亮氨酰-tRNA合成酶编校功能进化和机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酰-tRNA合成酶(Aminoacyl-tRNA synthetase, AARS)催化tRNA的氨基酰化,生成蛋白质生物合成原料氨基酰-tRNA。为保证遗传密码表达的精确性,相似氨基酸对应的AARS具有编校功能通过水解去除误氨基酰-tRNA。亮氨酰-、异亮氨酰-及缬氨酰-tRNA合成酶(LeuRS, IleRS, ValRS)通过氨基酸转移到tRNA分子上以后的编校,简称“转移后编校”水解错误的氨基酰化产物。这类AARS的编校结构域是插入活性中心称为CP1(Connective Peptide 1)的插入肽段。研究结果表明,来源于原始的超嗜热菌Aquifex aeolicus的LeuRS(AaLeuRS)能编校这一类酶催化产生的氨基酰化产物或误氨基酰化产物,例如Ile-tRNAIle, Val-tRNAIle, Val-tRNAVal, Thr-tRNAVal和Ile-tRNALeu。为了进一步研究AaLeuRS这一广泛的编校活性,设计了携带三重识别元件的RNA小螺旋(minihelixLIV)以模拟原始的tRNA,研究了AaLeuRS,大肠杆菌IleRS和LeuRS,嗜热脂肪芽孢杆菌ValRS单独的CP1肽段编校误氨基酰化小螺旋的能力。结果表明只有AaLeuRS单独的CP1肽段可以水解误氨基酰化的小螺旋,例如Ile-minihelixLIV, Val-minihelixLIV和Thr-minihelixLIV,而IleRS及ValRS的单独的CP1肽段则不能。这些结果说明AaLeuRS可能有着比IleRS及ValRS更为原始的编校特性,其编校结构域可能保留了三种酶共同的祖先编校结构域,它应当具有非专一性的编校功能。研究揭示了AARS催化特异性进化的重要步骤。
     研究了不同来源的LeuRS的编校途径。对来源于超嗜热菌、大肠杆菌、古细菌、酵母、人胞质和人线粒体的LeuRS的研究结果首次证明:LeuRS总的编校功能可以分为以下三条途径:氨基酸转移到tRNA以前的编校(简称转移前编校),这类编校又分为不依赖和依赖tRNA的转移前编校两种;第三种是转移后编校。来源于真核生物的LeuRS没有明显的依赖tRNA的转移前编校,只有不依赖tRNA的转移前编校,它的活性位点可能位于氨基酰化结构域而非编校结构域。不同的纠错途径偏爱编校不同的相似氨基酸,这种偏爱可受tRNA的调节。这些结果揭示了不同编校途径的意义和进化上的关系。
     研究了依赖tRNA的转移前和转移后的编校途径,用点突变的方法分离了这两种途径。基于对AaLeuRS的CP1编校结构域保守氨基酸的丙氨酸突变扫描(Ala screen)以及对AaLeuRS突变体氨基酰化和编校功能的生化和结构分析,发现Y358对转移前编校至关重要。Y358A AaLeuRS突变体的编校反应行为直接证明了原核生物LeuRS具有tRNA依赖的转移前编校。将Y358和T269两个位点突变为不同的氨基酸残基,对这些AaLeuRS突变体的研究揭示了依赖tRNA的转移前编校中tRNA和编校结构域相互作用的可能模式;证明虽然Y358在转移前和转移后编校中都发挥重要作用,但作用机制不同。与AaLeuRS的Y358A突变体相反,在T273位点的一系列的点突变体研究中发现,某些突变体,例如T273R,丧失了转移后编校却保留了转移前编校。Y358A和T273R两个突变体可以分别区分转移后编校和依赖tRNA的转移前编校,这将为今后单独研究这两条编校途径的机制提供理想的模型。
     AaLeuRS编校结构域R322的一系列点突变对编校功能没有影响,却可以抑制酶的氨基酰化功能。动力学研究表明,这些点突变主要影响氨基酰化活性口袋对ATP和氨基酸的结合和催化,亦即影响了氨基酰化活性口袋的构象。进一步实验证明,编校结构域中编校反应的发生会对氨基酰化结构域中的氨基酰化反应产生抑制,这种抑制信号正是通过R322在结构域间传导。编校途径的缺失会加强这种抑制,表明这是一种特殊情况下为保证催化特异性而进行的负反馈抑制机制。对温度敏感型菌株的体内补偿实验支持体外实验的结果。同时我们发现,在编校发生的情况下,R322A和R322K突变反而能回复氨基酰化的能力,这一结果解释了为何某些原核生物LeuRS这一位置上进化为A或K。这些结果揭示了LeuRS为保证催化特异性而进化出的结构域之间的交流机制。
     研究了AatRNA与合成酶相互作用的结构元件。通过核酸酶探针的足迹保护法、点突变、酶促反应动力学测定等研究方法证明AatRNA上存在不同的识别元件组与LeuRS的不同功能相对应。首次证明tRNALeu保守的反密码子第二位碱基在tRNA依赖的转移前编校反应中是LeuRS重要的识别元件。该结果为揭示tRNA依赖的转移前编校的机制以及LeuRS与tRNALeu的共进化提供了重要线索。
Leucyl-, isoleucyl- and valyl-tRNA synthetases form a subgroup of related aminoacyl-tRNA synthetases that catalyze the attachment of similar non-polar amino acids onto their cognate tRNAs. To maintain the fidelity of protein biosynthesis these enzymes also hydrolyze mischarged tRNAs through a post-transfer editing mechanism. Here we show that the ancestralαβ-LeuRS from Aquifex aeolicus and its isolated editing domain (AaLeu-CP1) catalyze the hydrolytic editing of the complete set of aminoacylated tRNAs generated by the three enzymes: Ile-tRNAIle, Val-tRNAIle, Val-tRNAVal, Thr-tRNAVal and Ile-tRNALeu indicating they have nonspecific editing function. A composite minihelixLIV was designed to carry the triple amino acid identity and to mimic the RNA molecule charged by the common ancestor of Leu-, Ile- and ValRS. We found that the three enzymes can aminoacylate minihelixLIV, indicating that they carry remnant-charging activity for this ancient form of transfer RNA. We tested if isolated CP1 domains could hydrolyze these primitive aminoacylated RNAs. We found that only the primitive AaLeu-CP1 could efficiently hydrolyze Ile-, Val- and Thr-minihelixLIV carrying non-cognate amino acids. These data indicate thatA?aLeu-CP1 has retained the hydrolytic function to edit the mischarged RNAs issued from the ancestor of Leu-, Ile- and ValRS. These results support the hypothesis that A. aeolicus -LeuRS is closer than Ile-, and ValRS from the last common ancestor from which it still carries the ambiguous editing function.
     Leucyl-tRNA synthetase (LeuRS) has editing functions to eliminate misactivated amino acids and mischarged tRNAs for preventing genetic code ambiguity, although the mechanisms are unclear. We studied the LeuRSs from Aquifex aeolicus, Escherichia coli, Pyrococcus horikoshii, Saccharomyces cerevisiae, human cytosol and human mitochondria and separated the total editing of LeuRS into three parts: tRNA-independent pretransfer editing, tRNA-dependent pretransfer editing, and posttransfer editing. The eukaryotic LeuRSs have no obvious tRNA-dependent pretransfer editing. The active site for tRNA-independent pretransfer editing appears to be the aminoacylation site.
     Leucyl-tRNA synthetase (LeuRS) was believed to have tRNA-dependent editing functions to eliminate misactivated amino acids (pretransfer editing) and mischarged tRNAs (post-transferring editing) for preventing genetic code ambiguity. Although the posttransfer editing had been well characterized, the pretransfer editing remained unclear due to the instability of its substrates and the overlapping of its active site with that of posttransfer editing. In the study, with the comprehensive Ala screen mutagenesis study in the editing domain of Aquifex aeolicus LeuRS (AaLeuRS) we found that the Y358A mutation reduced drastically the pretransfer editing but enhance the posttransfer editing. Based on the known structures we proposed a partial pretransfer editing model including the 3’-terminus of tRNA and Y358, following mutagenesis studies support our model and show that Y358 plays different but important roles in both pre- and posttransfer editing. On the other hand, we took advantage of the subtle difference of the key residue T273 of editing active site in recognition of pre- and posttransfer editing substrates, to produce mutations, typically T273R, which shut down the posttransfer editing without affecting pretransfer editing. In summary, we isolated the two tRNA-dependent editing pathways with the Y358A and T273R AaLeuRS mutants, respectively. And we proposed the possible conformation of 3’-terminus of tRNA in pretransfer editing, which was one of the most doubtful and interesting problems in editing.
     Mutations of R322 in the AaLeuRS editing domain interrupt the aminoacylation ability of the enzyme. Kinetics analysis indicated that the conformation of aminoacylation active site is affected by the mutations so that the binding and catalysis of the enzyme for ATP and amino acids are affected. The following assays proved that the occurring of editing in the editing domain will suppress the aminoacylation in the aminoacylation domain 30? far off, and the suppressive signal is conducted by R322. The deficiency in editing will enhance the suppression, indicating that the suppression of aminoacylation by editing might be a negative feedback mechanism to guarantee the fidelity of the aminoacylation. These results demonstrated the interdomain communication in LeuRS for the genetic fidelity.
     AatRNALeu has different binding manners with AaLeuRS as shown by our using enzymatic probe based footprinting study. The absolutely conserved A35 (the second base of anticodon) of AatRNALeu was protected by AaLeuRS in one case but not in the other. Unlike that in other tRNA systems, A35 of AatRNALeu was proved dispensable in aminoacylation reaction. However, the A35U tRNA mutant dramatically reduces the ability to trigger the total editing of AaLeuRS while enhances the posttransfer editing, indicating that A35 is an important recognition element by AaLeuRS in pretransfer editing. These results will improve the understanding of the mechanism of pretransfer editing and the co-evolution of tRNALeu/LeuRS.
引文
1. Schimmel, P. Aminoacyl-tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem., 1987(56): 125-158
    2. Ibba, M., and S?ll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem., 2000(69): 617-650
    3. Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature, 1990(347): 203-206
    4. Cusack, S., Yaremchuk, A., and Tukalo, M. The 2 ? crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J., 2000(19): 2351-2361
    5. Eldred, E.W. and Schimmel, P. Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine. J. Biol. Chem., 1972(247): 2961-2964
    6. Fersht, A. and Kaethner, M. Enzyme hyperspecificity. Rejection of threonine by the valyl-tRNA synthetase by misacylation and hydrolytic editing. Biochemistry, 1976(15): 3342-3346
    7. Chen, J.F., Guo, N.N., Li, T., Wang, E.D., and Wang, Y.L. CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function. Biochemistry, 2000(39): 6726-6731
    8. Beuning, P.J. and Musier-Forsyth, K. Hydrolytic editing by a class II aminoacyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA., 2000(97): 8916-8920
    9. Dock-Bregeon, A., Sankaranarayanan, R., Romby, P., Caillet, J., Springer, M., Rees ,B., Francklyn, C.S., Ehresmann, C., and Moras, D. Transfer RNA-mediated editing in threonyl-tRNA synthetase. The class II solution to the double discrimination problem. Cell, 2000(103): 877-884
    10. Beebe, K., Ribas de Pouplana, L., and Schimmel, P. Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J., 2003(22): 668-675
    11. Roy, H., Ling, J., Irnov, M., and Ibba, M. Post-transfer editing in vitro and in vivo by the β subunit of phenylalanyl-tRNA synthetase. EMBO J., 2005(23): 4639-4648
    12. Nureki, O., Vassylyev, D., Tateno, M., Shimada, A., Nakama, T., Fukai, S., Konno, M., Hendrickson, T., Schimmel, P., and Yokoyama, S. Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science, 1998(280): 578-582
    13. Wong, F., Beuning, P., Silvers, C., Musier-Forsyth, K. An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing. J. Biol. Chem., 2003(278): 52857-52864
    14. Kotik-Kogan, O., Moor, N., Tworowski, D., and Safro, M. Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase. Structure, 2005(13): 1799-1807
    15. Ishijima, J., Uchida, Y., Kuroishi, C., Tuzuki, C., Takahashi, N., Okazaki, N., Yutani, K., and Miyano, M. Crystal structure of alanyl-tRNA synthetase editing-domain homolog (PH0574) from a hyperthermophile, Pyrococcus horikoshii OT3 at 1.45 ? resolution. Proteins, 2006(62): 1133-1137
    16. Englisch, S., Englisch, U., von der Haar, F., and Cramer, F. The proofreading of hydroxy analogues of leucine and isoleucine by leucyl-tRNA synthetases from E. coli and yeast. Nucleic. Acids. Res., 1986(14): 7529-7539
    17. Apostol, I., Levine, J., Lippincott, J., Leach, J., Hess, E., Glascock, C., Weickert, M., and Blackmore, R. Incorporation of norvaline at leucine positions in recombinant human hemoglobin expressed in Escherichia coli. J. Biol. Chem., 1997(272): 28980-28988
    18. Xu, M.G., Chen, J.F., Martin, F., Zhao, M.W., Eriani, G., and Wang, E.D. Leucyl-tRNA synthetase consisting of two subunits from hyperthermophilic bacteria Aquifex aeolicus. J. Biol. Chem., 2002(277): 41590-41596
    19. Lin, L., Hale, S.P., and Schimmel, P. Aminoacylation error correction. Nature, 1996(384): 33-34
    20. Zhao, M.W., Zhu, B., Hao, R., Xu, M.G., Eriani, G., and Wang, E.D. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution. EMBO J., 2005(24): 1430-1439
    21. Li, Y., Wang, E. D., and Wang, Y. L. A modified procedure for fast purification of T7 RNA polymerase. Protein Expr. Purif., 1999(16):355-358
    22. Xu, M.G., Zhao, M.W., and Wang, E.D. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices. J. Biol. Chem., 2004(279): 32151-32158
    23. Xu, M.G., Li, J., Du, X., and Wang, E.D. Groups on the side chain of T252 in Escherichia coli leucyl-tRNA synthetase are important for discrimination of amino acids and cell viability. Bioch. Biophy. Res. Comm., 2004(318): 11-16
    24. Hendrickson, T.L., Nomanbhoy, T.K., and Schimmel, P. Errors from selectivedisruption of the editing center in a tRNA synthetase. Biochemistry, 2000(39): 8180-8186
    25. D(?)ring, V., Mootz, H.D., Nangle, L.A., Hendrickson, T.L., de Crécy-Lagard, V., Schimmel, P., and Marlière, P. Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science, 2001(292): 501-504
    26. Nordin, B., and Schimmel, P. RNA determinants for translational editing. Mischarging a minihelix substrate by a tRNA synthetase. J. Biol. Chem., 1999(274): 6835-6838
    27. Schimmel, P., and Ribas de Pouplana, L. Transfer RNA: from minihelix to genetic code. Cell, 1995(81): 983-986
    28. Weiner, A. M.,and Maizels, N. The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication, and clues regarding the origin of protein synthesis. Biol. Bull., 1999(196): 327-330
    29. Maizels, N., and Weiner, A. M. Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc. Natl. Acad. Sci. USA, 1994(91): 6729-6734
    30. Schimmel, P., and Ribas de Pouplana, L. Formation of two classes of tRNA synthetases in relation to editing functions and genetic code. Cold spring Harb. Symp. Quant. Biol., 2001(66): 161-166
    31. Heck, J. D., and Hatfield, D. W. Valyl-tRNA synthetase gene of Escherichia coli K12. Primary structure and homology within a family of aminoacyl-TRNA synthetases. J. Biol. Chem., 1988(263): 868-877
    32. Fukai, S., Nureki, O., Sekine, S., Shimada, A., Tao, J., Vassylyev, D. G., and Yokoyama, S. Structural basis for double-sieve discrimination of L-valine from - 2 3 -L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell, 2000(103): 793-803
    33. Cusack, S., Yaremchuk, A., and Tukalo, M. The 2 ? crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J., 2000(19): 2351-2361
    34. Brown, J., and Doolittle, W. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc. Natl. Acad. Sci. USA., 1995(92): 2441-2445
    35. Ribas de Pouplana, L., and Schimmel, P. Operational RNA code for amino acids in relation to genetic code in evolution. J. Biol. Chem., 2001(276): 6881-6884
    36. Ruan, B., and S?ll, D. The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNA Cys deacylase. J. Biol. Chem., 2005(280): 25887-25891
    37. Ahel, I., Korencic, D., Ibba, M., and S?ll, D. Trans-editing of mischarged tRNAs. Proc. Natl. Acad. Sci. USA, 2003(100): 15422-15427
    38. Korencic, D., Ahel, I., Schelert, J., Sacher, M., Ruan, B., Stathopoulos, C., Blum, P., Ibba, M., and S?ll, D. A freestanding proofreading domain is required for protein synthesis quality control in Archaea. Proc. Natl. Acad. Sci. USA, 2004(101): 10260-10265
    1. Schimmel, P. Aminoacyl-tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem., 1987(56): 125-158
    2. Ibba, M., and S?ll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem., 2000(69): 617-650
    3. Hendrickson, T. L., de Crecy-Lagard V., and Schimmel, P. Incorporation of nonnatural amino acids into proteins. Annu. Rev. Biochem., 2004(73): 147-176
    4. Lee, J. W., Beebe, K., Nangle, L. A., Jang, J., Longo-Guess, C. M., Cook, S. A., Davisson, M. T., Sundberg, J. P., Schimmel, P., and Ackerman, S. L. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 2006(443): 50-55
    5. Fersht, A. R., and Dingwall, C. Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyl-tRNA synthetases. Biochemistry, 1979(18): 2627-2631
    6. Fukai, S., Nureki, O., Sekine, S., Shimada, A., Tao, J., Vassylyev, D. G. and Yokoyama, S. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA (Val) and valyl-tRNA synthetase. Cell, 2000(103): 793-803
    7. Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature, 1990(347): 203-206
    8. Cusack, S., Yaremchuk, A., and Tukalo, M. The 2 ? crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J., 2000(19): 2351-2361
    9. Fukunaga R., and Yokoyama S. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase. J. Mol. Biol. 2006(359): 901-912
    10. Fukunaga, R., and Yokoyama, S. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. J. Mol. Biol., 2005(346): 57-71
    11. Fukunaga, R., and Yokoyama, S. Structural Basis for Non-cognate Amino Acid Discrimination by the Valyl-tRNA Synthetase Editing Domain. J. Biol. Chem., (2005)280: 29937–29945
    12. Lincecum, T. L. Jr, Tukalo, M., Yaremchuk, A., Mursinna, R. S., Williams, A. M., Sproat, B. S., Van Den Eynde, W., Link, A., Van Calenbergh, S., Grotli, M., et al. Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNAsynthetase. Mol. Cell, 2003(11): 951-963
    13. Tukalo, M., Yaremchuk, A., Fukunaga, R., Yokoyama, S., and Cusack, S. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation. Nat. Struct. Mol. Biol., 2005(12): 923-930
    14. Mursinna, R. S., Lee, K. W., Briggs, J. M., and Martinis, S. A. Molecular dissection of a critical specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase. Biochemistry, 2004(43): 155-165
    15. Du X., and Wang E.D. Discrimination of tRNALeu isoacceptors by the mutants of Escherichia coli leucyl-tRNA synthetase in editing. Biochemistry, 2002(41): 10623-10628
    16. Bishop, A. C., Nomanbhoy, T. K., and Schimmel, P. Blocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase. Proc. Natl. Acad. Sci. U S A, 2002(99): 585-590
    17. Zhai, Y., and Martinis, S. A. Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism. Biochemistry, 2005(44): 15437-15443
    18. Mursinna, R. S., Lincecum, T. L. Jr, and Martinis, S. A. A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu. Biochemistry, 2001(40): 5376-5381
    19. Mursinna, R. S., and Martinis, S. A. Rational design to block amino acid editing of a tRNA synthetase. J. Am. Chem. Soc., 2002(124): 7286-7287
    20. Zhai, Y., Nawaz, M. H., Lee, K. W., Kirkbride, E., Briggs, J. M., and Martinis, S. A. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase. Biochemistry, 2007(46): 3331-3337
    21. Gruic-Sovulj, I., Uter, N., Bullock, T., and Perona, J. J. tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase. J. Biol. Chem., 2005(2800): 23978-23986
    22. Nomanbhoy, T. K., Hendrickson, T. L. and Schimmel, P. Transfer RNA-dependent translocation of misactivated amino acids to prevent errors in protein synthesis. Mol. Cell, 1999(4): 519-528
    23. Williams, A. M., and Martinis, S. A. Mutational unmasking of a tRNA-dependent pathway for preventing genetic code ambiguity. Proc. Natl. Acad. Sci. U S A, 2006(103): 3586-3591
    24. Englisch, S., Englisch, U., von der Haar, F., and Cramer, F. The proofreading of hydroxy analogues of leucine and isoleucine by leucyl-tRNA synthetases from E. coli and yeast. Nucleic Acids Res., 1986(14): 7529-7539
    25. Jakubowski, H., and Fersht, A. R. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Nucleic Acids Res., 1981(9): 3105-3117
    26. Nordin, B. E., and Schimmel, P. Transiently misacylated tRNA is a primer for editing of misactivated adenylates by class I aminoacyl-tRNA synthetases. Biochemistry, 2003(42): 12989-12997
    27. Xu, M. G., Chen, J. F., Martin, F., Zhao, M. W., Eriani, G., and Wang, E. D. Leucyl-tRNA synthetase consisting of two subunits from hyperthermophilic bacteria Aquifex aeolicus. J. Biol. Chem., 2002(277): 41590-41596
    28. Xu, M. G., Zhao, M. W., and Wang, E. D. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices. J. Biol. Chem., 2004(279): 32151-32158
    29. Zhao, M. W., Zhu, B., Hao, R., Xu, M. G., Eriani, G., and Wang, E. D. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution. EMBO J., 2005(24): 1430-1439
    30. Lue, S. W., and Kelley, S. O. An aminoacyl-tRNA synthetase with a defunct editing site. Biochemistry, 2005(44): 3010-3016
    31. Yao, Y. N., Wang, L., Wu, X. F., and Wang, E. D. Human mitochondrial leucyl-tRNA synthetase with high activity produced from Escherichia coli. Protein Expr. Purif., 2003(30): 112-116
    32. Ling, C., Yao, Y. N., Zheng, Y. G., Wei, H., Wang, L., Wu, X. F., and Wang, E. D. The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex. J. Biol. Chem., 2005(280): 34755-34763
    33. Li, Y., Wang, E.D. and Wang, Y.L. Overproduction and purification of Escherichia coli tRNALeu. Science in China (series C), 1998(41): 225-231
    34. Hao, R., Yao, Y. N., Zheng, Y. G., Xu, M. G. and Wang, E. D. Reduction of mitochondrial tRNALeu(UUR) aminoacylation by some MELAS-associated mutations. FEBS Lett. 2004(578): 135-139
    35. Li, Y., Chen, J.F., Wang, E.D., and Wang, Y. L. T7 RNA polymerase transcription of Escherichia coli isoacceptors tRNALeu. Science in China (series C), 1999(42): 185-190.
    36. Xu, M.G., Li, J., Du, X., and Wang, E.D. Influence of 252T mutations of Escherichia coli leucyl-tRNA synthetase on discrimination of amino acids and cell viability. Biochem. Biophys. Res. Commun., 2004(318): 11-16
    37. Chen, J.F., Guo, N.N., Li, T., Wang, E.D., and Wang Y. L. CP1 domain inEscherichia coli leucyl-tRNA synthetase is crucial for its editing function. Biochemistry, 2000(39): 6726-6731
    38. Hendrickson, T. L., Nomanbhoy, T. K., de Crecy-Lagard, V., Fukai, S., Nureki, O., Yokoyama, S., and Schimmel, P. Mutational separation of two pathways for editing by a class I tRNA synthetase. Mol. Cell, 2002(9): 353-362
    39. Apostol, I., Levine, J., Lippincott, J., Leach, J., Hess, E., Glascock, C. B., Weickert, M. J., and Blackmore, R. Incorporation of norvaline at leucine positions in recombinant human hemoglobin expressed in Escherichia coli. J. Biol. Chem., 1997(272): 28980-28298
    40. Hati, S., Ziervogel, B., Sternjohn, J., Wong, F. C., Nagan, M. C., Rosen, A. E., Siliciano, P. G., Chihade, J. W., and Musier-Forsyth, K. Pre-transfer editing by class II prolyl-tRNA synthetase: role of aminoacylation active site in "selective release" of noncognate amino acids. J. Biol. Chem., 2006(281): 27862-27872
    41. Nureki, O., Vassylyev, D.G., Tateno, M., Shimada, A., Nakama, T., Fukai, S., Konno, M., Hendrickson, T.L., Schimmel, P., and Yokoyama, S. Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science, 1998(80): 578–582
    42. Tardif, K.D., and Horowitz, J. Transfer RNA determinants for translational editing by Escherichia coli valyl-tRNA synthetase. Nucleic Acids Res., 2002(30): 2538–2545
    43. Hale, S.P., Auld, D.S., Schmidt, E., and Schimmel, P. Discrete determinants in transfer RNA for editing and aminoacylation. Science, 1997(276): 1250–1252
    44. Farrow, M.A., Nordin, B.E., and Schimmel, P. Nucleotide determinants for tRNA-dependent amino acid discrimination by a class I tRNA synthetase.Biochemistry, 1999(38): 16898–16903
    45. Ataide, S. F., and Ibba, M. Small molecules: big players in the evolution of protein synthesis. ACS Chem. Biol., 2006(1): 285-297
    46. Chen, J. F., Li, T., Wang, E. D., and Wang, Y. L. Effect of alanine-293 replacement on the activity, ATP binding, and editing of Escherichia coli leucyl-tRNA synthetase. Biochemistry, 2001(40): 1144-1149
    1. Schimmel, P. Aminoacyl-tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem., 1987(56): 125-158
    2. Giegé, R., Sissler, M., and Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res., 1998(26): 5017-5035
    3. Woese, C. R., Olsen, G. J., Ibba, M., and Soll, D. Aminoacyl-tRNA synthetases, thegenetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev., 2000(64): 202-236
    4. Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature, 1990(347): 203-206
    5. Delarue, M., and Moras, D. The aminoacyl-tRNA synthetase family: modules at work. BioEssays, 1993(15): 675-687
    6. Ibba, M., and S?ll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem., 2000(69): 617-650
    7. Hendrickson, T. L., de Crecy-Lagard, V., and Schimmel, P. Incorporation of nonnatural amino acids into proteins. Annu. Rev. Biochem., 2004(73): 147-176
    8. Lee, J. W., Beebe, K., Nangle, L. A., Jang, J., Longo-Guess, C. M., Cook, S. A., Davisson, M. T., Sundberg, J. P., Schimmel, P., and Ackerman, S. L. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 2006(443): 50-55
    9. Hendrickson, T. L., and Schimmel, P. Transfer RNA-dependent editing by aminoacyl-tRNA synthetases. In Translation Mechanisms, J. LaPointe, and L. Brakier-Gingras, eds. (New York: Kluwer/Plenum), 2003, pp. 34-64
    10. Fersht, A. R., and Dingwall, C. Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyl-tRNA synthetases. Biochemistry, 1979(18): 2627-2631
    11. Fukai, S., Nureki, O., Sekine, S., Shimada, A., Tao, J., Vassylyev, D. G., and Yokoyama, S. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA (Val) and valyl-tRNAsynthetase. Cell, 2000(103): 793-803
    12. Chen, J.F., Guo, N.N., Li, T., Wang, E.D., and Wang Y. L. CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function. Biochemistry, 2000(39): 6726-6731
    13. Xu, M. G., Chen, J. F., Martin, F., Zhao, M. W., Eriani, G., and Wang, E. D. Leucyl-tRNA synthetase consisting of two subunits from hyperthermophilic bacteria Aquifex aeolicus. J. Biol. Chem., 2002(277): 41590-41596
    14. Lin, L., Hale, S.P., and Schimmel, P. Aminoacylation error correction. Nature, 1996(384): 33-34
    15. Zhao, M. W., Zhu, B., Hao, R., Xu, M. G., Eriani, G., and Wang, E. D. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution. EMBO J., 2005(24): 1430-1439
    16. Zhu B., Zhao M.W., Eriani G., and Wang E.D. A present-day aminoacyl-tRNA synthetase with ancestral editing properties. RNA, 2007(13): 15-20
    17. Mursinna, R. S., Lee, K. W., Briggs, J. M., and Martinis, S. A. Molecular dissection of a critical specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase. Biochemistry, 2004(43): 155-165
    18. Du X., and Wang E.D. Discrimination of tRNALeu isoacceptors by the mutants of Escherichia coli leucyl-tRNA synthetase in editing. Biochemistry, 2002(41): 10623-10628
    19. Bishop, A. C., Nomanbhoy, T. K., and Schimmel, P. Blocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase. Proc. Natl. Acad. Sci. U S A, 2002(99): 585-590
    20. Hendrickson, T. L., Nomanbhoy, T. K., de Crecy-Lagard, V., Fukai, S., Nureki, O.,Yokoyama, S., and Schimmel, P. Mutational separation of two pathways for editing by a class I tRNA synthetase. Mol. Cell, 2002(9): 353-362
    21. Lincecum, T. L. Jr., Tukalo, M., Yaremchuk, A., Mursinna, R. S., Williams, A. M., Sproat, B. S., Van Den Eynde, W., Link, A., Van Calenbergh, S., Grotli, M., et al. Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol. Cell, 2003(11): 951-963
    22. Xu, M. G., Li, J., Du, X., and Wang, E. D. Groups on the side chain of T252 in Escherichia coli leucyl-tRNA synthetase are important for discrimination of amino acids and cell viability. Biochem. Biophys. Res. Commun., 2004(318): 11-16
    23. Fukunaga, R., Fukai, S., Ishitani, R., Nureki, O., and Yokoyama, S. Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with L-valine. J. Biol. Chem., 2004(279): 8396-8402
    24. Tukalo, M., Yaremchuk, A., Fukunaga, R., Yokoyama, S., and Cusack, S. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation. Nat. Struct. Mol. Biol., 2005(12): 923-930
    25. Fukunaga, R., and Yokoyama, S. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase. J. Mol. Biol., 2006(359): 901-912
    26. Williams, A. M., and Martinis, S. A. Mutational unmasking of a tRNA-dependent pathway for preventing genetic code ambiguity. Proc. Natl. Acad. Sci. U S A, 2006(103): 3586-3591
    27. Nordin, B. E., and Schimmel, P. Transiently misacylated tRNA is a primer for editing of misactivated adenylates by class I aminoacyl-tRNA synthetases. Biochemistry, 2003(42): 12989-12997
    28. Ling, C., Zheng, Y. G., and Wang, E. D. High-level expression and single-steppurification of leucyl-tRNA synthetase from Aquifex aeolicus. Protein Expr. Purif., 2004(36): 146-149
    29. Zhai, Y., and Martinis, S. A. Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism. Biochemistry, 2005(44): 15437-15443
    30. Mursinna, R. S., Lincecum, T. L. Jr, and Martinis, S. A. A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu. Biochemistry, 2001(40): 5376-5381
    31. Mursinna, R. S., and Martinis, S. A. Rational design to block amino acid editing of a tRNA synthetase. J. Am. Chem. Soc., 2002(124): 7286-7287
    32. Tang, Y., and Tirrell, D. A. Attenuation of the editing activity of the Escherichia coli leucyl-tRNA synthetase allows incorporation of novel amino acids into proteins in vivo. Biochemistry, 2002(41): 10635-10645
    1. Schimmel, P. Aminoacyl-tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem., 1987(56): 125-158
    2. Ibba, M., and S?ll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem., 2000(69): 617-650
    3. Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature, 1990(347): 203-206
    4. Hendrickson, T. L., de Crecy-Lagard V., and Schimmel, P. Incorporation of nonnatural amino acids into proteins. Annu. Rev. Biochem., 2004(73): 147-176
    5. Lee, J. W., Beebe, K., Nangle, L. A., Jang, J., Longo-Guess, C. M., Cook, S. A., Davisson, M. T., Sundberg, J. P., Schimmel, P., and Ackerman, S. L. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 2006(443): 50-55
    6. Fersht, A. R., and Dingwall, C. Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyl-tRNA synthetases. Biochemistry, 1979(18): 2627-2631
    7. Fukai, S., Nureki, O., Sekine, S., Shimada, A., Tao, J., Vassylyev, D. G. and Yokoyama, S. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA (Val) and valyl-tRNA synthetase. Cell, 2000(103): 793-803
    8. Chen, J.F., Guo, N.N., Li, T., Wang, E.D., and Wang Y. L. CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function. Biochemistry, 2000(39): 6726-6731
    9. Schimmel, P., and Ribas de Pouplana, L. Transfer RNA: from minihelix to genetic code. Cell, 1995(81): 983-986
    10. Zhao, M. W., Zhu, B., Hao, R., Xu, M. G., Eriani, G., and Wang, E. D. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution. EMBO J., 2005(24): 1430-1439
    11. Zhang, C. M., and Hou, Y. M. Domain-domain communication for tRNA aminoacylation: The importance of covalent connectivity. Biochemistry, 2005(44): 7240-7249
    12. Lin, L., Hale, S.P., and Schimmel, P. Aminoacylation error correction. Nature, 1996(384): 33-34
    13. Zhu B., Zhao M.W., Eriani G., and Wang E.D. A present-day aminoacyl-tRNA synthetase with ancestral editing properties. RNA, 2007(13): 15-20
    14. Steer, B. A., and Schimmel, P. Domain–domain communication in a miniature archaebacterial tRNA synthetase. Proc. Natl. Acad. Sci. U S A, 1999(96): 13644-13649
    15. Lazard, M., Kerjan, P., Agou, F., and Mirande, M. The tRNA-dependent activation of arginine by arginyl-tRNA synthetase requires inter-domain communication. J. Mol. Biol., 2000(302): 991-1004
    16. Uter, N. T., and Perona, J. J. Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics. Proc. Natl. Acad. Sci. U S A, 2004(101): 14396-14401
    17. Ling, C., Zheng, Y. G., and Wang, E. D. High-level expression and single-step purification of leucyl-tRNA synthetase from Aquifex aeolicus. Protein Expr. Purif., 2004(36): 146-149
    18. Xu, M. G., Chen, J. F., Martin, F., Zhao, M. W., Eriani, G., and Wang, E. D. Leucyl-tRNA synthetase consisting of two subunits from hyperthermophilic bacteria Aquifex aeolicus. J. Biol. Chem., 2002(277): 41590-41596
    19. Hendrickson, T. L., Nomanbhoy, T. K., de Crecy-Lagard, V., Fukai, S., Nureki, O., Yokoyama, S., and Schimmel, P. Mutational separation of two pathways for editing by a class I tRNA synthetase. Mol. Cell, 2002(9): 353-362
    20. Xu, M. G., Li, J., Du, X., and Wang, E. D. Groups on the side chain of T252 in Escherichia coli leucyl-tRNA synthetase are important for discrimination of amino acids and cell viability. Biochem. Biophys. Res. Commun., 2004(318): 11-16
    21. Lincecum, T. L. Jr., Tukalo, M., Yaremchuk, A., Mursinna, R. S., Williams, A. M.,Sproat, B. S., Van Den Eynde, W., Link, A., Van Calenbergh, S., Grotli, M., et al. Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol. Cell, 2003(11): 951-963
    22. Alexander, R. W., and Schimmel, P. Domain-domain communication in aminoacyl-tRNA synthetases. Prog. Nucleic Acid Res. Mol. Biol., 2001(69): 317-349
    23. Alexander, R. W., and Schimmel, P. Evidence for breaking domain-domain functional communication in a synthetase-tRNA complex. Biochemistry, 1999(38): 16359-16365
    24. Li, T., Guo, N.N., Xia, X., Wang, E.D.and Wang, Y.L. The peptide bond between E292-A293 of Escherichia coli leucyl-tRNA synthetase is essential for aminoacylation activity. Biochemistry, 1999, 38(40): 13063-13069
    25. Chen, J. F., Li, T., Wang, E. D., and Wang, Y. L. Effect of alanine-293 replacement on the activity, ATP binding, and editing of Escherichia coli leucyl-tRNA synthetase. Biochemistry, 2001(40): 1144-1149
    26. Williams, A. M., and Martinis, S. A. Mutational unmasking of a tRNA-dependent pathway for preventing genetic code ambiguity. Proc. Natl. Acad. Sci. U S A, 2006(103): 3586-3591
    1. Giege, R., Sissler, M., and Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res., 1998(26): 5017-5035
    2. Steinberg, S., Misch, A., and Sprinzl, M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res., 1993(21): 3011-3015
    3. Sprinzl, M., Hartmann, T., Weber, J., Blank, J., and Zeidler, R.(题目) Nucleic Acids Res., 1989(17): Supplement r1-r172
    4. Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A., and Weiner, A.M. (eds) in Molecular Biology of the Gene, 4 ed., The Benjamin/Cummings Publishing Company, Menlo Park, CA, 1987(vol. 1): chapter 15
    5. Chen J.F., Guo, N.N., Li, T., Wang, E.D., and Wang, Y.L. CP1 Domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function. Biochemistry(US), 2000(39): 6726-6731
    6. Chen J.F., Li, T., Wang, E.D., and Wang, Y.L. The effect of replacement of alanine-293 on the structure and function of Escherichia coli leucyl-tRNA synthetase. Biochemistry(US), 2001(40): 1144-1149
    7. Du, X., and Wang, E.D. Discrimination of tRNALeu isoacceptors by the mutants of Escherichia coli leucyl-tRNA synthetase in Editing. Biochemistry(US), 2002(41): 10623-10628
    8. Lincecum, T.L. Jr., Tukalo, M., Yaremchuk, A., Mursinna, R.S., Williams, A.M., Sproat, B.S., Van Den Eynde, W., Link, A., Van Calenbergh, S., Grotli, M., et al. Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol. Cell, 2003(11): 951-963
    9. Tukalo, M., Yaremchuk, A., Fukunaga, R., Yokoyama, S., Cusack, S. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in thepost-transfer-editing conformation. Nat. Struct. Mol. Biol., 2005(12): 923-930
    10. Fukunaga, R., and Yokoyama, S. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition. Nat. Struct. Mol. Biol., 2005(12): 915-922
    11. Normanly, J., Ollick, T., and Abelson, J. Eight base changes are sufficient to convert a leucine-inserting tRNA into a serine-inserting tRNA. Proc. Natl. Acad. Sci. U S A, 1992(89): 5680-5684
    12. Asahara, H., Himeno, H., Tamura, K., Nameki, N., Hasegawa, T., and Shimizu, M. Discrimination among E. coli tRNAs with a long variable arm. Nucleic. Acids. Res. Symp. Ser., 1993(29): 207-208
    13. Asahara, H., Nameki, N., and Hasegawa, T. In vitro selection of RNAs aminoacylated by Escherichia coli leucyl-tRNA synthetase. J. Mol. Biol., 1998(283): 605-618
    14. Tocchini-Valentini, G., Saks, M.E., and Abelson, J. tRNA leucine identity and recognition sets. J. Mol. Biol. 2000(298): 779-793
    15. Larkin, D.C., Williams, A.M., Martinis, S.A., and Fox, G.E. Identification of essential domains for Escherichia coli tRNA(leu) aminoacylation and amino acid editing using minimalist RNA molecules. Nucleic Acids Res., 2002(30): 2103-2113
    16. Du, X., and Wang, E.D. Tertiary structure base pairs between D- and TψC-loops of Escherichia coli tRNA(Leu) play important roles in both aminoacylation and editing. Nucleic Acids Res., 2003(31): 2865-2872
    17. Soma, A., Uchiyama, K., Sakamoto, T., Maeda, M., and Himeno, H. Unique recognition style of tRNA(Leu) by Haloferax volcanii leucyl-tRNA synthetase. J. Mol. Biol., 1999(293): 1029-1038
    18. Soma, A., Kumagai, R., Nishikawa, K., and Himeno, H. The anticodon loop is a major identity determinant of Saccharomyces cerevisiae tRNA(Leu). J. Mol. Biol., 1996(263): 707-714
    19. Dietrich, A., Romby, P., Marechal-Drouard, L., Guillemaut, P., and Giege, R. Solution conformation of several free tRNALeu species from bean, yeast and Escherichia coli and interaction of these tRNAs with bean cytoplasmic leucyl-tRNA synthetase. A phosphate alkylation study with ethylnitrosourea. Nucleic Acids Res., 1990(18): 2589-2597
    20. Breitschopf, K., Achsel, T., Busch, K., and Gross, H.J. Identity elements of human tRNA(Leu): structural requirements for converting human tRNA(Ser) into a leucine acceptor in vitro. Nucleic Acids Res., 1995(23): 3633-3637
    21. Breitschopf, K., and Gross, H.J. The discriminator bases G73 in human tRNA(Ser) and A73 in tRNA(Leu) have significantly different roles in the recognition of aminoacyl-tRNA synthetases. Nucleic Acids Res., 1996(24): 405-410
    22. Sohm, B., Frugier, M., Brule, H., Olszak, K., Przykorska, A., and Florentz, C. Towards understanding human mitochondrial leucine aminoacylation identity. J. Mol. Biol., 2003(328): 995-1010
    23. Sohm, B., Sissler, M., Park, H., King, M.P., and Florentz, C. Recognition of human mitochondrial tRNALeu(UUR) by its cognate leucyl-tRNA synthetase. J. Mol. Biol., 2004(339): 17-29
    24. Xu, M.G., Chen, J.F., Martin, F., Zhao, M.W., Eriani, G., and Wang, E.D. Leucyl-tRNA synthetase consisting of two subunits from hyperthermophilic bacteria Aquifex aeolicus. J. Biol. Chem., 2002(277): 41590-41596
    25. Xu, M.G., Zhao, M.W., and Wang, E.D. Leucyl-tRNA synthetase from thehyperthermophilic bacterium Aquifex aeolicus recognizes minihelices. J. Biol. Chem., 2004(279): 32151-32158
    26. Zhao, M.W., Zhu, B., Hao, R., Xu, M.G., Eriani, G., and Wang, E.D. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution. EMBO J., 2005(24):1430-1439
    27. Zhu B., Zhao M.W., Eriani G., and Wang E.D. A present-day aminoacyl-tRNA synthetase with ancestral editing properties. RNA, 2007(13): 15-20
    28. Li, Y., Wang, E.D., and Wang, Y.L. A modified procedure for fast purification of T7 RNA polymerase. Protein Expr. Purif., 1999(16): 355-358
    29. Silberklang, F., Gillum, A.M., and RajBhandary, U.L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol., 1979(59): 58-109.
    30. Frugier, M., Moulinier, L., and Giege, R. A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. EMBO J., 2000(19): 2371-2380
    31. Bovee, M.L., Yan, W., Sproat, B.S., and Francklyn, C.S. tRNA discrimination at the binding step by a class II aminoacyl-tRNA synthetase. Biochemistry, 1999(38): 13725-13735
    32. Hale, S.P., Auld, D.S., Schmidt, E., and Schimmel, P. Discrete determinants in transfer RNA for editing and aminoacylation. Science, 1997(276): 1250-1252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700