hβ2亚基在BK通道孔中的作用位点探测及TRPV1通道的脱敏机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代生命科学的发展改变着人们对生命获得过程的认识,而离子通道的研究不仅与信号发生、传递和转导紧密关联,同时也涉及到诱发各种遗传或非遗传疾病的分子机制。了解离子通道的精细结构,探讨离子通道的门控机制和动力学特性,弄清楚离子通道结构和功能之间的关系意义重大。本研究工作由两部分组成:第一部分探讨了钙和电压激活的大电导钾离子通道(Maxik通道,又名BK通道)的β2亚基N端失活域在由α亚基组成的孔道中的作用位点;文章第二部分则是讲述痛觉敏感型通道TRPV1的适应性调节的分子机制的。
     BK通道广泛地存在于可兴奋细胞,特别是神经系统中,具有调节胞内钙浓度和膜电位等重要生理功能。目前,电压依赖型钾离子通道(Kv通道)的研究已取得较大进展。BK通道与Kv通道在结构和功能上既存在某些相似之处又各具特点。如它们都结合有β辅助亚基,并由β亚基的N端疏水性氨基酸残基堵塞孔道引起N型失活。然而现有实验结果表明,K通道的孔道阻断剂(如TEA、QX-314等)能够减慢Kv通道的失活过程,然而却不能减慢BK通道的失活。为什么这两者如此不同?BK通道的B2亚基N端失活域是否进入由α亚基组成的BK孔道?两者究竟发生了怎样的相互作用?阻断剂为什么不和失活域在孔道中竞争结合位点?本课题的研究目的之一即是要回答和解决这些目前仍然困扰我们的问题。我们将hβ2 N端的前三个氨基酸FIW突变为FWI,发现hβ2的这一突变体hβ2-FWI对BK通道的失活没有影响,但通道的失活恢复曲线却由单指数转变为双指数。利用hβ2-FWI的双指数恢复特性变化作为两者间相互作用的判定依据。通过丙氨酸扫描(Alaninescanning),即将α亚基形成孔道的S6区疏水性氨基酸依次突变为疏水性较弱的丙氨酸,然后通过膜片钳实验记录分析失活后通道的恢复特性变化,进而了解两者间的相互作用。
     借助作为通道孔道阻滞剂的麻醉剂QX-314和TEA等药物进一步解释了BK通道失活的非竞争机制。我们得到了如下几个结论:
     (1)位于mSlo1孔道中的氨基酸Ile-323是在失活过程中与β2亚基N端失活域有相互作用的主要位点。孔道内的另外两个氨基酸M314和V319也参与了这一过程。根据hβ2-FWI亚基N末端的线性结构特点,我们推测mSlo1孔道与hβ2-FWI在BK通道失活过程中存在如下的相互作用关系:1323-I,V319-W,M314-F,其中1323起着主导性的作用。同时进一步明确了β2亚基的失活域的确进入了BK通道的孔道从而引起通道的失活。
     (2)通道阻滞剂QX-314和TEA在BK孔道内无特异性的结合位点。因此胞内阻断剂不会像在Kv通道中那样减慢通道的失活过程,这是因为β2 N端失活域的作用位置比较靠近孔道口,即孔道内的最后一个疏水性氨基酸Ile-323,而QX-314的作用位置位于孔道内,因此QX-314不会与失活域竞争相同的作用位点,从而不会影响β2引起的通道失活过程。根据实验结果,我们提出了一个全新的非竞争模型,该模型不仅可以很好的解释我们的数据,而且为进一步阐释BK通道的结构和门控机制提供了重要的实验和理论支持。
     (3)我们的实验结果还显示:与野生型mslo1通道电流相比,突变型1323A不管是单通道还是宏观电流均有明显差异,表现为出现了野生型通道所不具有的外向整流特性。形式上突变型1323A的单通道出现了非常像噪声的电流,同一电压下可以同时记录得到几个不同大小的单通道电流,即是说Ile-323A还引起了BK通道电导的改变。据此我们推测Ile-323对BK通道具有双重作用,既是β2失活域在孔道中的作用位点,同时还能调节BK通道的门控特性。另外还发现一个非常有趣的现象,312位点的Leu亮氨酸残基的突变能够极大地改变BK通道的电压依赖性。我们研究小组在后续的两篇文章中分别证明了这两点推测:Ile-323确实为BK通道的关节所在,323点的氨基酸残基疏水性降低,会使得“关节”变得松弛,进而导致通道开放时四个亚基间协同性的不一致和开放几率的改变(Guo et al,Biophys J.2008 May 1;94(9):3714-25)。而Leu312位点则可以极大地增强BK通道的电压敏感性(Wu et al.,In review)。
     适应性调节是大部分感觉器官共有的一种性质,但是痛觉适应性产生的根源和机理仍然不为人们所知。文章的第二部分在受体水平探讨了伤害感受器TRPV1通道的适应性调节的分子机制。我们发现通道在脱敏反应发生后,仅改变了通道对激动剂的敏感性,而不影响最大电流的响应,据此,我们在脱敏感念的基础上提出了痛觉适应性调节概念。该部分我们主要得到以下几个主要结论:
     (1)Ca~(2+)经由开放的TRPV1通道内流引起脱敏反应的发生,脱敏反应发生后仅改变了通道对辣椒素的敏感性,浓度敏感性降低了14倍,但这一改变并不影响通道的功能。
     (2)通过联合应用全内反射荧光显微技术和膜片钳记录技术,我们证实了PIP2参与了TRPV1通道脱敏反应的发生,PIP2分解的速率和量的变化都足以改变通道对激动剂的响应。借助药物Rapamycin专一性降低细胞内PIP2含量作为研究工具,通过测量通道对辣椒素浓度依赖性曲线,我们进一步量化了PIP2对脱敏反应的贡献,约占60%。
     (3)我们还发现TRPV1通道对激动剂敏感性的改变依赖于刺激强度,不同的刺激强度得到不同程度的脱敏响应。我们推测有两种可能性:一是通道蛋白有记忆功能,这种可能性比较小;二是不同刺激强度作用下的TRPV1通道离子通透性不同,因此,内流Ca~(2+)的量和分布特性不同,导致PIP2分解量不同,从而引起不同程度的脱敏反应。
The developments of modern life science and technology have greatly influenced our understanding in the evolution of human lives.The studies on ion channels are not only related to the signal occurrence and transmission,but also involved in the molecular mechanisms of hereditary or inhereditary diseases.To explore the relationships between the structure and function of the ion channels and study on the mechanisms of gating and inactivation of ion channels are very important,and also will benefit the society and human health.There are two parts in this study.The first part is to study on the interaction ofβ2 subunit and the pore forming by mslo 1 subunit of Calcium- and voltage- activated large conductace potassium channel(Maxik channel,also termed BK channel),the other one is focus on the molecular mechanisms of desensitization of pain receptors TRPV1 channel.
     BK channel extensively exists in excitable cells,especially in neural system,which plays a significant physiological role in mediating the concentration of intracellular calcium ions and the membrane potential.To date,the voltage dependent potassium channel(Kv channel) has been deeply studied.BK channel shares structural and functional similarities with Kv channel,i.e.,they both can combine auxiliaryβsubunits, and have a typical N-type inactivation induced by the N terminals ofβsubunits.However there are also some differences between them.Unlike Kv channels,the pore blockers (such as TEA and QX-314) of K channels can not slow down the inactivation rate of BK channels.Why are they so different in this issue? Do the N terminals ofβsubunits indeed enter into the pore forming by mslol? Where or what are the interaction sites between them during inactivation? To address these questions,we presented this study here.
     When mutating the first three amino acids of hβ2 N terminal FIW into FWI,we surprisingly found that the property of recovery curve was changed into bi-exponent from mono-exponent,but the FWI mutant has no effects on the inactivation process of the BK channels.Using this behavior of recovery of FWI,we tried to elucidate the relationship between them during inactivation by mutating the hydrophobic amino acids within the BK pore to less hydrophobic one,alanine.At last,we found that Ile 323 is the main interaction site betweenαsubunit andβ2 subunit during the process of inactivation.Our data also support that:
     (1) Among all the S6 mutants,mSlol-I323A coexpressed with hβ2-FWI,the slow component of the recovery was maximally reduced.That is,its recovery curve can be almost fitted with a mono-exponential function.It indicates that I323 is the main interaction site withβ2 subunit during the inactivation.In addition,the fast components of M314A and V319A were extrodinarily faster,sugesting that the two points have certain effects during the process of inactivation.Based on the linear structure relationship of FWI, we inferred the following interaction relationships:I323-I,V319-W,M314-F,and I323 played the leading role.
     (2) Despite the sensitivity of V319A to QX-314 is less higher than others,there is no specific binding site for QX-314 in the pore.A one step non-competition model can well explain our data other than a two-step model.The reason is that Ile-323 is the last residue in the pore,the interaction sites ofβ2 inactivation domain are located on the outer entrance of the pore,the interaction sites of QX-314 are inside of the pore,and therefore, QX-314 might not impact the process of inactivation.This non-competitive model explained well that why intracellular blockers do not slow down the inactivation process of BK channels.These data can help us understanding the structure and the gating mechanisms of BK channels.
     (3) Another intriguing phenomenon was seen with the mutant I323A.In comparison to the wide-type BK channels,the mutation I323A showed an obiviously outward rectification in both single channel recordings and macro patches.And also the single channel current of I323A is much flickery,even comparing to that of the single channel current of dSlo1.These data support that the residue Ile-323 also mediates the gating of BK channel.The corresponding residue in dSlo1 is Thr-337.Ile is a higher hydrophobic residue in comparison to Ala and Thr.In the following studies,we found that mutation I323T induced a similarly flickery single channel current similar as wild-type dSlo1 channel,which was reported by Guo et al in the Biophys J.(Guo et al,Biophys J. 2008 May 1;94(9):3714-25).This mechanism may also help us to understand the behavior of dSlo single channel current.
     Adaptation is a common feature of many sensory systems.But its occurrence to pain sensation has remained elusive.In the second part of this study,we address the problem at the receptor level and show that the capsaicin ion channel TRPV1,which mediates nociception at the peripheral nerve terminals,processes properties essential to the adaptation of sensory responses.Ca~(2+) influx following the channel opening caused a profound shift(~14 folds) of the agonist sensitivity,but did not alter the maximum attainable current.The main points we got are as following:
     (1) Ca~(2+) influx following the channel opening caused a profound shift of the agonist sensitivity,about 14 folds,but did not alter the maximum attainable current.The shift was adequate to render the channel irresponsive to normally saturating concentrations,leaving the notion that the channel became no longer functional after desensitization.
     (2) By simultaneous patch-clamp recordings and total internal reflection fluorescence(TIRF) imaging,it was shown that the depletion of phosphatidylinositol 4,5-bisphosphate(PIP2) induced by Ca~(2+) influx had a rapid time course synchronous to the desensitization of the current.The extent of the depletion was comparable to that by rapamycin-induced activation of a PIP2 5-phosphatase,which also caused a significant reduction of the agonist sensitivity without affecting maximum response.The change induced by rapamycin accounted for~57%of the overall shift resulting from the desensitization by Ca~(2+) influx,indicating that the depletion of PIP2 constitutes a prominent component of the adaptation of the channel.
     (3) We showed that the adaptation of the channel appeared to be stimulus-dependent. It appeared that the desensitized channel could only be reactivated by a stimulus higher than used for desensitization.We do not know how the channel "remember" the desensitizing conditions,and hypothesize the causal is the transient profile of the submembrane[Ca~(2+)]could differ with different stimuli.The dynamic of Ca~(2+) waves are known to affect a variety of cellular processes.Conceivably,it may also contribute to the regulation of ion channels.
引文
[1]刘安西,王秀玲编译.分子神经生物学.第3版.天津:南开大学出版社,1992:4
    [2]Doyle,D.A.,Cabral,J.M.,Pfuetzner,R.A.,et al.The structure of the potassium channel:molecular basis of K~+ conduction and selectivity.Science,1998,280:69-77
    [3]康华光等编著.膜片钳技术及应用.第1版.北京:科学出版社,2003:1
    [4]Kleinberg,M.E.and Finkelstein,A.Single-length and double-length channels formed by nystatin in lipid bilayer membranes.J.Membr.Biol.,1984,80:257-269
    [5]Horn,R.and Marty,A.Muscarinec activation of ionic currents measured by a new whole-cell recording method.J.Gen.Physiol.,1998,92:145-159
    [6]Hille,B.Ion channels of excitable membranes,3rd ED.,Sinauer Associates,Inc.,Sunderland,MA.,2001:66-236
    [7]Cox,D.H.,J.Cui,and R.W.Aldrich,Allosteric gating of a large conductance Caactivated K+ channel.J Gen Physiol,1997.110(3):257-81.
    [8]Horrigan,F.T.and R.W.Aldrich,Allosteric voltage gating of potassium channels Ⅱ.Mslo channel gating charge movement in the absence of Ca(2+).J Gen Physiol,1999.114(2):305-36.
    [9]Horrigan,F.T.,J.Cui,and R.W.Aldrich,Allosteric voltage gating of potassium channels I.Mslo ionic currents in the absence of Ca(2+).J Gen Physiol,1999.114(2):277-304.
    [10]Bezanilla,F.,The voltage sensor in voltage-dependent ion channels.Physiol Rev,2000.80(2):555-92.
    [11]Horrigan,F.T.and R.W.Aldrich,Coupling between voltage sensor activation,Ca2+ binding and channel opening in large conductance(BK) potassium channels.J Gen Physiol,2002.120(3):267-305.
    [12]Lu,Z.,A.M.Klem,and Y.Ramu,Coupling between voltage sensors and activation gate in voltage-gated K+ channels.J Gen Physiol,2002.120(5):663-76.
    [13]Hu,L.,J.Shi,Z.Ma,et al.,Participation of the S4 voltage sensor in the Mg2+-dependent activation of large conductance(BK) K+ channels.Proc Natl Acad Sci U S A, 2003. 100(18): 10488-93.
    [14] Ma, Z., X.J. Lou, and F.T. Horrigan, Role of charged residues in the S1-S4 voltage sensor of BK channels. J Gen Physiol, 2006. 127(3): 309-28.
    [15] Diaz, L., P. Meera, J. Amigo, et al., Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel. J Biol Chem, 1998. 273(49): 32430-6.
    [16] Jiang Y, Lee A, Chen J, et al. X-ray structure of a voltage-dependent K~+ channel. Nature, 2003, 423(6935): 33-41
    [17] Zheng J, Sigworth FJ. Intermediate conductances during deactivatian of heteromultimeric Shaker potassium channels. J Gen Physiol, 1998, 112: 457-74
    [18] Knaus HG, Folander K, Garcia-Calvo M, et al. Primary sequence and immunological characterization of β-subunit of high conductance Ca~(2+)-activated K~+ channel from smooth muscle. J Biol Chem, 1994, 269: 17274-8
    [19] Zagotta WN, Hoshi T, Aldrich RW. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science, 1990, 250: 568-71
    [20] Hoshi T, Zagossa WN, Aldrich RW. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science, 1990, 250: 533-8
    [21] Lopez-Barneo J, Hoshi T, Heinematin SH, et al. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels, 1993, 1: 61
    [22] Levy DI, Deutsch C. Recovery from C-type inactivation is modulated by extracellular potassium. Biophys J, 1996, 70: 798
    [23] Tseng G-Y, Tseng-Crank J. Differential effects of elevating [K~+]_o, on three transient outward potassium channels dependence on channel inactivation mechanisms. Circ Res, 1992,71:657
    [24] Baukrowitz T, Yellen G.Modulation of K~+ current by frequency of external [K~+]: a tale of two inactivation mechanisms. Neuron, 1995, 15: 951
    [25] Baukrowitz T, Yellen G.Use-dependent blockers and exit rate of the lassion from the multiion pore of a K~+ channel. Science, 1996a, 271: 653
    [26] Wang S, Morales MJ, Liu S, et al. Time, voltage and ionic concentration dependence of rectification of h-erg expressed in Xenopus oocytes. FEBS Lett, 1996, 389: 167
    
    [27] Wang S, Liu S, Morales MJ, et al. A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes. J Physiol(Lond), 1997, 502: 45
    
    [28] Doyle, DA, Morais Cabral J, Pfuetzner RA, et al. The structure of the potassium channel: molecular basis of K~+ conduction and selectivity. Science, 1998, 280(5360): 69-77
    [29] Jiang YA. Lee A, Chen J, et al. The open pore conformation of potassium channels. Nature, 2002b, 417(6888): 523-6
    
    [30] Liu Y, Holmgren M, Jurman ME, Yellen G. Gated access to the pore of a voltage-dependent K~+ channel. Neuron, 1997, 19: 175-184
    [31] Del Camino D, Holmgren M, Liu Y, Yellen G. Blocker protection in the pore of a voltage-gated K~+ channel and its structural implications. Nature, 2000, 403: 321- 325
    [32] Holmgren M, Smith PL, Yellen G. Trapping of organic blockers by closing of voltage-dependent K~+ channels-evidence for a trap door mechanism of activation gating. J Gen Physiol, 1997, 109: 527-535
    [33] Zhou M, Morais-Cabral JH, Mann S, MacKinnon R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature, 2001, 411: 657-61
    [34] Murrell-Lagnado RD, Aldrich RW. Interactions of the amino terminal domains of Shaker K channels with a pore blocking site studied with synthetic peptides. J Gen Physiol, 1993a, 102: 949-76
    [35] Murrell-Lagnado RD, Aldrich RW. Energetics of Shaker K channels blocked by inactivation peptides. J Gen Physiol, 1993b, 102: 977-1004
    [36] Xia XM, Ding JP, Lingle CJ. Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues. J Gen Physiol, 2003, 121: 125-48
    [37] Hirschberg, B., Maylie, J. et al. Gating of recombinant small-conductance Ca- activated K~+ channels by calcium. J. Gen. Physiol., 1998, 111: 565-581
    [38] Xia, X. M., Fakler, B., Rivard, A., et al. Mechanism of calcium gating in small- conductance calcium-activated potassium channels. Nature, 1998, 395: 503-507
    [39] Marty A. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature, 1981, 291(5815): 497-500
    [40] Atkinson NS, Robertson GA, Ganetzky, B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science, 1991, 253(5019): 551-5
    [41] Butler A, Tsunoda S, McCobb DP, et al. mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels. Science, 1993, 261: 221-4
    [42] Wallner M, Meera P, Ottolia M, et al. Characterization of and modulation by a β- subunit of a human maxi KCa channel cloned from myometrium. Receptors and Channels, 1995,3: 185-99
    [43] Orio P, Rojas P, Ferreira G, Latorre R. New disguises for an old channel: MaxiK channel P-subunits. News Physiol Sci, 2002, 17: 156-61
    [44] Li, W., S.B. Gao, C.X. Lv, et al., Characterization of Ca+-activated K+ channels in rat dorsal root ganglion neurons. Journal of Cellular Physiology. (Accepted), 2007.
    [45] Santi, C.M., G. Ferreira, B. Yang, et al., Opposite regulation of Slick and Slack K+ channels by neuromodulators. J Neurosci, 2006. 26(19): 5059-68.
    [46] Bhattacharjee, A., W.J. Joiner, M. Wu, et al., Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci, 2003. 23(37): 11681-91.
    [47] Bhattacharjee, A., L. Gan, and L.K. Kaczmarek, Localization of the Slack potassium channel in the rat central nervous system. J Comp Neurol, 2002. 454(3): 241-54.
    [48] Sewing S, Roeper J, Pongs O. Kvβ1 subunit binding specific for Shaker-related potassium channel a subunits. Neuron, 1998, 16: 455-63
    [49] Morales MJ, Castellino RC, Crews AL, Rasmusson RL, Strauss HC. A novel β subunit increases rate of inactivation of specific voltage-gated potassium channel a subunits. J Biol Chem, 1995, 270: 6272-7
    [50] Accili EA, Kiehn J, Yang Q, Wang ZG, Brown AM, Wible BA. Separable Kvβ subunit domains alter expression and gating of potassium channels. J Biol Chem, 1997,272:25824-31
    [51] Gebauer M, Isbrandt D, Sauter K, Callsen B, Nolting A, Pongs O, Bahring R. N- type inactivation features of Kv4. 2 channel gating. Biophys J, 2004, 86: 210-223
    [52] Ghatta, S., et al., Large-conductance, calcium-activated potassium channels: Structural and functional implications. Pharmacol Ther, 2005
    [53] Tseng-Crank, J., N. Godinot, T.E. Johansen, et al., Cloning, expression, and distribution of a Ca(2+)-activated K+ channel beta-subunit from human brain. Proc Natl Acad Sci U S A, 1996. 93(17): 9200-5.
    [54] Wallner, M., P. Meera, and L. Toro, Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca(2+)-sensitive K+ channels: an additional transmembrane region at the N terminus. Proc Natl Acad Sci U S A, 1996.93(25): 14922-7.
    [55] Cox DH, Aldrich RW. Role of the β1 subunit in large-conductance Ca~(2+)-activated K~+ channel gating energetics. Mechanisms of enhanced Ca~(2+) sensitivity. J Gen Physiol, 2000, 116:411-32
    [56] Li W, Gao SB, et al. Characterization of voltage-and Ca~(2+)-activated K~+ channels in rat dorsal root ganglion neurons. J Cell Physiol, 2007, 212(2): 348-57
    [57] Lingle CJ, Solaro CR, Prakriya M, Ding JP. Calcium-activated potassium channels in adrenal chromaffin cells. Ion Channels, 1996, 4: 261-301
    [58] Wallner M, Meera P, Toro L. Molecular basis of fast inactivation in voltage and Ca~(2+)-activated K~+ channels: a transmembrane P-subunit homolog. Proc Natl Acad Sci USA, 1999,96:4137-42
    [59] Xia, X.M., J.P. Ding, and C.J. Lingle, Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues. J Gen Physiol, 2003. 121(2): 125-48.
    [60] Xia XM, Ding JP, Zeng XH, Duan KL, Lingle CJ. Rectification and rapid activation at low Ca~(2+) of Ca~(2+)-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit. J Neurosci, 2000, 20: 4890-903
    [61] Zeng, X.H., J.P. Ding, X.M. Xia, et al., Gating properties conferred on BK channels by the beta3b auxiliary subunit in the absence of its NH(2)- and COOH termini. J Gen Physiol, 2001. 117(6): 607-28.
    [62] Lingle, C.J., X.H. Zeng, J.P. Ding, et al., Inactivation of BK channels mediated by the NH(2) terminus of the beta3b auxiliary subunit involves a two-step mechanism: possible separation of binding and blockade. J Gen Physiol, 2001. 117(6): 583-606.
    [63] Zeng, X.H., X.M. Xia, and C.J. Lingle, Redox-sensitive extracellular gates formed by auxiliary beta subunits of calcium-activated potassium channels. Nat Struct Biol, 2003. 10(6): 448-54.
    [64] Nehrke, K., C.C. Quinn, and T. Begenisich, Molecular identification of Ca2+- activated K+ channels in parotid acinar cells. Am J Physiol Cell Physiol, 2003. 284(2): C535-46.
    [65] Weiger, T.M., M.H. Holmqvist, I.B. Levitan, et al., A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J Neurosci, 2000. 20(10): 3563-70.
    [66] Meera P, Wallner M, Toro L. A neuronal beta subunit(KCNMB4) makes the large conductance, voltage- and Ca~(2+)-activated K~+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci USA, 2000, 97: 5562-7
    [67] Brenner R, Jegla TJ, Wickenden A, Liu Y, and Aldrich RW. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem, 2000, 275:6453-61
    [68] Solaro CR, Prakriya M, Ding JP, and Lingle CJ. Inactivating and noninactivating Ca~(2+)- and voltage-dependent K~+ current in rat adrenal chromaffin cells. J Neurosci, 1995,15:6110-23
    [69] Meir, A., et al., Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev, 1999, 79(3): 1019-88
    
    [70] Roux MJ, Olcese R, Toro L, et al. Fast inactivation in Shaker K~+ channels- properties of ionic and gating currents. J Gen Physiol, 1998, 111: 625-38
    [71] Lassing, I. and U. Lindberg. Specific interaction between phosphatidylinositol 4, 5-bisphosphate and profilactin. Nature, 1985, 314(6010): 472-74
    [72] Lemmon, M. A. and K. M. Ferguson. Signal-dependent membrane targeting by pleckstrin homology(PH) domains. Biochem. J. 350 Pt 1, 2000: 1-18
    [73] Varnai, P. and T. Balla. Visualization of phosphoinositides that bind pleckstrin homology domains:calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools.J.Cell Biol,1998,143(2):501-10
    [74]Hirose,K.,et al.Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca~(2+) mobilization patterns.Science,1999,284(5419):1527-30
    [75]Hilgemann,D.W.and R.Ball.Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2.Science,1996,273(5277):956-59
    [76]Huang,C.L.,S.Feng,and D.W.Hilgemann.Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma.Nature,1998,391(6669):803-06
    [77]Hilgemann,D.W.,S.Feng,and C.Nasuhoglu.The complex and intriguing lives of PIP2 with ion channels and transporters.Sci.STKE.http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2001-111/re19,2001
    [78]Suh,B.C.and B.Hille.Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate.Curr.Opin.Neurobiol,2005,15(3):370-78
    [79]McLaughlin,S.,et al.PIP2 and proteins:interactions,organization,and information flow.Annu.Rev.Biophys.Biomol.Struct,2002(31):151-75
    [80]Hinchliffe,K.and R.Irvine.Inositol lipid pathways turn turtle.Nature,1997,390(6656):123-24
    [81]Cullen,P.J.,et al.Modular phosphoinositide-binding domains--their role in signaling and membrane trafficking.Curr.Biol,2001,11(21):R882-R893
    [82]Tolias,KF and CL Carpenter.Enzymes Involved in the Synthesis of PI(4,5)P2 and Their Regulation:PI Kinases and PIP Kinases.Biology of Phosphoinositides.Ed.S Cockcroft.Oxford:Oxford University Press,2000
    [83]Rameh,L.E.,et al.A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate.Nature,1997,390(6656):192-96
    [84]Cantley,L.C.The phosphoinositide 3-kinase pathway.Science,2002,296(5573):1655-57
    [85]Rhee,S.G.Regulation of phosphoinositide-specific phospholipase C.Annu.Rev.Biochem,2001(70):281-312
    [86]Rebecchi,M.J.and S.Scarlata.Pleckstrin homology domains:a common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct, 1998(27): 503-28
    [87] Gambhir, A., et al. Electrostatic sequestration of PIP2 on Phospholipid membranes by basic/aromatic regions of proteins. Biophys. J., 2004, 86(4): 2188-207
    [88] Hardie, R. C. Regulation of TRP channels via lipid second messengers. Annu. Rev. Physiol, 2003(65): 735-59
    [89] Montell, C. and G. M. Rubin. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron, 1989,2(4): 1313-23
    [90] Bloomquist, B. T., et al. Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell, 1988, 54(5): 723-33
    [91] Scott, K. and C. Zuker. TRP, TRPL and trouble in photoreceptor cells. Curr. Opin. Neurobiol, 1998, 8(3): 383-88
    [92] Vazquez, G., et al. The mammalian TRPC cation channels. Biochim. Biophys. Acta 1742, 2004, 1-3:21-36
    [93] Hardie, R. C., et al. In vivo light-induced and basal phospholipase C activity in Drosophila photoreceptors measured with genetically targeted phosphatidylinositol 4, 5-bisphosphate-sensitive ion channels (Kir2. 1). J. Biol. Chem, 2004, 279(46): 47773-82
    [94] Estacion, M., W. G. Sinkins, and W. P. Schilling. Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms. J. Physiol, 2001(530): 1-19
    [95] del Pilar, Gomez M. and E. Nasi. A direct signaling role for phosphatidylinositol 4, 5-bisphosphate (PIP2) in the visual excitation process of microvillar receptors. J. Biol. Chem, 2005, 280(17): 16784-89
    [96] Chuang, H. H., et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4, 5)P2-mediated inhibition. Nature 411, 2001(6840): 957-62
    [97] Cesare, P. and P. McNaughton. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl. Acad. Sci. U. S. A 93, 1996(26): 15435-39
    [98] Prescott, E. D. and D. Julius. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science, 2003, 300(5623): 1284-88
    [99] van Rossum, D. B., et al. Phospholipase Cgammal controls surface expression of TRPC3 through an intermolecular PH domain. Nature, 2005, 434(7029): 99-104
    [100] Shu, X. and L. M. Mendell. Acute sensitization by NGF of the response of smalldiameter sensory neurons to capsaicin. J Neurophysiol, 2001, 86(6): 2931-38
    [101] Zhang, X., J. Huang, and P. A. McNaughton. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J., 2005, 24(24): 4211-23
    [102] Liu, B., C. Zhang, and F. Qin. Functional recovery from desensitization of Vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4, 5- bisphosphate. J. Neurosci, 2005, 25(19): 4835-43
    [103] Szallasi, A. and P. M. Blumberg. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol. Rev, 1999, 51(2): 159-212
    [104] Lee, J., et al. PIP2 activates TRPV5 and releases its inhibition by intracellular Mg2+. J. Gen. Physiol, 2005, 126(5): 439-51
    [105] Nilius, B., et al. The single pore residue Asp542 determines Ca~(2+) permeation and Mg2+ block of the epithelial Ca~(2+) channel. J. Biol. Chem, 2001, 276(2): 1020-25
    [106] Hoenderop, J. G., et al. Homo- and heterotetrameric architecture of the epithelial Ca~(2+) channels TRPV5 and TRPV6. EMBO J., 2003, 22(4): 776-85
    [107] Yeh, B. I., et al. Mechanism and molecular determinant for regulation of rabbit transient receptor potential type 5(TRPV5) channel by extracellular pH. J. Biol. Chem, 2003, 278(51): 51044-52
    [108] Liu, D. and E. R. Liman. Intracellular Ca~(2+) and the Phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl. Acad. Sci. U. S. A, 2003, 100(25): 15160-65
    [109] Zhang, Z., et al. Phosphatidylinositol 4, 5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem, 2005, 280(47): 39185-92
    [110] Rohacs, T., et al. PI(4, 5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci, 2005, 8(5): 626-34
    [111] Liu, B. and F. Qin. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4, 5-bisphosphate. J. Neurosci, 2005, 25(7): 1674-81
    [112] Reid, G. and M. L. Flonta. Ion channels activated by cold and menthol in cultured rat dorsal root ganglion neurones. Neurosci.Lett, 2002, 324(2): 164-68.
    [113] Bandell, M., et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 2004, 41(6): 849-57
    [114] Jordt, S. E., et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature, 2004, 427(6971): 260-65
    [115] Corey, D. P., et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature, 2004, 432(7018): 723-30
    [116] Nilius, B., et al. The single pore residue Asp542 determines Ca~(2+) permeation and Mg~(2+) block of the epithelial Ca~(2+) channel. J. Biol. Chem, 2001, 276(2): 1020-25
    [117] Hirono, M., et al. Hair cells require phosphatidylinositol 4, 5-bisphosphate for mechanical transduction and adaptation. Neuron, 2004, 44(2): 309-20
    [118] Hardie, R. C., et al. Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron, 2001, 30(1): 149-59
    [119] Horowitz, L. F., et al. Phospholipase C in living cells: activation, inhibition, Ca~(2+) requirement, and regulation of M current. J. Gen. Physiol, 2005, 126(3): 243-62
    [120] Exton, J. H. Phospholipase D: enzymology, mechanisms of regulation, and function. Physiol Rev, 1997, 77(2): 303-20
    [121] Dennis, E. A. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem, 1994, 269(18): 13057-60
    
    [122] 王琛,王桂英,徐至展.全内反射荧光显微术.2002,4(22):404-6
    [123] Jiang Z, Wallner M, Meera P, Toro L. Human and rodent MaxiK channel β- subunit genes: cloning and characterization. Genomics, 1999, 55: 57-67
    [124] Toro L, Wallner M, Meera P, Tanaka Y. Maxi-KCa, a unique member of the voltage-gated K channel superfamily. News Physiol Sci, 1998, 13:112-7
    [125] Uebele VN, Lagrutta A, Wade T, et al. Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K~+ channel. J Biol Chem, 2000, 275: 23211-8
    [126] Xia XM, Ding JP, and Lingle CJ. Molecular basis for the inactivation of Ca~(2+)- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J Neurosci, 1999, 19: 5255-64
    [127] Ruppersberg JP, Frank R, Pongs O, Stocker M. Cloned neuronal IK(A) channels reopen during recovery from inactivation. Nature, 1991, 353: 657-60
    [128] Rettig J, Heinemann SH, Wunder F, et al. Inactivation properties of voltage-gated K~+ channels altered by presence of beta-subunit. Nature, 1994, 369: 289-94
    [129] Choi KL, Aldrich RW, Yellen G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage activated K~+ channels. Proc Natl Acad Sci USA, 1991, 88: 5092-5
    [130] Solaro CR, Ding JP, Li ZW, Lingle CJ. The Cytosolic inactivation domains of BK; channels in rat chromaffin cells do not behave like simple, open-channel blockers. BiophysJ, 1997,73:819-30
    [131] Jiang YA, Lee A, Chen J, et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature, 2002a, 417(6888): 515-22
    
    [132] Long SB, Campbell EB, MacKinnon R. Crystal structure of a mammalian voltage- dependent Shaker family K~+ channel. Science, 2005a, 309(5736): 897-903
    [133] Roux MJ, Olcese R, Toro L, et al. Fast inactivation in Shaker K~+ channels- properties of ionic and gating currents. J Gen Physiol, 1998, 111: 625-38
    [134] Lippiat JD, Standen NB, Davies NW. A residue in the intracellular vestibule of the pore is critical for gating and permeation in Ca~(2+)-activated K~+ (BKCa) channels. J Physiol, 2000, 529: 131-8
    [135] Bentrop D, Beyermann M, Wissmann R, Fakler B(2001) NMR structure of the "ball-and-chain" domain of KCNMB2, the beta 2-subunit of large conductance Ca~(2+)- and voltage-activated potassium channels. J. Biol. Chem. 276: 42116-42121
    [136] Lee TE, Philipson LH, Nelson DJ. N-type inactivation in the mammalian Shaker K~+ channel Kv1. 4. J Membrane Biol, 1996,151: 225-35
    [137] Sakmann B and Neher E. Single-Channel Recording. 2rd Ed. New York: Plenum Press, 1995: 408-409
    [138] Zeng XH, Xia XM, Lingle CJ. Redox-sensitive extracellular gates formed by auxiliary subunits of calcium-activated potassium channels. Nat. Stru. Biol, 2003, 10:448-54
    [139] Lagrutta A, Shen KZ, North RA, Adelman JP. Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J Biol Chem, 1994, 269: 20347-51
    [140] Wei A, Solaro C, Lingle C, Salkoff L. Calcium sensitivity of BK-type KCa channels determined by a separable domain. Neuron, 1994, 13: 671-81
    [141] Gao YD, Garcia ML. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels. Proteins, 2003, 52: 146-154
    [142] McDonald IK, Thornton JM. Satisfying hydrogen bonding potential in proteins. J Mol Biol, 1994,238:777-93
    [143] Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng, 1995, 8: 127-134
    [144] Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389:816-824
    [145] Docherty RJ, Yeats JC, Bevan S, Boddeke HW. Inhibition of calcineurin inhibits the desensitization of capsaicin- evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch, 1996, 431: 828-837
    [146] Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW.cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron, 2002, 35: 721-731
    [147] Mohapatra DP, Nau C. Desensitization of capsaicin-activated currents in the Vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem, 2003, 278: 50080-50090
    [148] Mandadi S, Numazaki M, Tominaga M, Bhat MB, Armati PJ, Roufogalis BD. Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels. Cell Calcium, 2004, 35: 471-478
    [149] Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M. Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci U S A, 2003, 100: 8002-8006
    [150] Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. Phosphoinositide 3- kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol, 2006, 128: 509-522
    [151] Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T. Dual regulation of TRPV1 by phosphoinositides. J Neurosci, 2007, 27: 7070-7080
    [152] Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 2000, 288: 306-313
    [153] Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T. PI(3, 4, 5)P3 and PI(4, 5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science, 2006, 314: 1458-1461
    [154] Hui KY, Liu BY, Qin F. Capsaicin Activation of the Pain Receptor, VR1: Multiple Open States from both Partial and Full Binding. Biophys J, 2003, 84: 2957-2968
    [155] Novakova-Tousova K, Vyklicky L, Susankova K, Benedikt J, Samad A, Teisinger J, Vlachova V. Functional changes in the Vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience, 2007, 149: 144-154
    [156] Suh BC, Inoue T, Meyer T, Hille B. Rapid chemically induced changes of PtdIns(4, 5)P2 gate KCNQ ion channels. Science, 2006, 314: 1454-1457
    [157] Koplas PA, Rosenberg RL, Oxford GS. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci, 1997, 17: 3525-3537
    [158] Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA. Protein kinase C activation potentiates gating of the Vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol, 2001, 534: 813-825
    [159] Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U. Phosphorylation of Vanilloid receptor 1 by Ca~(2+)/calmodulin-dependent kinase II regulates its Vanilloid binding. J Biol Chem, 2004, 279: 7048-7054
    [160] P. V. Lishko, E. Procko, X. Jin, C. B. Phelps, R. Gaudet, The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron, 2007, 54: 905-918
    [161] Prescott ED, Julius D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science, 2003, 300: 1284-1288
    [162] Braun D, Fromherz P. Fluorescence Interferometry of Neuronal Cell Adhesion on Microstructured Silicon. Phys Rev Lett, 1998, 81: 5241-5244
    [163] GREENE LC, HARDY JD. Adaptation of thermal pain in the skin. J Appl Physiol, 1962, 17:693-696
    [164] Voets, T., et al. Mg~(2+)-dependent gating and strong inward rectification of the cation channel TRPV6. J. Gen. Physiol, 2003, 121(3): 245-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700