高性能聚乙烯绝缘材料与半导电屏蔽材料制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压直流电缆线路因其输送容量大、造价低、损耗小、可靠性高、寿命长等特点而应用越来越广泛。随着电气工程和电子技术的快速发展,柔性导电聚合物具有广阔的应用前景。在一定的应用方面,高介电常数和高电导率的多功能聚合物基复合材料在越来越受到广泛的关注。其中,聚乙烯(PE)是高压直流输配电领域最好的绝缘材料之一。作为高压直流电缆的屏蔽层,往往使用高介电常数和高电导率的聚乙烯基复合材料来抑制空间电荷的形成。在会形成大量空间电荷的绝缘层,高电导率可以消散电缆屏蔽层积聚的空间电荷。另外,诱发的反电场能够使得电缆内导体表面的电场降低。因此,高介电常数和高电导率的内屏蔽层是保证高压直流电缆安全运行的关键因素之一。
     本论文基于电缆用聚乙烯材料的绝缘特性,提出利用纳米技术及合适的工艺制备LDPE/A12O3、LDPE/AlN及LDPE/MWCNT复合材料,就其综合介电性能开展研究。通过对不同电场下材料中空间电荷及其对电介质材料中电场分布影响规律的研究,掌握影响复合材料的空间电荷产生和分布的主要因素,通过对纳米复合材料的介电性能和微观结构综合分析,研究复合材料绝缘结构和半导体屏蔽层结构,主要工作如下:
     通过熔融共混法制备不同填料含量LDPE/Nano-Al2O3、LDPE/Nano-AIN复合材料,然后采用不同冷却工艺将其热压成型。分别研究了不同纳米Al203和纳米A1N含量对复合材料结晶、介电性能、击穿场强和空间电荷特性的影响,同时通过扫描电镜(SEM)分析A1203和A1N在LDPE基体中的分散状态以及用差示扫描量热法(DSC), X射线衍射(XRD)研究复合材料的热稳定性和结晶性能。结果表明,冷却工艺影响复合材料的热稳定性,同时基体中均匀分布的纳米A1203和A1N的引入对复合材料的结晶性和电性能产生了较大的影响。随着A1203和A1N含量的增加,复合材料的介电性能提高,击穿场强有所下降,空间电荷的集聚变化明显。
     利用电声脉冲法(Pulsed Electroacoustic Method, PEA)测量技术对不同填料含量的LDPE/Nano-Al2O3、LDPE/Nano-AIN复合材料空间电荷特性进行对比分析,主要结论如下:纯LDPE薄膜中出现了双偶极注入现象,注入电荷量随着外加电压的升高而增加,纳米A12O3、AlN掺杂的LDPE/ A12O3、LDPE/AlN复合材料的空间电荷特性与纯LDPE薄膜明显不同。异号电荷的出现表明离子化的产生;纳米粒子的引入可能阻碍了电荷的注入,注入电荷的相互作用、离子化和纳米对电荷注入的影响在形成电荷包的时候,这三者之间存在一个相互竞争的过程。含有0.5%Al2O3共混物抑制空间电荷效果最好,电荷的迁移率最高。纳米A1N粒子的加入对聚乙烯材料的空间电荷没有抑制作用。
     通过熔融共混法制备不同填料含量LDPE/WMCNT复合材料,分别研究了在不同温度、频率下多壁碳纳米管WMCNT含量对复合材料介电性能、电导率和的影响,同时通过扫描电镜(SEM)分析WMCNT在LDPE基体中的分散状态以及用差示扫描量热法(DSC)研究WMCNT含量对复合材料的结晶性能的影响。结果表明,LDPE/MWCNT复合材料的介电常数与电导率随着碳纳米管含量的增加而增大,在碳纳米管体积分数接近0.081时,复合材料的介电常数与电导率得到大幅度提高。这些结果可以很好的通过渗阈理论进行解释。渗流阈值相对较高是可能是因为碳纳米管在熔融共混的过程中由于很强的机械剪切力很容易被破坏。碳纳米管体积分数为0.08的LDPE/MWCNT复合材料具有高的介电常数和电导率,可以满足于高压直流电缆屏蔽层的应用需要。
High voltage direct current (HVDC) cables are attracting more and more interesting for its low loss, long life, high reliability and so on. With the rapid development of electrical engineering and electronic technology, a demand for flexible conducting polymer composites is attracting a broad attention. In some applications, functional polymer-based composites with high dielectric permittivity and high electrical conductivity have a potential ability to meet some special needs. For instance, polyethylene (PE) is one of the excellent insulators in the field of high voltage direct current (HVDC) transmission.
     A functional shield layer often consisting of PE-based composite with high dielectric permittivity and electrical conductivity is important in the HVDC cable field because this type of shield layer can prevent the formation of space charges. Because of the space charges produced in the shield layer, they may also be released due to the high conductivity of the shield layer. In addition, the induced opposite electrical field can also force the high electric field at irregular surface of conductors in the cables to decrease. Therefore, the suitable inner shield layer materials with high dielectric permittivities and electrical conductivities are key factors to sustain the safe running of HVDC cables.
     The present paper takes LDPE as an excellent insulation. A use nanotechnology and the appropriate method of preparation were proposed to synthesize LDPE/A12O3, LDPE/A1N and LDPE/MWCNT nanocomposites. The dielectric properties and the performance enhancement were studied under the special electric field. The influence of space charge formation and distribution on the electric field and the migration and accumulation in the dielectrics were also studied. The insulating structures and the novel shield layer were developed by controlling the dielectric properties and microstructures of materials. The main conclusions are as follows.
     LDPE/A12O3 and LDPE/A1N nanocomposites were prepared by using melting method and subsequently molded via hot pressing methods with different cooling processes. The influences of nano-Al2O3 and nano-AIN concentration on crystallization, the dielectric properties, breakdown strength and space charge distribution of the composites were explored. The LDPE/nano-Al2O3 composites were also studied by Scanning electron microscopy (SEM), Differential Scanning Calorimeter (DSC) and X-ray diffraction (XRD). Results show that the cooling process influences thermal stability of the composites and the well-dispersed Nano-materials in the matrix have taken great effect on the crystalline and electrical properties of the composites. With the increase of Al2O3 and A1N fillers, the dielectric properties of the composites are improved, breakdown strength decreased and the accumulation of space charge changed significantly.
     There is increasing evidence that degradation of polymer insulation under high electric stress is associated with space charge formation. In fact, space charge accumulation in DC regime is the main reason that still limits the use of polymers as insulation for high voltage DC power cables. The space charge dynamics in LDPE/A12O3 and LDPE/A1N nanocomposites have been investigated by using the Pulsed Electroacoustic Method (PEA) technique. Bipolar charge injection has taken place in pure LDPE film. The amount of space charge injected increases with the duration of applied voltage. The space charge characteristics in nanocomposites containing the nano-Al2O3 or nano-AIN particles are very different from the pure LDPE film. Heterocharges dominate the distribution indicating ionization occurrence. The addition of the nano-Al2O3 or nano-A1N particles into LDPE matrix may also hinder charge injection process. Test results showed that that the 0.5 wt% nano-Al2O3 added to LDPE greatly decreases space charge accumulation and increases space charge mobility. While, nano-AIN blends can't improve space chare accumulation and mobility.
     LDPE/MWCNT nanocomposites were prepared by using melting method and subsequently molded via hot pressing methods with different cooling processes. The influences of MWCNT concentration on crystallization, the dielectric properties, and conductivity of the composites were explored. The LDPE/MWCNT composites were also studied by Scanning electron microscopy (SEM), Differential Scanning Calorimeter (DSC). Enhanced dielectric-permittivity and conductivity are observed in the LDPE/MWCNT nanocomposites. Conductivity and dielectric permittivity of the LDPE/MWCNT nanocomposites first increase gently with the increase of MWCNT concentration, and they increase significantly as the MWCNT volume fraction was near 0.081. The results are explained well by employing the percolation theory. A relative high percolation threshold (fc=0.081) is discovered because the MWCNT is broken easily during the melting mixture process due to the strong mechanical agitation. The LDPE/MWCNT nanocomposite at fMWCNT=0.08 displays the high dielectric permittivity and the high conductivity, which would satisfy the need as a potential shield layer materials in the HVDC field.
引文
[1]T. Takada et al. Space Charge Behavior in Full-Size 250 kV DC XLPE Cables[J]. IEEE Transactions on Power Delivery,1998,13(1):28-38.
    [2]G. Chen et al. Space Charge Formation in Irradiated Low Density Polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(1):51-57
    [3]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [4]Y. Suzyoki, Y. Matsukawa et al. Study of Space-charge Effects on Dielectric Breakdown of Polymers by Direct Probing[J]. IEEE Transactions on Electrical Insulation,1992,27(4):758-762.
    [5]陆宪良,展红卫.聚乙烯绝缘的辐照交联及其电荷积累行为[J].绝缘材料通讯,1998,4:29-33.
    [6]K. Kaneko et al. Computer Simulation on Formation of Space Charge Packets in XLPE Films[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1999,6(2):152-158.
    [7]T. Tanaka. Charge Transfer and Tree Initiation in Polyethylene Subjected to ac Voltage Stress[J]. IEEE Transactions on Electrical Insulation,1992,27(3):424-431
    [8]Chen G, Tay TYG, Davies A E, et al. Electrodes and charge injection in low-density polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2001,8(6):867-873.
    [9]Chen G, Tanaka Y, Takada T, et al. Effect of polyethylene interface on space charge formation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(1):113-121.
    [10]Hanley T L, Burford R P, Fleming R J, et al. A general review of polymeric insulation for use in HVDC cables[J]. IEEE Electrical Insulation Magazine,2003,19(1):13-24.
    [11]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000.
    [12]巫松桢,谢大荣,陈寿田,等.电气绝缘材料科学与工程[M].西安:西安交通大学出版社,1996.
    [13]I.I. Perepechko. An Introduction to Polymer Physics[J]. Mir Publishers Moscow,1981:46-62.
    [14]顾振军,于威廉.电介质化学[M].北京:机械工业出版社,1993:176-180.
    [15]莫志深,张宏放.晶态聚合物结构和X射线衍射[M].北京:科学出版社,2003.
    [16]武军,李和平.高分子物理及化学[M].北京:中国轻工业出版社,2004.
    [17]雷清泉.高聚物的结构与电性能[M].武汉:华中理工大学出版社,1990.
    [18]方可.固体物理学[M].重庆:重庆大学出版社,1993:31-69
    [19]陈季丹,刘子玉.电介质物理[M].北京:机械工业出版社,1982.
    [20]屠德民.直流耐压实验对交联聚乙烯电缆绝缘的危害[J].电线电缆,1997,5:33-37.
    [21]Kaneko K, Semi H, Mizutani H, et al. Charge Transport and Space Charge Formation in Low-Density Polyethylene[C]. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials (ICPADM), Xi'an, China,2000:71-74.
    [22]D. Liufu, D. M. Tu et al. High-field Induced Electrical Aging in Polyethylene Films. Journal of Applied Physics[J].1998,83(4):2209-2214.
    [23]Tanaka Y, Chen G, Zhao Y, et al. Effect of Additives on Morphology and Space Charge Accumulation in Low Density Polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003, 10(1):148-154.
    [24]Suh KS, Koo JH, Lee SH, et al. Effects of Samples Preparation Conditions and Short Chains on Space Charge Formation in LDPE[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1996, 3(2):153-161.
    [25]Wang NH, Zhou YX, Liu HB, et al. Effects of Crystallinity on the Space Charge Properties of Polyethylene[J]. Journal of Electrostatics,2005,63:649-656.
    [26]Terashima K, Suzuki H, Hara M, et al. Research and Development of ±250kV DC XLPE Cables[J]. IEEE Transcations on Power Delivery,1998,13(1):1-16.
    [27]Tanaka Y, Chen G, Vaughan A, et al. Space Charge Formation in Quenched Low Density Polyethylene[C]. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials(ICPADM), Nagoya, Japan,2003:970-973.
    [28]Mizutani T, Shinmura K, Kaneko K, et al. Space Charge Behaviors near the Interface between Different Low-density Polyethylene[C]. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials(ICPADM), Xi'an, China,2000:59-62.
    [29]Zhang C, Mizutani T. Space Charge Behavior of LDPE with a Blocking Electrode[C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena(CEIDP), USA,2002:614-617.
    [30]屠德民,刘文斌,庄国平,等.空间电荷自身反电场的介质击穿理论及电荷发射屏的研究[J].西安交通大学学报,1987,21(增刊1):1-1.
    [31]Maeno Y, Hirai N, Ohki Y, et al. Effects of Crosslinking Byproducts on Space Charge Formation in Crosslinked Polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(1): 90-97.
    [32]Collins RE. Analysis of Spatial Distribution of Charges and Dipoles in Electrets by a Transient Heating Technique[J]. Journal of Applied Physics,1976,47(11):4404-4408.
    [33]Li Y, Yasuda M, Takada T. Pulsed Electroacoustic Method for Measurement of Charge Accumulation in Solid Dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1994,1(2): 188-195.
    [34]Notingher P, Agnel S, Toureille A. Thermal Step Method for Space Charge Measurements under Applied Dc Field[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2001,8(6):985-994.
    [35]Takada T, Tanaka Y, Adachi N, et al. Comparison between the PEA Method and the PWP Method for Space Charge Measurement in Solid Dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(6):944-951.
    [36]李吉晓,张冶文,夏钟福,等.一种固体介质中空间电荷分布测量的新方法[J].同济大学学报,2000,28(5);568-571.
    [37]尹毅,韩社教,屠德民.固体绝缘中空间电荷测量装置的研制和应用[J].中国电机工程学报,2000,20(8):1-8.
    [38]Ahmed NH, Srinivas NN. Review of Space Charge Measurements in Dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(5):644-656.
    [39]Wang SN, Fujita M, Tanimoto G, et al. Development of Insulation Material for DC Cables-Space Charge Properties of Metallocene Catalyzed Polyethylene[C]. Conference Record of the 1996 IEEE International Symposium on Electrical Insulation(ISEI), Quebec, Canada,1996:657-660.
    [40]Gao LY, Guo WY, Tu DM. Interfacial Microstructure and Withstand Voltage of Polyethylene for Power Cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(2):233-238.
    [41]方亮,付海金,吕亮,等.等离子表面处理聚乙烯中空间电荷分布[J].中国电机工程学报,2003,23(8):151-154.
    [42]Tanaka Y, Li Y, Takada T, et al. Space Charge Distribution in Low-Density Polyethylene with Charge-Injection Suppression Layers[J]. Journal of Physics. D:Apply Physics,1995,28:1232-1238.
    [43]Salah Khalil M, Cherifi A, Toureille A, et al. Influence of BaTiO3 Additive and Electrode Material on Space Charge Formation in Polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1996,3(6):743-746.
    [44]Tu DM, Kan L, Kao KC. Electrical Breakdown and Space Charge in Ethylene Vinyl-acetate (EVA) incorporated Polyethylene[C]. Proceedings of 2nd International Conference on Properties and Applications of Dielectric Materials(ICPADM), Beijing, Chian,1988:598-601.
    [45]Suh KS, Damon D, Tanaka J. Space Charge in Polyethylene/Ionomer blends[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1995,2(1):1-11.
    [46]Suh KS, Yoon HG, Lee CR, et al. Space Charge Behavior of Acrylic Monomer-grafted Polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1999,6(3):282-287.
    [47]Suh KS, Lee CR, Zhu YT, et al. Electrical Properties of Chemically Modified Polyethylenes[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(6):681-687.
    [48]Cai GX, Xu JF. Breakdown Properties of Polyethylene-Ethylene Vinyl Acetate Copolymer Composite under Liquid Nitrogen Temperature[C]. Proceedings of 3rd International Conference on Properties and Applications of Dielectric Materials(ICPADM), Tokyo, Japan,1991:419-422.
    [49]Tanaka Y, Ohki Y, Lkeda M. Morphology of Ethylene-Styrene Copolymers and its Effect on Dielectric Strength[J]. IEEE Transactions on Electrical Insulation,1992,27(3):432-439.
    [50]李明,尹毅,屠德民.以BaTiO3作为填料改善聚乙烯的空间电荷效应[J].西安交通大学学报,2000,34(1):84-87,103.
    [51]Salah Khalil M, Henk PO, Henriksen M. Determination of Charge Carrier Mobility in Doped Low Density Polyethylene Using dc Transients[C]. Proceedings 3rd International Conference on Conduction and Breakdown in Solid Dielectrics(ICCBSD), Ontario,1989:192-196.
    [52]尹毅,屠德民,龚振芬,等.以氯化聚乙烯改性交联聚乙烯作为直流电缆绝缘的研究[J].电工技术学报,2000,15(6):50-55.
    [53]党智敏,亢婕,屠德民.乙烯—丙烯酸共聚物改性聚乙烯的空间电荷对电树和水树的影响[J].电工技术学报,2001,16(2):79-82.
    [54]Yamand Y, Endoh H. Increase in Breakdown Strength of PE Film by Additives of Azocompounds[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(2):270-275.
    [55]龙永会.酚酞对交联聚乙烯的改性作用[J].绝缘材料通讯,1993,6:10-13.
    [56]尹毅,屠德民,李明,等.用等温电流法研究自由基清除剂的作用机理——聚合物电老化陷阱理论的实验验证[J].中国电机工科学报,2000,20(3):13-15,25.
    [57]李忠华,尹毅,朱军,等.提高聚烯烃化合物长期耐电强度的新途径[J].西安交通大学学报,1998,32(6):14-17.
    [58]牟季美,张立德.纳米复合材料发展趋势[J].物理,1996,25(1):31-36.
    [59]Guastavino F, Dardano A, Ratto A, et al. Electrical Characterization of Polymer-Layered Silicate Nanocomposites[C]. Proceedings of 2005 Conference on Electrical Insulation and Dielectric Phenomena(CEIDP), USA,2005:175-178.
    [60]Roy M, Nelson JK, Schadler LS, et al. The Influence of Physical and Chemical Linkage on the Properties of Nanocomposites[C]. Proceedings of 2005 Conference on Electrical Insulation and Dielectric Phenomena(CEIDP), USA,2005:183-186.
    [61]陈炯,尹毅,李喆,等.纳米SiOx/聚乙烯复合介质强场电导的预电应力效应研究[J].中国电机工程学报,2006,26(7):146-151.
    [62]陈炯,尹毅,李喆,等.无机纳米SiOx/聚乙烯复合材料中的空间电荷分布研究[C].第十届全国工程电介质学术会议,成都,四川,2005:260-264.
    [63]Martin CP, Vaughan AS, Sutton SJ. On Morphology, Molecular, Composition and Breakdown Behaviour in Semi-Crystalline[C].2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena(CEIDP), USA,2003:309-312.
    [64]Hosier IL, Vaughan AS, Swingler SG The Effects of Morphology and Molecular Composition on the Electrical Strength of Polyethylene Blends[J]. Journal of Polymer Science, Part B:Polymer Physics, 2000,38:2309-2322.
    [65]王霞,何华琴,屠德民,等.茂金属聚乙烯与低密度聚乙烯共混的结晶形态和空间电荷效应[J].电工技术学报,2006,21(4):35-40.
    [66]王霞,吴超一,何华琴,等.茂金属聚乙烯改性低密度聚乙烯中空间电荷的机理研究[J].中国电机工程学报,2006,26(7):158-162.
    [67]Zhang C, Mori T, Mizutani T. Effects of Manufacturing Technology on Electrical Breakdown and Morphology of Thin Films of Low Density Polyethylene Blended with Polypropylene Copolymer[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(3):435-443.
    [68]Lee SH, Park JK, Han JH, et al. Space Charge and Electrical Conduction in Maleic Anhydride-grafted Polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1995,2(6):1132-1139.
    [69]Yamamoto Y, Lkeda M, Tanaka Y. Electrical Properties and Morphology of Polyethylene Produced with a Novel Catalyst[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5): 881-889.
    [70]Okashita M, Ymaguchi M, Fujita M, et al. Relationship between Impulse Breakdown and Morphology of Polyethylene[C]. Proceeding of International Symposium on Electrical Insulation Materials (ISEIM), Toyohashi, Japan,1998:549-552.
    [71]Bradwell A, Cooper R, Varlow B. Conduction in Polyethylene with Strong Electric Fields and the Effect of Prestressing on the Electric Strength[C]. Proceedings of Institute of Electrical and Electronics Engineers (IEEE),1971,118(2):247-254.
    [72]Ieda M. Carrier Injection, Space Charge and Electrical Breakdown in Insulating Polymers[J]. IEEE Transactions on Electrical Insulation,1987,22(3):261-267.
    [73]Katsuta G, Itaya T, Nakatsuka T. DC and Impulse Treeing Characteristics in Insulating Material for HVDC Cable[C]. Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials(ICPADM), Seoul, Korea,1997:422-425.
    [74]尹毅,屠德民,霍振宇.氯化聚乙烯共混对聚乙烯的空间电荷效应的影响[J].电工技术学报,2000,15(4):52-58.
    [75]Gressus CL, Valin F, Henriot M. Flashover in Wide Band Gap High Purity Insulators:Methodology and Mechanisms[J]. Journal of Applied Physics,1991,69(9):6325-6333.
    [76]Blaise G, Gressus CL. Charge Trapping-detrapping Processes and Related Breakdown Phenomena, in HV Vacuum Insulation, Basic Concepts and Technological Practice[M]. New York:Academic Press, 1995.
    [77]Gressus CL, Blaise G Breakdown Phenomena Related to Trapping/Detrapping Process in Wide Band Gap Insulators[J]. IEEE Transactions on Electrical Insulation,1992,27(3):472-481.
    [78]Blaise G. Space Charge Physics and the Breakdown Process[J]. Journal of Applied Physics,1995, 77(7):2916-2927.
    [79]Tanaka T, Greenword A. Effects of Charge Injection and Extraction on Tree Initiation in Polyethylene[J]. IEEE Transactions on Power Apparatus and System,1978, PAS-95:1749-1757.
    [80]Minoda A, Nagao M, Kosaki M. DC Short-circuit Treeing Phenomenon and Space Charge Effect in EPR at Cryogenic Temperature[C]. Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials(ICPADM), Seoul, Korea,1997:426-429.
    [81]Kao KC. New Theory of Electrical Discharge and Breakdown in Low Mobility Condensed Insulation[J]. J Applied Physics,1984,55(9):752-756.
    [82]屠德民,谢恒垄,刘东,等.聚乙烯树枝化的新模型[J].西安交通大学学报,1986,20(3):1-10.
    [83]Bamji SS, Bulinski AT, Densley RL. Degradation of Polymeric Insulation Due to Photoemission caused by High Electric Fields[J]. IEEE Transactions on Electrical Insulation,1989,24(1):91-98.
    [84]屠德民,王新生,刘付德,等.聚合物击穿的陷阱理论及其在聚丙烯上的验证[J].电工技术学报,1993,3:47-51.
    [85]党智敏,亢婕,屠德民,等.三梨糖醇对PE空间电荷和耐水树性能的研究[J].高电压技术,2001,27(1):16-20.
    [86]Murata Y, Murakami Y, Nemoto M, et al. Effects of Nano-sized MgO-filler on Electrical Phenomena under DC Voltage Application in LDPE[C]. Proceedings of 2005 Conference on Electrical Insulation and Dielectric Phenomena(CEIDP), USA,2005:158-161.
    [87]金日光华幼军.高分子物理[M].北京:化学工业出版社,2007.
    [88]丁世敬,赵跃智,葛德彪.电磁屏蔽材料研究进展[J].材料导报,2008,22(4):30
    [89]Chung D D L. Electromagnetic interference shielding effectiveness of carbon materials[J].Carbon,2001,39:279
    [90]Lee C Y, Song H G, Jang K S, et al. Electromagnetic interference shielding efficiency of polyaniline mixtures and multiplayer Films[J].Synth Met,1999,102:1346
    [91]万刚,李荣德.电磁屏蔽材料的进展[J].安全与电磁兼容,2003,1:40
    [92]贺丽丽,叶明泉,韩爱军.填充复合型导电高分子材料研究进展[J].材料导报,2008,22(Ⅺ):294
    [93]Huang Y, Li N, Ma Y, The influence of single walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites[J]. Carbon,2007,45:1614
    [94]卢金荣,吴大军,陈国华.聚合物基导电复合材料几种导电理论的评述[J].塑料结构与性能,2004,33(5):43
    [95]Hagen S T and Ildstnd E. Reduction of AC—breakdown sIrengIh due to Particle Inclusions in XLPE Cable Insulation[A], Third International Conference on Power Cables and Accessories 10 kV to 500 kV[C].1993.165-168.
    [96]Hozumi N, Suzuki H, Okamo-T, Watanabe K, Watanabe A. Direct observation of time—dependent space charge profiles in XLPE cable under hish elastic fields[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1994,1(6):1068-1076.
    [97]Mammefi M, Laurent C, Salon J.Influence of space charge buildup on the transition to ehetfieal treeing in PE under ac voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation.1995, 2(1):27-35.
    [98]SuzuokiY, Saito T, Mofi-M, Komofi F, Wu K, Kato T, Uchida K. Inception and propagation of electrical tree from water tree degradation [polyethylene cable insulation][A].2004 Annual Report Conference on Electrical Insulation and Dielectric Phenomena[C].2004.302-305.
    [99]IEC 60840,额定电压大于30 kV小于等于150 kV挤包绝缘电力电缆试验[S].
    [100]IEC 60502,额定电压1—30 kV挤包绝缘电力电缆[S].
    [101]GB/T 12706,额定电压1 kV到35 kV挤包绝缘电力电缆及附件[S].
    [102]Sandler J K W, Kirk J E, Kinloch I A, et al. Ult ra21ow electrical percolation threshold in carbon nanotube epoxy composites[J]. Polymer,2003,44 (19):5893
    [103]赵泽卿,陈小立.高分子材料导电和抗静电技术及应用[M].北京:中国纺织出版社,2006.
    [104]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社,2003.
    [105]张玉龙.纳米复合材料手册[M].北京:中国石化出版社,2005.
    [106]王海燕,党智敏,武晋平,施昌勇.KH550硅烷偶联剂对复合材料结构和介电性能的影响[J].功能材料,2006,37(7):1091-1093,1097
    [107]江美娟.碳纳米管/硅橡胶复合材料介电与压阻性能研究[D].北京:北京化工大学,2008.
    [108]李吉晓,张冶文,夏钟福,等.空间电荷在聚合物老化和击穿过程中的作用[J].科学通讯,2000,45(23):2469-2475.
    [109]Montanari G C. Dielectric Material Properties Investigated Through Space Charge Measurements[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(1):56-63.
    [110]宋志慧,商勇,张学萍.纳米ZnO对细菌的抑制作用[J].青岛科技大学学报,2004,25(3):232-234.
    [111]曹晓珑,徐曼,刘春涛.纳米添加剂对聚合物击穿性能的影响[J].电工技术学报,2006,21(2):8-12.
    [112]Fleming R J, Pawlowski T, Ammala A, et al. Electrical Conductivity and Space Charges in LDPE Containing TiO2 Nanoparticles [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005, 12(4):745-753.
    [113]Chen J, Yin Y, Li Z, et al. Study the Percolation Phenomenon of High Field Volt-ampere Characteristic in the Composite of Low-density Polyethylene/nano-SiOx[C]. Proceedings, of 2005 International Symposium on Electrical Insulation and Materials(ISEIM), Kitakyushu, Japan,2005: 234-246.
    [114]Braithwaite N, Weaver G, eds. Electronic materials. Open University, Butterworth, London,19
    [115]Dang Z M, Fan L Z, Zhao S J, Nan C W. Preparation of nanosized ZnO and dieletric properties of composites filled with nanosized ZnO[J]. Mater. Sci. Eng. B,2003,99:386-389.
    [116]Zha J W, Dang Z M, Zhou T, Song H T, Chen G. Electrical properties of TiO2-filled polyimide nanocomposite films prepared via an in-situ polymerization process[J]. Synthetic Metals,2010, 160(23-24):2670-2674.
    [117]Guastavino F, Dardano A, Ratto A, et al. Electrical characterization of polymer-layered silicate nanocomposites[C]. IEEE Conf. on Electr. Insul. Dielec. Phenom., Nashville, Tennessee, USA,2005.
    [118]陈季丹,刘子玉.电介质物理学[M].北京:机械工业出版社,1991.
    [119]Montanari GC, Das-Gupta DK. Polarization and Space Charge Behavior of Unaged and Electrically Aged Cross-linked Polyethylene [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2000, 7(4):474-479.
    [120]Geon-Woong Lee, Min Park, Junkyung Kim, et al. Enhanced thermal conductivity of polymer composites filled with hybrid filler[J]. Composites:Part A,2006,37:727-734.
    [121]Wei Wang, Tao Xue, Zhi Hao Jin, et al. Preparation and characterization of Morphgenetic aluminum nitride/carbon composites from filter paper[J]. Materials Research Bulletin,2008,43:939-945.
    [122]马传国,容敏智,章明秋.导热高分子复合材料的研究与应用[J].材料工程,2002,(7):40-45.
    [123]Bujard Patrice. Fillers for thermally conductive polymer[P].1993, EP 555 184,
    [124]汪秋荻,周和平,乔梁,等.A1N/聚乙烯复合材料的介电性能[J].金属学报,2001,37(1):109-112.
    [125]孙晓刚,曾效舒,程国安.碳纳米管的特性及应用.中国粉体技术,2001,7(6):29-33.
    [126]Hong-tao Song Zhi-Min Dang, Jing Lv, et al. Enhanced Electrical Properties in Percolative Low-density polyethylene/Carbon Nanotubes Nanocomposites[J] IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(3):645;652
    [127]DANG Z M, SHEN Y, FAN L Z, NAN C W. Dielectric properties of the composites filled by the different conductivities fillers. Rare Metal Mater. Eng.,2002,31(supp.l):429-432.
    [128]BAI Y, CHENG ZY, BHARTI V, XU H S, ZHANG Q M. High dielectric constant ceramic powder polymer composites. Appl.Phys.Lett,2000,76(25):3804-3806.
    [129]BROSSEAU C, QUEFFELEC P, TALBOT P. Microwave characterization of filled polymers. J. Appl. Phys.,2001,89(8):4532-4540.
    [130]NAN C W. Physics of inhomogeneous inorganic materials [J]. Progress in Materials Science,1993, 37:1-116.
    [131]KIRKPATRIK S. Percolation and conduction. Rev. Modern[J]. Phys.,1973,45(4):574-588
    [132]Z. M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q. Q. Lei, Giant Dielectric Permittivities in Functionalized Carbon Nanotube/Electroactive Polymer Nanocomposites[J]. Adv. Mater.,2007,19, pp.852-857.
    [133]Z. M. Dang, Y. H. Lin, and C. W. Nan, Novel Ferroelectric Polymer-matrix Composites with a High Dielectric Constant at the Percolation Threshold[J]. Adv. Mater.,2003 Vol.15,1625-1629.
    [134]W. T. Doyle and I. S. Jacobs, Effective Cluster Model of Dielectric Enhancement in Metal-Insulator Composites[J] Phys. Rev. B,1990, Vol.42,.9319-9327.
    [135]Z. M. Dang, Y. Shen, ands C. W. Nan, Dielectric behavior of three-phase percolative Ni-BaTiO3/polyvinylidene fluoride composites[J] Appl. Phys. Lett.,2002,81:4814-4816,
    [136]M. J. Jiang, Z. M. Dang, and H. P. Xu. Giant Dielectric Constant and Resistance-pressure Sensitivity in Carbon Nanotubes/Rubber Nanocomposites with Low Percolation Threshold [J], Appl. Phys. Lett., 2007,90,042914.
    [137]L. Wang and Z. M. Dang. Carbon nanotube composites with high dielectric constant at low percolation threshold[J]. Appl. Phys. Lett.,2005,87,042903.
    [138]J. C. Grunlan, A. R. Mehrabi, M. V. Bannon, and J. L. Bahr, "Water-Based Single-Walled-Nanotube-Filled Polymer Composite with an Exceptionally Low Percolation Threshold", Adv. Mater.,2004,16:150-153.
    [139]O. Regev, P. N. B. ElKati, J. Loos, and C. E. Koning, "Preparation of Conductive Nanotube-Polymer Composites Using Latex Technology", Adv. Mater.,2004,16:248-251.
    [140]RAMASUBRAMANIAM R, CHEN J, LIU H. Homogeneous carbon nanotubes/polymer composites for electrical applications[J]. Appl. Phys. Lett.,2003,83(14):2928-2930.
    [141]POTSCHKE P, ABDEL-GOAD M, ALIG I, DUDKIN S, LELLINGER D. Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites[J]. Polymer,2004,45:8863-8870.
    [142]ZHANG S H, ZHANG N Y, HUANG C, REN K L, ZHANG Q M. Microstructure and electromechanical properties of carbon nanotube/poly(vinylidenechlorofluoroethylene) composites [J]. Adv. Mater.2005,17:1897-1901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700