甘油生物歧化过程酶催化和基因调控的非线性数学模拟与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受石油价格不断攀升的影响,生物基化学品的生产逐渐引起人们的重视。甘油生物转化生产1,3-丙二醇因为原料的可再生性和1,3-丙二醇(1,3-PD)的潜在用途而日益受到关注。本论文针对克雷伯氏杆菌转化甘油为1,3-丙二醇过程,建立了酶催化和基因调控非线性动力学方程,对甘油生物转化及其基因调控过程进行了模拟分析,主要研究内容如下:
     首先,建立了甘油生物歧化过程酶催化动力学方程,包括甘油代谢过程中关键酶——甘油脱水酶(GDHt)、1,3-丙二醇氧化还原酶(PDOR)、甘油脱氢酶(GDH)、丙酮酸激酶(PK)、丙酮酸甲酸裂解酶(PFL)和丙酮酸脱氢酶(PDH)的酶催化动力学,3-羟基丙醛(3-HPA)对GDHt、PDOR和GDH的抑制动力学,甘油和产物的跨膜转运动力学。酶催化动力学能够很好地描述甘油连续发酵过程中底物的消耗和产物如1,3-PD,乙酸、乙醇、琥珀酸和甲酸的形成,对间歇培养过程适应期和对数生长期的描述也很合理;该动力学系统能够预测连续培养条件下胞内物质的浓度,如胞内残余甘油、3-HPA、1,3-PD、琥珀酸、甲酸和乙酸,且能预测连续发酵过程中出现的多稳态现象。分析结果表明,连续发酵培养条件下,二羟基丙酮、磷酸二羟基丙酮、磷酸烯醇式丙酮酸、乙酰CoA在胞内没有积累,全部进入下一级代谢;另外,过多的3-HPA积累和残余底物甘油对1,3-PD的生成是不利的;3-HPA的积累对PDOR的抑制作用要强于对GDHt和GDH的抑制作用,即底物过量导致3-HPA积累时,PDOR是甘油代谢过程的限速酶。
     其次,对色氨酸操纵子基因调控动力学进行了深入研究,为甘油生物歧化过程的基因调控动力学研究奠定了基础。重点考察了色氨酸操纵子中多基因间的相互作用以及胞内色氨酸向胞外的转运机制,建立了一个包括阻遏蛋白基因和色氨酸关键酶基因之间相互作用以及色氨酸由胞内向胞外转运的色氨酸操纵子基因调控系统。鲁棒性分析表明,该系统具有很强的鲁棒性,求取的参数值和动力学描述合理。考察了比生长速率对色氨酸生物合成和系统稳定性的影响,对色氨酸合成过程的动态行为进行了理论预测和分析。采用间接优化方法对色氨酸的生产进行了优化分析,细胞生长速率为0.00624 h-1时色氨酸的产量提高了4.8倍。
     再次,建立了甘油生物歧化过程基因调控动力学方程,重点研究了甘油代谢还原途径的中间产物3-羟基丙醛对dha调节子基因表达的阻遏作用,对GDHt和PDOR的反馈抑制作用。建立了包括调控蛋白(dhaR)、GDHt和PDOR及其相关基因表达调控,以及酶催化代谢产物之间的复杂网络。鲁棒性分析表明,该动力学系统具有很强的鲁棒性,求取的参数值和动力学描述合理。和酶催化动力学系统一样,多稳态现象在基因调控动力学中同样存在。对发酵过程进行模拟的结果表明,3-HPA的积累导致甘油代谢还原途径中酶的基因表达受阻,表达量减少;3-羟基丙醛参与了dha调节子的基因表达与调控,是dha调节子上的负调控因子。在dha调节子中存在两种负反馈调控机制:阻遏作用和酶抑制。两种并存机制能更为合理地阐释实验结果。
     最后,对微生物转化法生产1,3-丙二醇、2,3-丁二醇和氢气进行了化学计量分析。综合考虑了质量、能量和还原当量的平衡,通过“原子经济性”理论分析,实现底物向产物的最大转化。结果表明:共底物发酵有利于提高目标产物的收率,并且还原当量的合理分配对目标产物的收率有非常重要的影响。在葡萄糖和甘油共底物厌氧生产1,3-丙二醇过程中,甘油既不进入氧化途径也不用来生成生物量,该部分能量由葡萄糖代谢提供,甘油可以完全转化为1,3-丙二醇,此时底物中葡萄糖相对于甘油的比率为0.32mol.mol-1。葡萄糖和甘油共底物厌氧联产1,3-丙二醇和2,3-丁二醇时,葡萄糖代谢提供细胞生长所需能量和1,3-丙二醇生成所需的还原当量;当葡萄糖与甘油的比率为1.13mol.mol-1时,甘油可以完全转化为1,3-丙二醇,而2,3-丁二醇相对于葡萄糖的收率为0.88mol.mol-1,此时基本的假定条件是高浓度葡萄糖对甘油代谢酶没有抑制作用。葡萄糖和木糖共底物微氧发酵生产2,3-丁二醇和氢气时,理论上可获得2,3-丁二醇和氢气相对于底物葡萄糖和木糖的最大质量收率分别为0.5g.g-1和0.008g.g-1,此时呼吸商为14。葡萄糖厌氧发酵生产氢气时,最大收率为2.86 mol.mol-1;微氧发酵呼吸商为2.26时,氢气最大收率可达6.68 mol.mol-1。
     上述研究工作对深入理解克雷伯氏杆菌的甘油代谢途径、菌种的基因工程改造、甘油代谢过程基因表达的全局调控、甘油生物转化为1,3-丙二醇过程的在线控制和代谢控制分析具有重要的参考价值和指导作用。
The bioconversion of glycerol to 1,3-propanediol (1,3-PD) was particularly attractive to industry because of renewable feedbacks and potential uses of 1,3-PD.1,3-PD was discussed as a bifunctional chemical on a large commercial scale, especially as a monomer for polyesters, polyethers and polyurethanes. In this paper, nonlinear mathematical equations of the enzyme-catalytic kinetics and genetic regulation were set up to describe the continuous and batch fermentations of glycerol by Klebsiella pneumoniae. The main work of this paper was summarized as follows:
     Firstly, a nonlinear dynamical system was presented to describe the continuous and batch fermentations of glycerol metabolism in K. pneumoniae, in which the enzyme-catalytic kinetics on the reductive and oxidative pathway, the inhibition of 3-hydroxypropionaldehyde (3-HPA) to glycerol dehydratase (GDHt),1,3-PD oxydoreductase (PDOR) and glycerol dehydrogenase (GDH), and the transport of glycerol and diffusion of products across cell membrane were all taken into consideration. Moreover, the enzyme-catalytic kinetics of GDHt, PDOR, GDH, pyruvate kinase (PK), pyruvate formate-lyase (PFL) and pyruvate dehydrogenase (PDH) were also investigated. Comparisons between simulated and experimental results indicated that the model could be used to describe the continuous fermentation under steady states reasonably. The intracellular concentrations of glycerol, 1,3-propanediol,3-HPA, succinic acid, lactic acid,2,3-butanediol (2,3-BD), format, ethanol and acetate acid could also be predicted for continuous cultivations. Multiplicity analysis for continuous cultures was developed. The simulation results disclosed that dihydroxyacetone, dihydroxyacetone phosphate, phosphoenolpyruvate, acetyl coenzyme A were not accumulated under continuous culture and all entered into the following step. Furthermore,3-HPA accumulation was disadvantageous for the formation of the target product 1,3-PD and the inhibition of 3-HPA to PDOR was stronger than that to GDHt and GDH which indicated that PDOR might be the rate-limit enzyme. This model would give new insights into the metabolic and genetic regulation of dha regulon of glycerol metabolism in K. pneumoniae.
     Thirdly, an expended mathematical model for the tryptophan operon regulation on the effects of repression, feedback enzyme inhibition, attenuation, interaction among genes and excretion of tryptophan was presented. The new model was first translated into the corresponding S-system version. The robustness of this model was then discussed by using the S-system model and the sensitivity analysis showed that the model is robust enough. The influences of cell growth rate on the biosynthesis of tryptophan, stability and dynamic behavior of the trp operon were also well investigated. Furthermore, a steady-state optimization model was established based on trp operon models according to indirect optimization method. The optimization results indicated that it was possible to attain a stable and robust steady state with a rate of tryptophan production increased more than 4.8 times in which the growth rate was kept as 0.00624h-1 and some key parameters were modulated.
     Fourthly, the fourteen-dimensional nonlinear dynamical system was presented to describe the continuous cultures and multiplicity analysis of the dha regulon for glycerol metabolism in K. pneumoniae, in which two regulated negative-feedback mechanisms of repression and enzyme inhibition were well investigated. The model describing the expression of gene-mRNA-enzyme-product was established according to the repression of the dha regulon by 3-hydroxypropionaldehy (3-HPA). Comparisons between simulated and experimental results indicated that the model could be used to describe the production of 1,3-PD in continuous fermentations. The new model was first translated into the corresponding S-system version. The robustness of this model was then discussed by using the S-system model and the sensitivity analysis showed that the model was sufficiently robust. Moreover, multiplicity analysis for continuous cultures was developed, and application of this analysis to the regulation of the dha regulon revealed two regions of multiplicity. The influences of initial glycerol concentration and dilution rate on the biosynthesis of 1,3-PD and the stability of the dha regulon model were also well investigated. The intracellular concentrations of glycerol,1,3-PD,3-HPA, repressor mRNA, repressor, mRNA and protein levels of GDHt and PDOR could also be predicted for continuous cultivations. The results of simulation and analysis indicated that 3-HPA accumulation would repress the expression of the dha regulon at the transcriptional level.
     Finally, the bioconversion processes such as 1,3-PD,2,3-butanediol (2,3-BD) and hydrogen were stoichiometrically analyzed according to mass, energy (ATP) and reducing equivalent balances. Atom economy was used for optimization of 1,3-PD,2,3-BD and hydrogen production. The results indicated that the regulation of reducing equivalents balance would directly affect the yields of products to substrate, especially under microaerobic conditions. The ratio between two substrates was an important parameter in microbial cofermentation which also affected the yields of products to substrate. Respiratory quotient was proved to be a control parameter for optimum production of 1,3-PD,2,3-BD and hydrogen. The theoretical analysis of the glycerol-glucose cometabolism by K. pneumoniae to 1,3-PD indicated that the maximum ratio of 0.32 mol glucose per mol glycerol was needed to convert glycerol completely to 1,3-propanediol under anaerobic conditions if glycerol neither entered oxidation pathways nor formed biomass. The theoretical analysis of glycerol-glucose cometabolism to 1,3-PD and 2,3-BD revealed that the ratio of 1.13 mol glucose per mol glycerol was needed to convert glycerol completely to 1,3-PD under anaerobic conditions if glucose was used for cell growth and reducing equivalent formation, whereas the yield of 2,3-BD to glucose was 0.88mol/mol. The optimal theoretical mass yield of 2,3-butanediol and hydrogen to glucose could reach to 0.50 g/g and 0.008 g/g at the respiratory quotient value of 14, respectively. Supposed that substrate was glucose or xylose alone, the molar yield of hydrogen to substrate was 0.71 mol/mol and 0.60mol/mol, respectively, whereas the optimal theoretical molar yield of hydrogen to glucose by Klebsiella pneumoniae could reach 6.68 mol/mol at the respiratory quotient value of 2.26 if no formation of 2,3-butanediol under microaerobic condition. The theoretical analysis could help us understand the metabolic principles and control the bioprocess.
引文
[1]Hermann B G, Patel M. Today's and tomorrow's bio-based bulk chemicals from white biotechnology:a techno-economic analysis [J]. Appl Biochem Biotechnol,2007,136(3): 361-388.
    [2]张青瑞.甘油生物转化为1,3-丙二醇过程的代谢通量分析与动态模拟[D].大连:大连理工大学环境与生命学院.2008.
    [3]Kookos I K. Optimization of batch and fed-batch bioreactors using simulated annealing [J]. Biotechnol Prog,2004,20(4):1285-1288.
    [4]Wang F S, Cheng W M. Simultaneous Optimization of Feeding Rate and Operation Parameters for Fed-Batch Fermentation Processes [J]. Biotechnol Prog,1999,15(5): 949-952.
    [5]Yazdani S S, Gonzalez R. Anaerobic fermentation of glycerol:a path to economic viability for the biofuels industry [J]. Curr Opin Biotechnol,2007,18(3):213-219.
    [6]修志龙.1,3-丙二醇的微生物法生产分析[J].现代化工,1999,19:33-35.
    [7]Deckwer W. Microbial conversion of glycerol into 1,3-propanediol [J]. FEMS Microbiol. Reviews,1995,16:143-149.
    [8]王剑锋,刘海军,修志龙.生物转化法生产1,3-丙二醇的研究进展[J].化学通报,2001,64:621-625.
    [9]修志龙.微生物发酵法生产1,3-丙二醇的研究进展[J].微生物通报,2000,4:300-302.
    [10]刘海军,王剑锋,张代佳等.用克雷伯氏菌批式流加发酵法生产1,3-丙二醇[J].食品与发酵工业,2001,27:4-7.
    [11]王剑锋,修志龙,刘海军等.克雷伯氏菌微氧发酵生产1,3-丙二醇的研究[J].现代化工,2001,21:28-31.
    [12]Biebl H, Menzel K, Zeng A P, et al. Microbial production of 1,3-propanediol [J]. Appl Microbiol Biotechnol,1999,52(3):289-297.
    [13]Zeng A P, Biebl H. Bulk chemicals from biotechnology:the case of 1,3-propanediol production and the new trends [J]. Adv Biochem Eng Biotechnol,2002,74:239-259.
    [14]Cameron D C, Altaras N E, Hoffman M L, et al. Metabolic engineering of propanediol pathways [J]. Biotechnol Prog,1998,14(1):116-125.
    [15]Barbirato F, Grivet J P, Soucaille P, et al.3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species [J]. Appl Environ Microbiol,1996,62(4):1448-1451.
    [16]Barbirato F, Soucaille P, Bories A. Physiologic Mechanisms Involved in Accumulation of 3-Hydroxypropionaldehyde during Fermentation of Glycerol by Enterobacter agglomerans [J]. Appl Environ Microbiol,1996,62(12):4405-4409.
    [17]Barbirato F, Soucaille P, Camarasa C, et al. Uncoupled glycerol distribution as the origin of the accumulation of 3-hydroxypropionaldehyde during the fermentation of glycerol by enterobacter agglomerans CNCM 1210 [J]. Biotechnol Bioeng,1998,58(2-3):303-305.
    [18]Wang W, Sun J, Hartlep M, et al. Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae [J]. Biotechnol Bioeng,2003,83(5):525-536.
    [19]Abbad-Andaloussi S, Durr C, Raval G, et al. Carbon and electron flow in Clostridium butyricum in chemostate culture on glycerol and glucose [J]. Microbiology,1996,142: 1149-1158.
    [20]Abbad-Andaloussi S, Guedon E, Spiesser E, et al. Glycerol dehydratase activity:the limiting step for 1,3-propanediol production by Clostridium butyricum DSM5431 [J]. Lett. Appl. Microbiol.,1996,22:311-314.
    [21]Zeng A P. Pathway and kinetic analysis of glycerol fermentation by Clostridium butyricum. [J]. Bioprocess Eng,1996,14:169-175.
    [22]Hartlep M, Hussmann W, Prayitno N, et al. Study of two-stage processes for the microbial production of 1,3-propanediol from glucose [J]. Appl Microbiol Biotechnol,2002,60(1-2): 60-66.
    [23]Xiu Z, Chen X, Sun Y, et al. Stoichiometric analysis and experimental investigation of glycerol-glucose cofermentation in Klebsiella pneumoniae under microaerobic conditions [J]. Biochem Eng J,2007,33:42-52.
    [24]Huang H, Gong C S, Tsao G T. Production of 1,3-propanediol by Klebsiella pneumoniae [J]. Appl Biochem Biotechnol,2002,98-100:687-698.
    [25]Chen X, Xiu Z L, Wang J F, et al. Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions [J]. Enzyme Microbiol. Technol.,2003,33:386-394.
    [26]Chen X, Zhang D J, Qi W T, et al. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions [J]. Appl Microbiol Biotechnol,2003, 63(2):143-146.
    [27]Liu H J, Zhang D J, Xu Y H, et al. Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale [J]. Biotechnol Lett, 2007,29(8):1281-1285.
    [28]Yang G, Tian J, Li J. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions [J]. Appl Microbiol Biotechnol,2007,73(5): 1017-1024.
    [29]Mu Y, Teng H, Zhang D J, et al. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations [J]. Biotechnol Lett,2006, 28(21):1755-1759.
    [30]Cheng K K, Zhang J A, Liu D H, et al. Production of 1,3-propanediol by Klebsiella pneumoniae from glycerol broth [J]. Biotechnol Lett,2006,28(22):1817-1821.
    [31]Cheng K K, Liu D H, Sun Y, et al.1,3-Propanediol production by Klebsiella pneumoniae under different aeration strategies [J]. Biotechnol Lett,2004,26(11):911-915.
    [32]Zeng A P, Byun T G, Posten C, et al. Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions [J]. Biotechnol Bioeng,1994,44(9):1107-1114.
    [33]Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, et al. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol [J]. Metab Eng, 2005,7(5-6):329-336.
    [34]Yu E K, Deschatelets L, Louis-Seize G, et al. Butanediol production from cellulose and hemicellulose by Klebsiella pneumoniae grown in sequential coculture with Trichoderma harzianum [J]. Appl Environ Microbiol,1985,50(4):924-929.
    [35]Frazer F R, McCaskey T A. Effect of components of acid-hydrolysed hardwood on conversion of D-xylose to 2,3-butanediol by Klebsiella pneumoniae [J]. Enzyme Microb. Technol,1991,13:110-115.
    [36]Narwoto B, Nakashimads Y, al. T K e. Enhancement of (R,R)-2,3-butanediol production from xylose by Paenkibacilus polymyxa at elevated temperatures [J]. Biotechnology letters, 2002,24:109-114.
    [37]Saha B C. Hemicellulose bloconversion [J]. J Ind Microbiol Biotechnol,2003,30(5): 279-291.
    [38]Berbert-Molina M A, Sato S, Silveira M M. Ammonium phosphate as a sole nutritional supplement for the fermentative production of 2,3-butanediol from sugar cane juice [J]. Z Naturforsch C,2001,56(9-10):787-791.
    [39]Zhang Q, Teng H, Sun Y, et al. Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumoniae [J]. Bioprocess Biosyst Eng,2008,31(2):127-135.
    [40]Antoniewicz M R, Kraynie D F, Laffend L A, et al. Metabolic flux analysis in a nonstationary system:fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol [J]. Metab Eng,2007,9(3):277-292.
    [41]Sun J,van den Heuvel J, Soucaille P, et al. Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria [J]. Biotechnol Prog,2003, 19(2):263-272.
    [42]Wang W, Sun J, Nimtz M, et al. Protein identification from two-dimensional gel electrophoresis analysis of Klebsiella pneumoniae by combined use of mass spectrometry data and raw genome sequences [J]. Proteome Sci,2003,1(1):525-536.
    [43]Tobimatsu T, Azuma M, Matsubara H, et al. Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae [J]. J Biol Chem,1996,271(37):22352-22357.
    [44]Raynaud C, Sarcabal P, Meynial-Salles I, et al. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum [J]. Proc Natl Acad Sci U S A, 2003,100(9):5010-5015.
    [45]Daniel R, Boenigk R, Gottschalk G. Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli [J]. J. Bacteriol.,1995,177:2151-2156.
    [46]Daniel R, Stuertz K, Gottschalk G. Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii [J]. J Bacteriol,1995,177(15): 4392-4401.
    [47]Gutknecht R, Beutler R, Garcia-Alles L F, et al. The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor [J]. Embo J,2001,20(10): 2480-2486.
    [48]Forage R G, Lin E C. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418 [J]. J Bacteriol,1982,151(2):591-599.
    [49]Tong I T, Liao H H, Cameron D C.1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon [J]. Appl Environ Microbiol, 1991,57(12):3541-3546.
    [50]P. Zheng, K. Wereath, J.B. Sun, et al. Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae. [J]. Process Biochemistry,2006,41:2160-2169.
    [51]Xiaomei Z, LiYin, Bin Z, et al. Construction of a novel recombinant Escherichia coli strain capable of producing 1,3-propanediol and optimization of fermentation parameters by statistical design. [J]. World Journal of Microbiology & Biotechnology,2006,22:945-952.
    [52]Zhang Y, Li Y, Du C, et al. Inactivation of aldehyde dehydrogenase:a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae [J]. Metab Eng,2006, 8(6):578-586.
    [53]Zeng A P, Biebl H, Schlieker H, et al. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae:Regulation of reducing equivalent balance and product formation [J]. Enzyme Microb. Technol.,1993,15:770-779.
    [54]Zeng A P, Rose A, Biebl H, et al. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation [J]. Biotechnol. Bioeng.,1994,44:902-911.
    [55]修志龙,曾安平,安利佳.甘油歧化过程动力学数学模拟和多稳态研究[J].大连理工大学学报,2000,40(4):428-433.
    [56]Menzel K, Zeng A P, Biebl H, et al. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅰ. The phenomena and characterization of oscillation and hysteresis [J]. Biotechnol Bioeng,1996,52(5): 549-560.
    [57]Zeng A P, Menzel K, Deckwer W D. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅱ. Analysis of metabolic rates and pathways under oscillation and steady-state conditions [J]. Biotechnol Bioeng,1996,52(5):561-571.
    [58]Ahrens K, Menzel K, Zeng A P, et al. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅲ. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation [J]. Biotechnol. Bioeng.,1998, 59:544-552.
    [59]Menzel K, Ahrens K, Zeng A, et al. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅳ. Enzymes and fluxes of pyruvate metabolism [J]. Biotechnol Bioeng,1998,60(5):617-626.
    [60]Zeng A P, Deckwer W D. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions [J]. Biotechnol Prog,1995,11(1):71-79.
    [61]Zeng A P. A kinetic model for product formation of microbial and mammalian cells [J]. Biotechnol. Bioeng.,1995,46:314-324.
    [62]Xiu Z L, Zeng A P, An L J. Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol [J]. J. Dalian Univ. Technol.,2000,40:428-433.
    [63]Xiu Z L, Song B H, Wang Z T, et al. Optimization of biodissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage continuous anaerobic cultures [J]. Biochem. Eng. J.,2004,19:189-197.
    [64]Zhang Y J, Xiu Z L, Chen L S. Dynamic complexity of a two-prey one-predator system with impulsive effect [J]. Chaos, Solitons and Fractals,2005,26:131-139.
    [65]修志龙,曾安平.微生物细胞连续培养过程中振荡和混沌行为的研究进展[J].生物工程进展,1999,19(6):58-63.
    [66]Papanikolaou S, Fick M, Aggelis G. The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum [J]. J Chem Tech Biotechnol,2004, 79:1189-1196.
    [67]Papanikolaou S, Aggelis G. Modelling aspects of the biotechnological valorization of raw glycerol:production of citric acid Yarrowia lipolytica and 1,3-propanediol by Clostridium butyricum [J]. J. Chem. Technol. Biotechnol.,2003,78:542-547.
    [68]修志龙.生物化学[M].北京:化学工业出版社,2008:233-236.
    [69]Xiu Z L, Chang Z Y, Zeng A P. Nonlinear dynamics of regulation of bacterial trp operon: model analysis of integrated effects of repression, feedback inhibition, and attenuation [J]. Biotechnol Prog,2002,18(4):686-693.
    [70]Xiu Z L, Zeng A P, Deckwer W D. Model analysis concerning effects of growth rate and intracellular tryptophan level on the stability and dynamics of tryptophan biosynthesis in bacteria [J]. J Biotechnol,1997,58:125-140.
    [71]Gombert A K, Nielsen J. Mathematical modelling of metabolism [J]. Curr Opin Biotechnol, 2000,11(2):180-186.
    [72]Sinha S. Theoretical study of tryptophan operon:Application in microbial technology [J]. Biotechnol Bioeng,1988,31(2):117-124.
    [73]Bliss R D, Painter P R, Marr A G. Role of feedback inhibition in stabilizing the classical operon [J]. J Theor Biol,1982,97(2):177-193.
    [74]Griffith J S. Mathematics of cellular control processes. Ⅰ. Negative feedback to one gene [J]. J Theor Biol,1968,20(2):202-208.
    [75]Griffith J S. Mathematics of cellular control processes. Ⅱ. Positive feedback to one gene [J]. J Theor Biol,1968,20(2):209-216.
    [76]Goodwin B C. Oscillatory behavior in enzymatic control processes [J]. Adv Enzyme Regul, 1965,3:425-438.
    [77]Arvidson D N, Bruce C, Gunsalus R P. Interaction of the Escherichia coli trp aporepressor with its ligand, L-tryptophan [J]. J Biol Chem,1986,261(1):238-243.
    [78]Koh B T, Tan R B, Yap M G. Genetically structured mathematical modeling of trp attenuator mechanism [J]. Biotechnol Bioeng,1998,58(5):502-509.
    [79]Xiu Z L, Zeng A P, Deckwer W D. Multiplicity and stability analysis of microorganisms in continuous culture:effects of metabolic overflow and growth inhibition [J]. Biotechnol Bioeng, 1998,57(3):251-261.
    [80]Torres V N, Voit E. Pathway analysis and optimization in metabolic engineering [M].2002.
    [81]修志龙,滕虎译.代谢工程的途径分析与优化[M].北京:化学工业出版社,2005.
    [82]Bailey J E. Toward a science of metabolic engineering [J]. Science,1991,252(5013): 1668-1675.
    [83]Varner J, Ramkrishna D. Mathematical models of metabolic pathways [J]. Curr Opin Biotechnol,1999,10(2):146-150.
    [84]Edwards J S, Covert M, Palsson B. Metabolic modelling of microbes:the flux-balance approach [J]. Environ Microbiol,2002,4(3):133-140.
    [85]Price N D, Papin J A, Schilling C H, et al. Genome-scale microbial in silico models:the constraints-based approach [J]. Trends Biotechnol,2003,21(4):162-169.
    [86]Stephanopoulos G. Metabolic fluxes and metabolic engineering [J]. Metab Eng,1999,1(1): 1-11.
    [87]Fell D A. Metabolic control analysis:a survey of its theoretical and experimental development [J]. Biochem J,1992,286 (Pt 2):313-330.
    [88]Liao J C. Modelling and analysis of metabolic pathways [J]. Curr Opin Biotechnol,1993,4(2): 211-216.
    [89]Brand M D. Top down metabolic control analysis [J]. J Theor Biol,1996,182(3):351-360.
    [90]Simpson T W, Shimizu H, Stephanopoulos G. Experimental determination of group flux control coefficients in metabolic networks [J]. Biotechnol Bioeng,1998,58(2-3):149-153.
    [91]Hatzimanikatis V, Emmerling M, Sauer U, et al. Application of mathematical tools for metabolic design of microbial ethanol production [J]. Biotechnol Bioeng,1998,58(2-3): 154-161.
    [92]Hatzimanikatis V, Floudas C A, Bailey J E. Optimization of regulatory architectures in metabolic reaction networks [J]. Biotechnol Bioeng,1996,52(4):485-500.
    [93]Garfinkel D. The role of computer simulation in biochemistry [J]. Comput Biomed Res,1968, 2(1):ⅰ-ⅱ.
    [94]Heinrich R, Rapoport S M, Rapoport T A. Metabolic regulation and mathematical models [J]. Prog Biophys Mol Biol,1977,32(1):1-82.
    [95]Fell D A, Small J R. Fat synthesis in adipose tissue. An examination of stoichiometric constraints [J]. Biochem J,1986,238(3):781-786.
    [96]Savinell J M, Palsson B O. Network analysis of intermediary metabolism using linear optimization. Ⅱ. Interpretation of hybridoma cell metabolism [J]. J Theor Biol,1992,154(4): 455-473.
    [97]Savinell J M, Palsson B O. Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism [J]. J Theor Biol,1992,154(4): 421-454.
    [98]Vallino J J, Stephanopoulos G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction [J]. Biotechnol Bioeng,1993,41(6):633-646.
    [99]Varma A, Palsson B O. Parametric sensitivity of stoichiometric flux balance models applied to wild-type Escherichia coli metabolism [J]. Biotechnol Bioeng,1995,45(1):69-79.
    [100]Alberty R A. Calculation of biochemical net reactions and pathways by using matrix operations [J]. Biophys J,1996,71(1):507-515.
    [101]Alberty R A. Calculating apparent equilibrium constants of enzyme-catalyzed reactions at pH 7 [J]. Biochem Educ,2000,28(1):12-17.
    [102]Edwards J S, Palsson B O. The Escherichia coli MG1655 in silico metabolic genotype:its definition, characteristics, and capabilities [J]. Proc Natl Acad Sci U S A,2000,97(10): 5528-5533.
    [103]Mccoy M. Chemical makers try biotech paths [J]. Chem. Eng. News,1998,76:13-19.
    [104]Barbirato F, Himmi E, Gonte T, et al.1,3-propandiol production by fermentation:An interesting way to valorize glycerin from the ester and ethanol industries [J]. Industrial Crops and Products,1998,7:281-289.
    [105]程可可,林日辉,刘宏娟等.1,3-丙二醇分批发酵动力学模型[J].过程工程学报,2005,5:425-429.
    [106]Honda S, Toraya T, Fukui S. In situ reactivation of glycerol inactivated coenzyme-B12-dependent glycerol dehydratase and dioldehydratase [J]. J. Bacteriol.,1980, 143:1458-1465.
    [107]Menzel K, Zeng A P, Deckwer W D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae [J]. Enzyme Microbiol. Technol.,1997,20:82-86.
    [108]Y.Q.Sun, W.T. Qi, H. Teng, et al. Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae:Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane [J]. Biochem. Eng. J.,2008,38:22-32.
    [109]Richery D P, Lin E C. Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli [J]. J. Bacteriol.,1972,12:784-790.
    [110]Gonzalez-Pajuelo M, Andrade J C, Vasconcelos I. Production of 1,3-Propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity [J]. J Ind Microbiol Biotechnol,2005,32(9):391-396.
    [111]T. Homann, Tag C, Biebl H, et al. Fermentation of glycerol to 1,3-propanediol by klebsiella and Citrobacter strains. [J]. Appl. Microbiol.Biotechnol.,1990,33:121-126.
    [112]Biebl H, Marten S, Hippe H, et al. Glycerol conversion to 1,3-propanediol by newly isolated Clostrida. [J]. Appl. Microbiol. Biotechnol.,1992,36:592-597.
    [113]Papanikolaou S, Ruiz-Sanchez P, Pariset B, et al. High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain [J]. J. Biotechnol.,2000, 77(2-3):191-208.
    [114]Garcia-Alles L F, Siebold C, Nyffeler T L, et al. Phosphoenolpyruvate- and ATP-dependent dihydroxyacetone kinases:covalent substrate-binding and kinetic mechanism [J]. Biochemistry,2004,43(41):13037-13045.
    [115]王镜岩.生物化学[M].北京:高等教育出版社,2002.
    [116]Jetten M S, Sinskey A J. Recent advances in the physiology and genetics of amino acid-producing bacteria [J]. Crit Rev Biotechnol,1995,15(1):73-103.
    [117]Eggeling L, Krumbach K, Sahm H. L-glutamate efflux with Corynebacterium glutamicum: why is penicillin treatment or Tween addition doing the same? [J]. J Mol Microbiol Biotechnol, 2001,3(1):67-68.
    [118]Yanofsky C, Horn V. Role of regulatory features of the trp operon of Escherichia coli in mediating a response to a nutritional shift [J]. J Bacteriol,1994,176(20):6245-6254.
    [119]Yanofsky C. Tryptophan synthetase:its charmed history [J]. Bioessays,1987,6(3): 133-137.
    [120]Kraemer R. Genetic and.physiological approaches for the production of amino acids [J]. J Bacteriol,1996,45:1-21.
    [121]Santillan M, Zeron E S. Analytical study of the multiplicity of regulatory mechanisms in the tryptophan operon [J]. Bull Math Biol,2006,68(2):343-359.
    [122]Hurlburt B K, Yanofsky C. trp repressor/trp operator interaction. Equilibrium and kinetic analysis of complex formation and stability [J]. J Biol Chem,1992,267(24):16783-16789.
    [123]Bhartiya S, Rawool S, Venkatesh K V. Dynamic model of Escherichia coli tryptophan operon shows an optimal structural design [J]. Eur J Biochem,2003,270(12):2644-2651.
    [124]Marin-Sanguino A, Torres N V. Optimization of tryptophan production in bacteria. Design of a strategy for genetic manipulation of the tryptophan operon for tryptophan flux maximization [J]. Biotechnol Prog,2000,16(2):133-145.
    [125]Bachler C, Schneider P, Bahler P, et al. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR [J]. Embo J,2005,24(2):283-293.
    [126]Rasch M. The influence of temperature, salt and pH on the inhibitory effect of reuterin on Escherichia coli [J]. Int J Food Microbiol,2002,72(3):225-231.
    [127]Toraya T. Radical catalysis of B12 enzymes:structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases [J]. Cell Mol Life Sci,2000,57(1):106-127.
    [128]Tong I T,Cameron D C. Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expressing Klebsiella pneumoniae dha regulon genes [J]. Appl Biochem Biotechnol,1992,34-35:149-159.
    [129]Sprenger G A, Hammer B A, Johnson E A, et al. Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae [J]. J Gen Microbiol,1989,135(5):1255-1262.
    [130]Kurian J. A new polymer platform for the future-Sorona from corn derived 1,3-propanediol [J]. Journal of Polymers and the Environment 2005,13(2):159-167.
    [131]赵红英,张健,刘宏娟.1,3—丙二醇发酵过程中底物抑制及其对策的研究[J].现代化工2002,22(7):34-38.
    [132]刘海军,王剑锋,张代佳.用克雷伯氏菌批式流加法生产1,3—丙二醇[J].食品与发酵工业,2002,27(7):4-7.
    [133]Solomon B O, Zeng A P, Biebl H, et al. Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol [J]. J Biotechnol,1995,39(2):107-117.
    [134]Zhang J, Zhao H Y, Liu H J, et al. Fermentation production of 1,3-propanediol by using glucose as cosubstrate [J]. Modern Chemical Industry (Xian Dai Hua Gong in Chinese) 2002, 22:32-35.
    [135]D. Yang, Li C, Du C-Y, et al. Production of 1,3-propanediol by Klebsiella pneumoniae in two stage two substrate fermentation, [J]. The Chinese Journal of Process Engineering (Guo Cheng Gong Cheng Xue Bao in Chinese),2003,3:269-273.
    [136]Malaoui H,Marczak R. Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture [J]. Appl Microbiol Biotechnol, 2001,55(2):226-233.
    [137]张健,赵红英,刘宏娟.以葡萄糖为辅助底物发酵生产1,3—丙二醇的研究[J].现代化工2002,22:32-35.
    [138]Xiu Z, Chen X, Sun Y, et al. Stoichiometric analysis and experimental investigation of glycerol-glucose cofermentation in Klebsiella pneumoniae under microaerobic conditions [J]. Biochem Eng J,2007,33:42-52.
    [139]马成伟,孙亚琴,修志龙.葡萄糖和木糖双底物生物转化生产2,3-丁二醇和氢气的代谢计量分析[J].生物加工过程,2006,4(3):44-50.
    [140]Jansen N B, Flickinger M C, Tsao G T. Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724 [J]. Biotechnol Bioeng,1984,26(4):362-369.
    [141]Zeng A, Biebl H, Schlieker H, et al. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae:Regulation of reducing equivalent balance and product formation [J]. Enzyme Microb.Technol.,1993,15:770-779.
    [142]Vignais P M, Billoud B, Meyer J. Classification and phylogeny of hydrogenases [J]. FEMS Microbiol Rev,2001,25(4):455-501.
    [143]Koku H, Eroglu I, Gunduz U, et al. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides [J]. Int J Hydrogen Energy,2002,27:1315-1329.
    [144]Norman B, Jansen M, George T. Production of 2,3-butanediol from d-xylose by Klebsiella oxytoca ATCC 8724 [J]. Biotechnol. bioeng.,1984,26:362-368.
    [145]Lehninger A, Nelson D, Cox M. Principles of biochemistry [J]. Worth Publishers,1993:29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700