channels, J Biol Chem 277 (2002) 34443-34450.
    [155]H. Takahashi, J.I. Kim, H.J. Min, K. Sato, K.J. Swartz, I. Shimada, Solution structure of hanatoxin1, a gating modifier of voltage-dependent K(+) channels: common surface features of gating modifier toxins, J Mol Biol 297 (2000) 771-780.
    [156]J.M. Wang, S.H. Roh, S. Kim, C.W. Lee, J.I. Kim, K.J. Swartz, Molecular surface of tarantula toxins interacting with voltage sensors in K(v) channels, J Gen Physiol 123 (2004) 455-467.
    [157]N. Gilles, M. Gurevitz, D. Gordon, Allosteric interactions among pyrethroid, brevetoxin, and scorpion toxin receptors on insect sodium channels raise an alternative approach for insect control, FEBS Lett 540 (2003) 81-85.
    [158]W.R. Whitaker, J.J. Clare, A.J. Powell, Y.H. Chen, R.L. Faull, P.C. Emson, Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum, J Comp Neurol 422 (2000) 123-139.
    [159]M.M. Zhang, J.R. McArthur, L. Azam, G. Bulaj, B.M. Olivera, R.J. French, D. Yoshikami, Synergistic and antagonistic interactions between tetrodotoxin and mu-conotoxin in blocking voltage-gated sodium channels, Channels (Austin) 3 (2009)32-38
    [160]Q. Shu, S.P. Liang, Purification and characterization of huwentoxin-II, a neurotoxic peptide from the venom of the Chinese bird spider Selenocosmia huwena, J Pept Res 53 (1999) 486-491
    [161]W.A. Catterall, Cellular and molecular biology of voltage-gated sodium channels, Physiol Rev 72 (1992) S15-48.
    [162]M.R. Hanlon, B.A. Wallace, Structure and function of voltage-dependent ion channel regulatory beta subunits, Biochemistry 41 (2002) 2886-2894.
    [163]K. Kamaraju, P.A. Gottlieb, F. Sachs, S. Sukharev, Effects of GsMTx4 on bacterial mechanosensitive channels in inside-out patches from giant spheroplasts, Biophys J 99 (2010) 2870-2878.
    [164]V. Herzig, D.L. Wood, F. Newell, P.A. Chaumeil, Q. Kaas, G.J. Binford, G.M. Nicholson, D. Gorse, G.F. King, ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures, Nucleic Acids Res 39 (2011) D653-657.
    [165]O.V. Serova, N.V. Popova, A.G. Petrenko, I.E. Deyev, Association of the subunits of the calcium-independent receptor of alpha-latrotoxin, Biochem Biophys Res Commun 402 (2010) 658-662.
    [166]L.M. Silva, C.L. Fortes-Dias, P.P. Schaffert, A.C. Botelho, R. Nacif-Pimenta, M.I. Estevao-Costa, N. Cordeiro Mdo, P.F. Paolucci Pimenta, Developmental biology of the Brazilian 'Armed' spider Phoneutria nigriventer (Keyserling, 1891):microanatomical and molecular analysis of the embryonic stages, Toxicon 57(2011) 19-27.
    [167]V. Naidoo, X. Dai, J.J. Galligan, R-type Ca(2+) channels contribute to fast synaptic excitation and action potentials in subsets of myenteric neurons in the guinea pig intestine, Neurogastroenterol Motil 22 (2010) e353-363.
    [168]H. Chin, Molecular biology of neuronal voltage-gated calcium channels, Exp Mol Med 30(1998) 123-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700