几类重要的酶催化反应的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶是具有催化功能的特殊蛋白质,有生物催化剂之称。根据专一性的不同,可以分为六大类:氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类和连接酶类。随着生物化学技术的发展,酶催化反应越来越多地被科学家们应用到我们生活的各个方面。虽然目前已有实验方法可以得到酶的晶体结构、催化活性、激活剂和抑制剂等信息,但是整个反应过程的详细信息仍然无法确定。近年来,随着量子化学理论及方法的不断完善,计算机运行速度的提高,计算化学对酶催化领域产生了重大影响,成为化学工作者必不可少的强有力的理论工具。
     本论文以几种重要的酶催化反应为研究对象,综合运用量子化学、分子力学以及两者相结合的方法对其催化机理进行系统的理论研究,获得了其反应过程的详细信息,揭示了其催化反应的本质,解释了有关实验现象并补充了相关实验结果,促进了生命大分子体系计算方法的发展和应用研究。
     本论文主要工作描述如下:(1)异构酶——苯丙氨酸氨基变位酶的催化机理研究
     苯丙氨酸氨基变位酶(TcPAM)催化(2S)-α-苯丙氨酸异构化生成(3R)-β-苯丙氨酸,是著名的抗癌药紫杉醇的13位侧链合成的第一步反应,该酶是在植物中首次发现的氨基变位酶,并且是目前在生物体内所发现的唯一的苯丙氨酸氨基变位酶。在TcPAM活性口袋中,存在特殊的亲电试剂4-亚甲基-1H-咪唑-5(4H)酮(MIO), MIO结构是Ala-Ser-Gly通过自身催化而形成的。目前针对MIO-依赖氨基变位酶提出的反应机理有两种:米切尔加成反应和傅氏反应。我们应用密度泛函理论B3LYP方法研究了苯丙氨酸氨基变位酶的催化机理。计算结果表明:此反应经历了米切尔加成反应机理,而不是傅氏反应机理。在米切尔加成反应机理中,Cp脱氢过程为整个过程的决速步,Cp脱氢和氨解离过程经历了E1cB机理:中间体肉桂酸发生了分子内Cl-Cα的旋转,导致了产物的立体结构与SgTAM催化产物不同;活性中心关键残基对底物的结合和催化起到十分重要的作用。我们得到的计算结果与实验结果一致,描述了整个催化反应的细节,解释了立体化学效应,有助于生物合成前体的制备及抗癌药物的设计和研发。
     (2)水解酶——多聚腺苷二磷酸核糖水解酶和柠檬烯-1,2-环氧化物水解酶的催化机理研究
     聚腺苷二磷酸核糖化(PAR化)是一种短暂的、动态的、可逆的对核蛋白翻译后的修饰过程,参与了多方而的生理过程:DNA损伤后修复和基因组整体性的维系,对转录的调控,对蛋白质降解的调节,以及细胞凋亡和坏死细胞的死亡等。在这个过程中,聚(腺苷二磷酸核糖)聚合酶(PARP)和聚(腺苷二磷酸核糖)水解酶(PARG)具有重要的调节作用。PARG是唯一的降解腺苷二磷酸核糖聚合物的酶。PARG通过催化α[(1”-2’)和(1’”-2”)核糖基-核糖水解PAR得到构型翻转的ADP-核糖。我们通过利用密度泛函B3LYP方法研究了聚(腺苷磷酸核糖)水解酶(PARG)催化聚(腺苷二磷酸核糖)(PAR)的降解机理。基于最新得到的晶体结构,我们构建了三个不同大小的活性口袋模型,以期得到PARG的催化水解机理,以及关键残基的作用。计算结果证明,PARG催化PAR的水解反应经历了SN2的机理而不是实验猜测的SN1机理。通过不同模型的计算,我们得到了关键残基的作用。文中得到的核糖-核糖之间糖苷键的水解机理,可以为后续突变实验、抑制剂实验研究提供理论基础。
     环氧化合物水解酶(EHs),是一组催化环氧化合物水解为相应邻二醇的酶类。EHs含有高度相似的氨基酸序列,属于α/β折叠型水解酶系。但是柠檬烯-1,2-环氧化物水解酶(LEH)不具备α/β折叠结构,有着不同于一般水解酶的结构以及催化机理。最新的实验报道通过突变特定残基可以改变底物的选择性,这些突变体可以应用到生物有机合成中。我们通过量子力学和分子力学相结合的方法(QM/MM方法)研究了LEH催化环氧化物的水解反应机理。结果表明,柠檬烯环氧化物水解酶具有不同于一般水解酶的结构以及催化机理,是酸催化的单步协同反应机理,其活性中心为Asp101-Arg99-Asp132形成的三位一体结构,其催化机制为:Asp101为环氧化物的提供质子:Asp132吸引水分子中的质子,辅助羟基亲核进攻取代基多的环氧碳,导致环氧化物开环。残基Tyr53、Asn55、Asp132与水分子形成氢键,使其处于最有利于亲核进攻的位置;残基Arg99虽然没有直接参与催化反应,但是起到定位两个天冬氨酸的羧基,稳定电荷的重要作用。
     (3)氧化还原酶——丙酮酸脱羧酶的催化机理研究
     丙酮酸脱羧酶(PDC)是一种最简单的ThDP依赖脱羧酶,催化α-酮基羧酸脱羧,进而与醛类发生缩合反应,生成α-羟基酮类化合物。PDC参与生物体内的多种合成与分解代谢过程,是许多药物的作用靶点,在有机合成、药物中间体合成、手型催化等方面具有潜在的应用价值。例如,维生素E、抗真菌药Sch42427、麻黄碱等化合物的合成都是以α-羟基酮类化合物为中间体。虽然实验和理论上对PDC催化过程都有大量的研究,但是到目前为止,对于其催化细节尚没有比较一致的结论。我们采用QM/MM方法研究了丙酮酸脱羧酶(PDC)催化丙酮酸生成乙醛的反应。通过设计关键残基的不同质子化状态,我们构建了三个计算模型,得到了不同反应路径的结构和能量信息等。计算结果表明,只有当Asp27' His113'、His114'都处于质子化的状态时,该催化反应最容易进行,脱羧过程是整个反应的决速步。我们的计算结果不仅解释了实验事实,而且为设计新型PDC抑制剂提供了理论依据。
     (4)转移酶——O6-甲基鸟嘌呤-DNA甲基转移酶和苯乙胺-N-甲基转移酶的催化机理研究
     O6-甲基鸟嘌呤-DNA甲基转移酶(AGT/MGMT)是承担DNA损伤直接修复的最重要的酶,可同时发挥转移酶和甲基受体的作用,保护细胞免受烷化剂损害,防止细胞癌变和死亡。它将甲基从06-mG转移到自身的自身的半胱氨酸残基(Cys145)上,使DNA链上的鸟嘌呤复原,同时自身不可逆的失活。本章采用QM/MM方法研究了人类修复酶O6-氧-甲基嘌呤-DNA甲基转移酶(AGT)的催化反应机理。通过计算,我们得到了该反应的反应路径,反应势垒,并且得出结论:该反应中甲基转移过程是甲基正离子的转移,其决速步是甲基正离子的生成过程。残基Glu172, Ser159和Tyr114起到稳定过渡态降低能垒的作用。值得注意的是,本章采用的QM/MM方法更能体现蛋白质环境对反应机理有重要的影响,弥补了之前QM方法计算的不足。
     肾上腺素(EPI)是在人体在应激状态下由肾上腺髓质分泌的一种几茶酚胺激素。它可以通过作用于α、β型肾上腺能受体,在体内产生变化,使心脏收缩力上升、兴奋性增高、收缩或舒张血管、调节血压、扩张气管、提高机体代谢等等。肾上腺素是酪氨酸在不同种类的酶催化下经历不同的中间体而生成的。在最后一步反应中,苯乙胺-N-甲基转移酶(PNMT)在辅酶甲硫氨酸(AdoMet)的作用下催化去肾上腺素(NE)生成肾上腺素(EPI)。研究表明,这是合成肾上腺素唯一的反应路径。因此研究PNMT催化机理对PNMT的基础研究以及新型肾上腺素抑制剂的研究都是非常有意义的。本章通过QM/MM方法研究了PNMT催化反应的反应机理。整个反应过程包括三个基元反应,其中甲基转移反应是决速步,经历了SN2反应机理,能垒为16.4kcal/mol。(?)(?)性口袋中的残基Glu219、 Glu185、Tyr35,以及两个水分子对催化反应都有非常重要的作用。尤其是Glu219和Glu185都参与反应,但是发挥了不同的作用:Glu185在第一步质子转移反应中作为质子受体接收一个质子:Glu219,在最后一步反应中,从质子化的EPI上得到一个质子,从而生成最终产物。所以,这两个残基都可以作为改变PNMT催化速率的目标残基。
     (5)新型双功能酶——1,6-二磷酸果糖醛缩酶/磷酸酶的催化机理研究
     古细菌1,6-二磷酸果糖醛缩酶/磷酸酶(FBPA/P),是一种新型双功能酶,这种酶只包含一个活性中心,但是催化两种不同的糖异生反应,包括二羟基丙酮磷酸(DHAP)和3-磷酸甘油醛(GA3P)可逆的羟醛缩合反应,生成1,6-二磷酸果糖(FBP),以及二磷酸果糖不可逆的脱磷酸反应,生成6-磷酸果糖(F6P)。直到最近,人们才发现了其醛缩酶的功能,并得到了其在这种功能状态下的晶体结构,而在这之前,FBPA/P被归类为V型果糖双磷酸酶。对于FBPA/P新发现的醛缩酶功能,尚没有详细的理论研究。本章采用QM/MM方法,基于最新得到的晶体结构,研究了双功能酶FBPA/P的醛缩合反应机理。计算结果与实验致,在反应过程中经历了希夫碱的中间体。整个反应的决速步是FBP的C3-C4成键的过程,其自由能垒为24.7kcal/mol。Lys232和Tyr229直接参与催化反应;Lys232与DHAP(?)结合后形成希夫碱中间体:Tyr229在整个反应过程中既可以作为质子供体,也可以作为质子受体,发挥了传递质子的作用。在原子水平上对FBPA/P醛缩合反应的研究,有助于理解其在糖异生过程中发挥的作用。关于FBPA/P由构象变化引起的两种功能之间转换正在研究中。
Enzymes are biological catalysts. Most enzymes are proteins, although some catalytic RNA molecules have been identified. Due to their different specificity, they could be classified to several categories, including oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases. Enzymes are responsible for the thousands of chemical reactions that sustain life. With the development of science and technology, more and more enzymes are applied in our daily life. Although some information such as the crystal structures, the catalytic activity, activating agent, inhibitors, could be obtained through the experimental methods, the details of their catalytic mechanisms are not sure. Computer simulations are able to give the detailed information of the enzymatic reactions on the atomic level.
     In this dissertation, we use quantum mechanics (QM), molecular mechanics (MM), and combined quantum mechanics and molecular mechanics (QM/MM) methods to study several important enzymatic reactions.
     The main contents as follow:
     (1) The mechanism of isomerase—phenylalanine aminomutase.
     The Taxus canadensis phenylalanine aminomutase (TcPAM) catalyzes the isomeriazation of (S)-a-phenylalanine to the (R)-β-isomer. The active site of TcPAM contains the signature5-methylene-3,5-dihydroimidazol-4-one (MIO) prosthesis, observed in the ammonia lyase class of enzymes. An enchanting place of PAM is that the product of PAM is also an obligatory biosynthetic precursor of the phenylisoserine side chain of antimitotic pharmaceutical Taxol. Up to now, there are two plausible mechanisms for these MIO-dependent enzymes, i.e., the amino-MIO adduct mechanism and the Friedel-Crafts-type reaction mechanism. In response to this mechanistic uncertainty, the phenylalanine aminomutase mechanism was investigated by using density functional methods. The main results can be summarized as follows: The reaction proceeds through an amino-MIO adduct mechanism, but not a Fricdel-Crafts-type mechanism. In the amino-MIO adduct mechanism, the deprotonation at the (3-position and ammonia elimination occur on the amino-MIO adduct through an ElcB mechanism. The stereochemistry of the TcPAM reaction can be achieved by rotation of the intermediate cinnamate round the Cl-Cα bond prior to rebinding of the amino group at the β-position on the intermediate. This would be the reason that TcPAM catalyzes the opposite stereochemistry production compared with PaPAM and SgTAM. The role of several important active-site residues are illustrated according to our calculations. The mechanism described here for TcPAM is consistent with several experimental results, and provides strong theoretical support for the stereochemistry. This is expected to shed light on the preparation of the chiral building blocks and the biosynthetic engineering toward novel therapeutics.
     (2) The catalytic mechanisms of hydrolascs—poly(ADP-ribose) glycohydrolase and limonene1,2-epoxide hydrolase.
     Poly(ADP-ribose) glycohydrolase (PARC) is the only enzyme responsible for the degradation of ADP-ribose polymers. PARC activity is critical for the prevention of poly(ADP-ribose) polymerase (PARP) dependent cell death by regulating the intracellular levels of PAR. Very recently, the first crystal structure of PARG was reported (Dea Slade, et al, Nature477(2011)616), and a possible SN1-type-like mechanism was proposed. Apart from these observations, little is known about the PAR degrading reaction. Our calculations confirm that PARG catalyzes the hydrolysis of PAR via an SN2-like mechanism. By using different active site models, the roles of key residues have been illustrated. Glu115works as a proton donor to the glycosidic oxygen as well as a proton acceptor from the activated water molecule. The other glutamic residue Glu114plays an important role in stabilizing ribose" by forming a hydrogen bond to the C2"-OH of ribose". The negative diphosphate group significantly lowers the reaction barrier by providing a strong hydrogen bond to the water molecule and influencing the sterie orientation of ribose". And Phe227provides the spacial effects to position the terminal ribose". Our mechanism picture described here is expected to present a versatile paradigm of the mechanisms of ribose-ribose O-glycosidic bond hydrolysis.
     Limonene1,2-epoxide hydrolase (LEH) is completely different from those of classic epoxide hydrolases (EHs) which catalyze the hydrolysis of epoxides to vicinal diols. A novel concerted general acid catalysis step involving the Asp101-Arg99-Asp132triad is proposed to play an important role in the mechanism. The detailed mechanism of epoxide ring-opening catalyzed by limonene1,2-epoxide hydrolase has been studied by combined QM/MM methodologies. The calculations indicate that the LEH-catalyzed hydrolysis proceeds via a novel single-step conceited general acid reaction mechanism. The reaction path is demonstrated to involve simultaneous donation of an Asp101proton to the epoxide oxygen, nucleophilic attack of water at the more substituted oxirane carbon, and abstraction of a proton from water by Asp132. Our QM/MM calculations give an energy barrier of16.9kcal/mol for the formation of limonene-1,2-diol by nucleophilic attack on the more substituted epoxide carbon. According to the QM/MM optimized structures and minimized energy profiles for mutagenesis, the proximal protein environment, especially the positions of Arg99, Tyr53and Asn55, plays an important role in the LEH-mediated catalytic reaction.
     (3) The catalytic mechanism of oxidoreductase—pyruvate decarboxylase.
     Pyruvate decarboxylase (PDC) is a typical thiamin diphosphate (ThDP)-dependent enzyme with widespread applications in industry. Though studies regarding the reaction mechanism of PDC have been reported, they are mainly focused on the formation of ThDP ylide and some elementary steps in the catalytic cycle, studies about the whole catalytic cycle of PDC are still not completed. In these previous studies, a major controversy is whether the key active residues (Glu473, Glu50', Asp27', His113', His114') are protonated or ionized during the reaction. To explore the catalytic mechanism and the role of key residues in the active site, three whole-enzyme models were considered and the combined QM/MM calculations on the nonoxidative decarboxylation of pyruvate to acetaldehyde catalyzed by PDC were performed. According to our computational results, the fundamental reaction pathways, the complete energy profiles of the whole catalytic cycle, and the specific role of key residues in the common steps were obtained. It is also found that the same residue with different protonation states will lead to different reaction pathways and energy profiles. The mechanism derived from the model in which the residues (Glu473, Glu50', Asp27', His113', Hisl14') are in their protonated states is most consistent with experimental observations. Therefore, extreme care must be taken when assigning the protonation states in the mechanism study.
     (4) The catalytic mechanisms of transferases—O6-alkylguanine-DNA alkyltransferase and phenylethanolamine N-methyltransferase.
     DNA alkylation can be caused from both endogenous and exogenous DNA-damaging agents, such as S-adenosylmethionine in the cell, methylmethane sulfonate (MMS) or N-methyl-N'-nitro-N-nitroso-guanidine (MNNG) in the environment. Alkylation adducts frequently occur at O6-position of guanine, resulting to O6-methylguanine (O6-mG), which if not repaired leads to GC to AT transition mutations and cancer. The combined quantum-mechanical/molecular-mechanical (QM/MM) approaches have been applied to investigate the detailed reaction mechanism of human06-alkylguanine-DNA alkyltransferase (AGT). AGT is a direct DNA repair protein, which is capable of repairing the alkylated DNA by transferring the methyl group to the thiol group of cysteine residue (Cys145) in the active site in an irreversible and stoichiometric reaction. Our QM/MM calculations reveal that the methyl group transferring step is expected to occur through two steps, in which the methyl carbocation generating step is the rate-determining step with an energy barrier of14.4kcal/mol at QM/MM B3LYP/6-31G(d, p)//CHARMM22level of theory. It is different from the previous theoretical studies based on QM calculations by using cluster model that the methyl group transferring step is a one-step process with higher energy barrier.
     Epinephrine is a naturally occurring adrenomedullary hormone that transduces environmental stressors into cardiovascular actions. As the only route in the catecholamine biosynthetie pathway, Phenylethanolamine N-methyltransferase (PNMT) catalyzes the synthesis of epinephrine. To elucidate the detailed mechanism of enzymatic catalysis of PNMT, combined quantum-mechanical/molecular-mechanical (QM/MM) calculations were performed. The calculation results reveal that this catalysis contains three elementary steps:the deprotonation of protonated norepinphrine, the methyl transferring step and deprotonation of the methylated norepinphrine. The methyl transferring step was proved to be the rate-determining step undergoing a SN2mechanism with an energy barrier of16.4kcal/mol. During the whole catalysis, two glutamic acids Glu185and Glu219were proved to be loaded with different effects according to the calculations results of the mutants. These calculation results can be used to explain the experimental observations and make a good complementarity for the previous QM study.
     (5) The mechanism of biofunctional enzyme—fructose-1,6-bisphosphate aldolase/phosphatase (FBPA/P).
     Arc/weal fructose-1,6-bisphosphale (FBP) aldolase/phosphalase (FBPA/P) is a bifunctional enzyme that catalyses two chemically distinct reactions of gluconeogenesis:(a) the reversible aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (GA3P) to FBP;(b) the dephosphorylation of FBP to fructose-6-phosphate (F6P). Thus, FBPA/P is fundamentally different from ordinary enzymes whose active sites are responsible for a specific reaction. There are very less studies focus on the catalytic mechanism of FBPA/P. We have investigated the mechanism of FBPA/P using QM/MM methods. Our results agree well with the experiments that the Schiff base was obtained as one intermediate during the reaction process. Formation of C3-C4bond of FBP is the rate-limiting step and undergoes a free energy barrier of24.7kcal/mol. Lys232formed a Schiff base intermediate with the substrate of DHAP. Try229could sever as the catalytic acid/base residue for all the steps. Study on the simulation of the active-site remodeling in FBPA/P is ongoing.
引文
[1]Smith, A. D. et al. Oxford Dictionary of Biochemistry and Molecular Biology. [M] Oxford University Press. 1997.
    [2]Lilley, D. Structure, folding and mechanisms of ribozymes. [J] Curr. Opin. Struct. Biol. 2005, 15,313-323.
    [3]聂剑初,吴国利等.生物化学简明教程[M] 高等教育出版社.2007,93.
    [4]Bairoch, A. The ENZYME database in 2000. [J] Nucleic Acids Res. 2000, 28, 304-305.
    [5]Anfinsen, C. B. Principles that govern the folding of protein chains. [J] Science. 1973, 181,223-230.
    [6]Fischer, E. Einfluss der configuration auf die wirkung der enzyme. [J] Ber. Dt. Chem. Ges.1894,27,2985-2993.
    [7]Koshland, D. E. Application of a theory of enzyme specificity to protein synthesis. [J] Proc. Natl. Acad. Sci.1958,44,98-104.
    [8]Kumar, S.; Ma, B.; Tsai, C. J.; Sinha, N.; Nussinov, R. Folding and binding cascades:dynamic landscapes and population shifts. [J] Protein Sci.2000,9, 10-19.
    [9]Chien, Y. H.; Lee, N. C.; Chiang, S. C.; Desnick, R. J.; Hwu. W. L. Fabry disease:incidence of the common later-Onsetα-Galactosidase A IVS4+919G>A Mutation in Taiwanese Newborns--Superiority of DNA-based to enzyme-based newborn screening for common mutations [J] Molecular medicine(Cambridge,Mass.),2012,18,780-784.
    [10]Macedo, M. F.; Quinta, R.; Pereira, C. S.; Sa Miranda, M. C. Enzyme replacement therapy partially prevents invariant Natural Killer T cell deficiency in the Fabry disease mouse model [J] Molecular Genetics and Metabolism,2012, 106,83-91.
    [11]Ayebazibwe, C.; Mwiine, F. N.; Balinda, S. N.; Tjornehoj, K.; Alexandersen. S. Application of the Ceditest(?) FMDV type O and FMDV-NS enzyme-linked immunosorbent assays for detection of antibodies against Foot-and-mouth disease virus in selected livestock and wildlife species in Uganda [J] Journal of Veterinary Diagnostic Investigation,2012,24,210-216.
    [12]Vassar, R. BACE1, the Alzheimer's beta-secretase enzyme, in health and disease [J] Molecular Neurodegeneration,2012,7,1-1.
    [13]Banugaria, S. G.; Patel, T. T.; Mackey, J.; Das, S.; Amalfitano, A.; Rosenberg, A. S.; Charrow, J.; Chen, Y. T.; Kishnani, P. S. Persistence of high sustained antibodies to enzyme replacement therapy despite extensive immunomodulatory therapy in an infant with Pompe disease:Need for agents to target antibody-secreting plasma cells. [J] Molecular Genetics and Metabolism,2012, 105,677-680.
    [1]刘文剑 新一代相对论量子化学方法[J]中国基础科学,2007,2,10-11.
    [2]陈光巨:黄元河 量子化学[M]华东理大学出版社 2008.
    [3]Hohenbcrg, P.; Kohn, W. [J] Phys. Rev. 1964, 136, B864.
    [4]Kohn, W.; Sham, L. [J] Phys. Rev. 1965, 140, A1133.
    [5]Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti eorrelation-energy formula into a functional of the electron density. [J] Phys. Rev. B, 1988, 37, 785-789.
    [6]Becke, A. D. Density-Functional thermochemistry. Ⅲ. The role of exact exchange. [J] J. Chem. Phys. 1993, 98, 5648-5652.
    [7]Naray-Szabo, G; Nagy, P., Electrostatic lock-and-key model for the study of biological isosterism: role of structural water in the binding of basic pancreatic trypsin inhibitor to beta-trypsin. [J] Enzyme 1986, 36, 44-53.
    [8]Murray, C. W.; Baxter, C. A.; Frenkel, A. D., The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase. [J] J. Comput. Aid. Mot. Des. 1999, 13, 547-562.
    [9]Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function.[J] J Comput. Chem. 1998, 19, 1639-1662.
    [10]Anderson, H. C. Molecular dynamics simulations at constant press and/ or temperature. [J] J. Chem. Phys. 1980 ,72, 2384-2391.
    [11]Lennard-Jones, J. E. On the Determination of Molecular Fields.[J] Proc. R. Soc. Lond.A 1924,106,463-417.
    [12]Brooks, B. R.; Bruccoleri, R. E. Olafson, B. D.; Slates, D. J.; Swaminathan, S.; Karplus, M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. [J] J. Comput. Chem. 1983, 4, 187-217.
    [13]莫亦荣; Alhambra, Cristobal; 高加力 量子力学和分子力学组合方法及其应 用. [J] 化学学报 2000, 12, 1504-1510.
    [14]Bakowies, D,; Thiel, W. Hybrid models for combined quantum mechanical and molecular mechanical approaches. [J] J. Phys. Chem. 1996, 100, 10580-10594.
    [15]Riccardi, D.; Schaefcr, P.; Cui, Q. pKa calculations in solution and proteins with qm/mm free energy perturbation simulations: A quantitative test of OM/MM protocols. [J] J. Phys. Chem. 5 2005, 109, 17715-17733.
    [16]Mascras, F.; Morokuma, K. IMOMM-A new integrated abinitio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states. [J]J Comput. Chem. 1995, 16, 1170-1179.
    [17]Humbel, S.; Sieber, S.; Morokuma, K. The IMOMO method:Integration of different levels of molecular orbital approximations for geometry optimization of large systems:test for n-butane conformation and SN2 reaction:RCl+Cl-. [J] J. Chem. Phys.1996,105,1959-1967.
    [18]Vreven, T.; Morokuma, K. On the application of the IMOMO (integrated molecular orbital+molecular orbital) method. [J] Theor. Chem. Acc.2003,109, 125-132.
    [19]Bakowies, D.; Thiel, W. Hybrid models for combined quantum mechanical and molecular mechanical approaches. [J] J. Phys. Chem.1996,100,10580-10594.
    [20]Antes, I.; Thiel, W. On the treatment of link atoms in hybrid methods. In:Gao J, Thompson MA (eds) Combined quantum mechanical and molecular mechanical methods. ACS Symposium Series, vol 712. American Chemical Society, Washington, DC, pp 50-65,1998.
    [21]Singh, U. C.; Kollman, P. A. A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems:Applications to the CH3Cl+Cl- exchange reaction and gas phase protonation of polyethers. [J] J. Comput. Chem.1986,7,718-730.
    [22]Field,, M. J.; Bash, P. A.; Karplus, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. [J] J. Comput. Chem.1990,11,700-733.
    [1]Poston, J. M. Leucine 2,3-aminomutase, an enzyme of leucine catabolism. [J] J. Biol. Chem.1976,251,1859-1863.
    [2]Chirpich, T. P.; Zappia, V.; Costilow R. N.; Barker, H. A. Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. [J] J. Biol. Chem.1970,245,1778-1789.
    [3]Prabhakaran, P. C.; Woo, N.-T.; Yorgey P. S.; Gould, S. J. Biosynthesis of blasticidin s from L-a-arginine. stereochemistry in the arginine-2,3- aminomutase reaction. [J] J. Am. Chem. Soc.1988,110,5785-5791.
    [4]Steer, D. L.; Lew, R. A.; Perlmutter, P.; Smith A. I.; Aguilar, M. I. Beta-amino acids:versatile peptidomimetics. [J] Curr. Med. Chem.2002,9,811-822.
    [5]Lelais G.; Seebach, D. Beta2-amino acids-syntheses, occurrence in natural products, and components of beta-peptidesl,2.[J] Biopolymers 2004,76,206-243.
    [6]Liu, W.; Christenson, S. D.; Standage S.; Shen, B.Biosynthesis of the enediyne antitumor antibiotic C-1027. [J] Science 2002,297,1170-1173.
    [7]Yin, X.; O'Hare, T.; Gould S. J.; Zabriskie, T. M. Identification and cloning of genes encoding viomycin biosynthesis from Streptomyces vinaceus and evidence for involvement of a rare oxygenase. [J] Gene 2003,312,215-224.
    [8]Walker K.; Croteau,R. Taxol biosynthetic genes. [J] Phytochemislry 2001,58,1-7.
    [9]Seebach, D.; Overhand, M.; Kuhnle, F. N. M.; Martinoni, B.; Oberer, L.; Hommel U.; Widmer, H.β-Peptides:Synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a hexapeptide in solution and its stability towards pepsin. [J] Helv. Chim. Acta 1996,79,913-941.
    [10]Liu M.; Sibi, M. P. Recent advances in the stereoselective synthesis of β-amino acids. [J] Tetrahedron 2002,58,7991-8035.
    [11]Pena, D.; Minnaard, A. J.; de Vries, J. G.; Feringa, B. L. Highly enantiosclectivc rhodium-catalyzed hydrogenation of β-dehydroamino acid derivatives using monodentatephosphoramidites. [J] J. Am. Chem. Soc.2002,124,14552-14553.
    [12]Duursma, A.; Minnaard A. J.; Feringa, B. L. Conversion of 1,4 adducts into versatile chiral building blocks. [J] J. Am. Chem. Soc.2003,125,3700-3701.
    [13]Hook, D. F.; Gessier, F.; Noti Dipl.-Chem., C.; Kast, P.; Seebach, D. [J] Helv. Chim. Acta.2004,5,691-706.
    [14]Aberhart D. J.; Cotting, J. A. Mechanistic studies on lysine 2,3-aminomutase: carbon-13-deuterium crossover experiments. [J] J. Chem. Soc. Perkin Trans.1988, 1,2119-2122.
    115] Aberhart, D. J.; Gould, S. J.; Lin, H. J.; Thiruvengadam T. K.; Weiller, B.H. Stereochemistry of lysine 2,3-aminomutase isolated from Clostridium subterminale strain SB4.[J] J. Am. Chem. Soc.1983,105,5461-5470.
    [16]Parry R. J.; Kurylo-Borowska, Z. Biosynthesis of amino acids. Investigation of the mechanism of beta-tyrosine formation. [J]J. Am. Chem. Soc.1980,102, 836-837.
    [17]Christenson, S. D.; Liu, W.; Toney M. D.; Shen, B. A novel 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis. [J] J. Am. Chem. Soc.2003,125, 6062-6063.
    [18]Retey, J.; Kunz, F.; Arigoni D.; Stadtman, T. C. Zurkenntnis der beta-lysin-mutase-reaktion:mechanismus und sterischerverlauf [J] Helv. Chim. Acta 1978,61,2989-2998.
    [19]Chen, H. P.; Wu, S. H.; Lin, Y. L.; Chen C. M.; Tsay, S. S. Cloning, sequencing, heterologous expression, purification, and characterization of adenosylcobalamin-dependent D-lysine 5,,6-aminomutase from Clostridium sticklandii. [J] J. Biol. Chem.2001,276, 44744-44750.
    [20]Schwede, T. F.; Retey, J.; Schulz, G. E. Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile. [J] Biochemistry 1999,38,5355-5361.
    [21]Walker, K. D.; Klettke, K.; Akiyama, T.; Croteau, J. Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in taxol biosynthesis. [J] Biol. Chem.2004,279,53947-53954.
    [22]Calabrese, J. C.; Jordan, D. B.; Boodhoo, A.; Sariaslani, S.; Vannelli, T. Crystal structure of phenylalanine ammonia lyase:multiple helix dipoles implicated in catalysis. [J] Biochemistry 2004,43,11403-11416.
    [23]Magarvey, N. A.; Fortin, P. D.; Thomas, P. M.; Kelleher N. L.; Walsh, C. T. Gatekeeping versus promiscuity in the early stages of the andrimid biosynthetic assembly line. [J] ACS Chem. Biol.2008,3,542-554.
    [24]Feng, L.; Wanninayake, U.; Strom, S.; Geiger, J.; Walker, K. D. Mechanistic, mutational, and structural evaluation of a taxus phenylalanine aminomutase. [J] Biochemistry 2011,50,2919-2930.
    [25]Ratnayake, N. D.; Wanninayake, U.; Geiger, J. H.; Walker K. D. Stereochemistry and mechanism of a microbial phenylalanine aminomutase. [J] J. Am. Chem. Soc.2011,133,8531-8533.
    [26]Rachid, S.; Krug, D.; Weissman, K. J.; Muller, R. Biosynthesis of (R)-beta-tyrosine and its incorporation into the highly cytotoxic chondramides produced by Chondromycescrocatus. [J]J. Biol. Chem.2007,282,21810-21817.
    [27]Magarvey, N. A.; Fortin, P. D.; Thomas, P. M.; Kelleher N. L.; Walsh, C. T. Gatekeeping versus promiscuity in the early stages of the andrimid biosynthetic assembly line. [J] ACS Chem. Biol.2008,3,542-554.
    [28]Krug, D.; Muller, R. Discovery of additional members of the tyrosine aminomutase enzyme family and the mutatiunal analysis of CmdF. [J] Chembiochem.2009,10,741-750.
    [29]Van Lanen, S. G.; Oh, T. J.; Liu, W.; Wendt-Pienkowski; E. Shen, B. Characterization of the maduropeptin biosynthetie gene cluster from actinomaduramadurae ATCC 39144 supporting a unifying paradigm for enediyne biosynthesis [J] J. Am. Chem. Soc.2007,129,13082-13094.
    [30]Christianson, C. V.; Montavon, T. J.; Festin, G. M.; Cooke, H. A.; Shen B.; Bruner, S. D. The mechanism of MIO-based aminomutases in beta-amino acid biosynthesis [J] J. Am. Chem. Soc.2007,129,15744-15745.
    [31]Pilbak,S.; Farkas, O. Poppe, L. Mechanism of the Tyrosine Ammonia lyase reaction-tandem nucleophilie and electrophilic enhancement by a proton transfer. [J] Chem. Eur. J.2012,18,7793-7802.
    [32]S. Bartsch and U. T. Bornscheuer, A single residue influences the reaction mechanism of ammonia lyases and mutascs. [J] Angew. Chem. Int. Ed.2009,48, 3362-3365.
    [33]Amata, O.; Marino, T.; Russo, N.; Toscano, M. A proposal for mitochondrial processing peptidase catalytic mechanism. [J]J. Am. Chem. Soc.2011,133, 17824-17831.
    [34]Rother, D.; Poppe, L.; Viergutz, S.; Langer, B.; Reley, J. Characterization of the active site of histidine ammonia-lyase from Pseudomonas putida. [J] Eur.J. Biochem.2001,268,6011-6019.
    [35]Asano, Y.; Kato, Y.; Levy, C.; Baker, P.; Rice, D. Structure and function of amino acid ammonia-lyases. [J] Biocatal. Biotrunsform.2004,22,133-140.
    [36]Rettig, M.; Sigrist, A.; Retey, J. Mimicking the reaction of phenylalanine-ammonia-lyase by a synthetic model [J] Helv. Chim. Acta 2000,83, 2246-2265.
    [37]Christenson, S. D.; Liu, W.; Toney, M. D.; Shen, B. A novel 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis. [J]J. Am. Chem. Soc.2003,125, 6062-6063.
    [38]Hopmann, K. H.; Himo, F. Catalytie mechanism of limonene epoxide hydrolase, a theoretical study.[J] Chem. Eur. J.2006,12,6898-6909.
    [39]Leopoldini, M.; Russo, N.; Toscano, M.; Dulak M.; Wesolowski, T. A. mechanism of nitrate reduction by desulfovibriodesulfuricans nitrate reductase-A theoretical investigation [J] Chem. Eur. J.2006,12,2532-2541.
    [40]Chen, S. L.; Fang, W. H.; Himo, F. Theoretical study of the phosphotriesterase reaction mechanism. [J] J. Phys. Chem. B 2007,111,1253-1255.
    [41]E. F. Oliveira, N. M. F. S. A. Cerqueira, P. A. Fernandes and M. J. Ramos, The mechanism of for- mation of the internal aldimine in PLP-dependent enzymes [J] J. Am. Chem. Soc.2011,133,15496-15505.
    [42]GAUSSIAN 03, Frisch, M. J. Gaussian, Inc., Pittsburgh PA,2003.
    [43]Miertus, S.; Scrocco E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. [J] Chem. Phys.1981,55,117-129.
    [44]R. Cammi and J. Tomasi, Remarks on the use of the apparent surface charges (ASC) methods in solvation problems:Iterative versus matrix-inversion procedures and the renormalization of the apparent charges [J] J. Comput. Chem. 1995,16,1449-1458.
    [45]Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. [J] Phys. Rev. B 1988,37,785-789.
    [46]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. [J] Phys. Rev. A 1988,38,3098.
    [47]Becke, A. D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. [J] J. Chem. Phys.1992,96,2155-2160.
    [48]Becke, A. D. Basis-set-free local density-functional calculations of geometries of polyatiomic molecules. [J] J. Chem. Phys.1992,97,9173-9177.
    [49]Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange.[J] J. Chem. Phys.1993,98,5648-5652.
    [50]Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Hucy, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. [J] J. Comput. Chem.1998,19, 1639-1662.
    [51]Hermes, J. D.; Weiss, P. M.; Cleland, W. W. Use of nitrogen-15 and deuterium isotope effects to determine the chemical mechanism of phenylalanine ammonia-lyase.[J] Biochemistry 1985,24,2959-2967.
    [52]Mutatu, W.; Klettke, K. L.; Foster C.; Walker, K. D. Unusual mechanism for an aminomutase rearrangement: Retention of configuration at the migration termini. [J] Biochemistry 2007, 46, 9785-9794.
    [53]Wu, B.; Szymanski, W.; Wybcnga, G G; Heberling, M. M.; Bartsch, S.; dc Wildeman, S.; Poelarends, G. J.; Feringa, B. L.; Dijkstra, B. W.; Janssen, D. B. Mechanism-inspired engineering of phenylalanine aminomutase for enhanced β-regioselective asymmetric animation of cinnamates. [J] Angew. Chem. Int. Ed. 2012,51,482-486.
    [54]Melander, L.; Jr. Saunders, W. H. in Reaction rates of isotopic molecules, Chapter 2 ed. R. E. Krieger, Malabar, FL, 1987.
    [1]D'Amours, D.; Desnoyers, S.; D'Silva, I.; Poirier, G. G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions, [J] Biochem. J.1999,342, 249-268.
    [2]Hassa, P. O.; Haenni, S. S.; Elser, M.; Hottiger, M. O. Nuclear ADP-ribosylation reactions in mammalian cells:where are we today and where are we going? [J] Microbiol. Mol. Biol. Rev.2006,70,789-829.
    [3]Bouchard, V. J.; Rouleau, M.; Poirier, G. G. PARP-1, a determinant of cell survival in response to DNA damage. [J] Exp. Hematol.2003,31,446-454.
    [4]Scovassi, A. I.; Diederich, M. Modulation of poly(ADP-ribosylation) in apoptotic cells. [J] Biochem. Pharmacol.2004,68,1041-1047.
    [5]Yu, S. W.; Wang, H.; Poitras, M. F.; Coombs, C.; Bowers, W. J.; Federoff, H. J.; Poirier, G. G.; Dawson, T. M.; Dawson, V. L. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor.[J] Science 2002, 297,259-263.
    [6]Kim, M. Y.; Mauro, S.; Gevry, N.; Lis, J. T.; Kraus, W. L. NAD+-dependent modulation of chromatin structure and transcription by nucleosomc binding properties of PARP-1. [J] Cell 2004,119,803-814.
    [7]Pirrotta, V. The ways of PARP. [J] Cell 2004,119,735-736.
    [8]Meyer-Ficca, M. L.; Meyer, R. G.; Jacobson, E. L.; Jacobson, M. K. Poly(ADP-ribose) polymerases:Managing genome stability. [J] Int. J. Biochem. Cell Biol.2005,37,920-926.
    [9]Shieh, W. M.; Ame, J. C.; Wilson, M. V.; Wang, Z. Q.; Koh, D. W.; Jacobson, M. K.; Jacobson, E. L. Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. [J] J. Biol. Chem.1998,273,30069-30072.
    [10]Shall, S.; de Murcia, G. Poly(ADP-ribose) polymerase 1 is not strictly required for infection of murine cells by retroviruses. [J] Mutat. Res.2000,460,1-15.
    [11]Schreiber, V.; Dantzer, F.; Ame, J. C.; de Murcia, G. P. Poly(ADP-ribose):novel functions for an old molecule. [J] Mol. Cell Biol.2006,7,517-528.
    [12]Meyer, R.G.; Meyer-Ficca, M. L.; Jacobson, E. L.; Jacobson, M. K. Enzymes in poly(ADP-ribose) metabolism, in:A. Burkle (Ed.), Poly(ADP-ribosyl)ation. [M] Landes Bioscience,2004.
    [13]Gagne, J. P.; Hendzel, M. J.; Droil, A.; Poirier, G. G. The expanding role of poly(ADP-ribose) metabolism:current challenges and new perspectives. [J] Curr. Opin. Cell Biol.2006,18,145-151.
    [14]Davidovic, L.; Vodenicharov, M.; Alfar, E. B.; Poirier, G. G. Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. [J] Exp. Cell. Res.2001,268,7-13.
    [15]Meyer-Ficca, M. L.; Meyer, R. G.; Coyle, D. L.; Jacobson, E. L.; Jacobson, M. K. Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to diflerent cell compartments.[J] Cell Res. 2004,297,521-532.
    [16]Ohashi, S.; Kanai, M.; Hanai, S.; Uchiumi, F.; Maryta,H.; Tanuma, S.; Miwa, M. Subcellular localization of poly(ADP-ribose) glycohydrolase in mammalian cells. [J] Biochem. Biophys. Res. Commun.2003,307,915-921.
    [17]Miwa, M.; Tanaka, M.; Matsushima,T.; Sugimura, T. Natural occurence of biopolymer, poly (adenosine diphosphate ribose). [J] Biol. Chem.1974,249, 3475-3482.
    [18]Juarez-Salinas, H.; Sims, J. L.; Jacobson, M. K. Poly(ADP-ribose) levels in carcinogen-treated cells. [J] Nature 1979,282,740-741.
    [19]Trucco, C.; Oliver, F. J.; de Murcia, G.; Menissier-de Murcia, J. DNA repair defect in poly (ADP-ribose) polymerse-deficient cell lines.[J] Nucleic Acids Res. 1998,26,2644-2649.
    [20]Pieper, A. A.; Brat, D. J.; Krug, D. K.; Watkins, C. C.; Gupta, A.; Blackshaw, S.; Verma, A.; Wang, Z. Q.; Snyder, S. H. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes.[J] Proc. Natl. Acad. Sci. U.S.A.1999,96,3059-3064.
    [21]Schmid, G.; Wang, Z. Q.; Wesierska-Gadek, J. Compensatory expression of p73 in PARP-deficient mouse fibroblasts as response to a reduced level of regularly spliced wild-type p53 protein.[J] Biochem. Biophys. Res. Commun.1999,255, 399-405.
    [23]Simbulan-Rosenthal, C. M.; Rosenthal, D. S.; Ding, R.; Jackman, J.; Smulson, M. E. Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression:influence on genomic stability, chromatin organization, DNA repair, and DNA replication. [J] Prog. Nucleic Acid Res. Mol. Biol.1996,55,135-156.
    [24]AbdElmageed, Z. Y.; Naura, A. S.; Errami, Y.; Zerfaoui, M. The poly(ADP-ribose) polymerases (PARPs):new roles in intracellular transport. [J] Cell. Signal.2012, 24,1-8.
    [25]Lin, W.; Ame, J. C.; Aboul-Ela, N.; Jacobson, E. L.; Jacobson, M. K. Isolation and characterization of the cDNA encoding bovine poly(ADP-ribose) glycohydrolasc. [J] J. Biol. Chem.1997,272,11895-11901.
    [26]Winstall, E.; Affar, E. B.; Shah, R.; Bourassa, S.; Scovassi, I. A.; Poirier, G. G. Preferential perinuclear localization of poly(ADP-ribose) glycohydrolase.[J] Exp. Cell Res.1999,251,372-378.
    [27]Meyer, R. G.; Meyer-Ficca, M. L.; Jacobson, E. L.; Jacobson, M. K. Human poly(ADP-ribose) glycohydrolase (PARG) gene and the common promoter sequence it shares with inner mitochondrial membrane translocase 23 (TIM23). [J] Gene 2003, 314, 181-190.
    [28]Wielckens, K.; George, E.; Pless, T.; Hilz, H. Nonenzymic ADP-ribosylation of specific mitochondrial polypeptides. [J] J. Biol. Chem. 1983, 258, 4098-4104.
    [29]Alvarez-Gonzalez, R.; Althaus, F. R. Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. [J] Mutat. Res. 1989, 218, 67-74.
    [30]Simonin, F.; Poch, O.; Delarue, M.; de Murcia, G. Identiiication of potential active-site residues in the human poly(ADP-ribose) polymerase. [J] J. Biol. Chem. 1993,265,8529-8535.
    [31]Yu, S. W.; Wang, H.; Dawson, T. M.; Dawson, V. L. Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in ncurotoxicity. [J] Neurobiol. Dis. 2003, 14, 303-3 17.
    [32]Patel, N. S.; Cortes, U.; Di Poala, R.; Mazzon, E.; Mota-Filipe, H.; Cuzzocrea, S.; Wang, Z.Q.; Thiemermann, C. Mice lacking the 110-kD isoform of poly(ADP-ribose) glycohydrolase are protected against renal ischemia/reperfusion injury. [J] J. Am. Soc. Nephrol. 2005, 16, 712-719.
    [33]Slade, D.; Dunstan, M. S.; Barkauskaite, E.; Weston, R.; Laflte, P.; Dixon, N.; Ahel, M.; Leys, D.; Ahel, I. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. [J] Nature 2011, 477, 616-620.
    [34]Rios, F. R.; Bertran, J.; Sodupe, M.; Rodriguez, S. L. On the mechanism of the N-glycosydic bond hydrolysis of 2'-deoxyguanosine: insights from first principles calculations. [J] Theor. Chem. Acc. 2011, 128, 619-626.
    [35]Tiwari, S.; Agnihotri, N.; Mishra, P. C. Quantum theoretical study of cleavage of the glycosidic bond of 2'-deoxyadenosinc: base excision-repair mechanism of DNA by MutY. [J] J. Phys. Chem. B 2011, 115, 3200-3207.
    [36]Wu, R. B.; Gong, W. J.; Liu, T.; Zhang, Y. K.; Cao, Z. X. QM/MM molecular dynamics study of purine-specific nucleosidc hydrolase. [J] J. Phys. Chem. B 2012, 116, 1984-1991.
    [37]Liu, J. L.; Zhang, C. C.; Xu, D. G. QM/MM study of catalytic mechanism of XylanaseCex from Cellulomonasfimi. [J] J. Mol. Graphics Modell.2012,37, 67-76.
    [38]Wang, J. H.; Hou, Q. Q.; Dong, L. H.; Liu, Y. J.; Liu, C. B. QM/MM studies on the glycosylation mechanism of rice BGlu1 β-glucosidase. [J] J. Mol. Graphics Modell.2011,30,148-152.
    [39]Naziga, E. B.; Schweizer, F.; Wetmore S. D. Conformational study of the hydroxyproline-O-glycosidic linkage:Sugar-peptide orientation and prolyl amide isomerization in (α,β)-galactosylated 4(R/S)-hydroxyproline. [J] J. Phys. Chem. B 2012,116,860-871.
    [40]Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti of the electron density. [J] Phys. Rev. B 1988,37,785-789.
    [41]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. [J] Phys. Rev. A 1988,38,3098-3100.
    [42]Becke, A. D. Density-functional thermochemistry. Ⅰ. The effect of the exchange-only gradient correction. [J] J. Chem. Phys.1992,96,2155-2160.
    [43]Becke, A. D. Density-functional thermochemistry. Ⅱ. The effect of the Perdew-Wang generalized-gradient correlation correction. [J] J. Chem. Phys.1992, 97,9173-9177.
    [44]Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. [J]J. Chem. Phys.1993,98,5648-5652.
    [45]Frisch, M. et al., GAUSSIAN 03, Revision D.01, Gaussian Inc.,Wallingford, CT, 2004.
    [46]Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. [J] Chem. Phys.1981,55,117-129.
    [47]Cammi, R.; Tomasi, J. The GEPOL-GB method for cavity construction. [J] J. Comput. Chem.1995,16,1449-1458.
    [48]Mendez-Lueioa, O.; Romo-Mancillasa, A.; Medina-Francob, J. L.; Castilloa, R. Computational study on the inhibition mechanism of cruzain by nitrilc-containing molecules. [J] J. Mol. Graphics Modell.2012,35,28-35.
    [49]Feliks, M, Ullmann, G.M. Glycerol dehydratation by the B12-independent enzyme may not involve the migration of a hydroxyl group:a computational study. [J] J. Phys. Chem.B 2012,116,7076-7087.
    [50]Chen, S. L.; Fang, W. H.; Himo, F. Reaction mechanism of the binuclear zinc enzyme glyoxalase Ⅱ-A theoretical study. [J] J. Inorg. Biochcm.2009,103, 274-281.
    [51]Georgieva, P.; Wu, Q.; McLeish, M.J.; Himo, F. The reaction mechanism of phenylethanolamine N-methyltransferase:A density functional theory study. [J] Biochim. Biophys. Acta, Proteins Proteomics2009,1794,1831-1837.
    [52]Liao, R. Z.; Ding, W. J.; Yu, J. G.; Fang, W. H.; Liu, R. Z. Theoretical studies on pyridoxal 5'-phosphate-dependent transamination of a-amino acids. [J] J. Comput. Chem.2008,29,1919-1929.
    [53]Pelmenschikov, V.; Blomberg, M. R. A.; Siegbahn, P. E. M. A theoretical study of the mechanism for peptide hydrolysis by thermolysin. [J] J. Biol. Inorg. Chem.2002,7,84-298.
    [54]Siegbahn, P. E. M. The catalytic cycle of catechol oxidase. [J] J. Biol. Inorg. Chem.2004,9,577-590.
    [1]Jordan, F. Current mechanistic understanding of thiamin diphosphate-dependent enzymatic reactions. [J] Nat. Prod. Rep.2003,20,184-201.
    [2]Jordan, F.; Baburina, I.; Gao, Y.; Guo, F.; Kahyaoglu, A.; Nemeria, N.; Volkov, A.; Yi, J. Z.; Zhang, D.; Machado, R.; Guest, J. R.; Furcy W.; Hohmann, S. New insights to the regulation of thiamin diphosphate dependent decarboxylases by substrate and THDP.Mg(Ⅱ) in Biochemistry and Physiology of Thiamin Diphosphate Enzymes, [M] ed. H. Bisswanger and A. Schellenberger, A. u. C. IntemannWissenschaftlicherVerlag, Pricn,1996, pp 53-69.
    [3]Candy, J. M.; Duggleby, R. G. Structure and properties of pyruvate decarboxyla.se and site-directed mutagenesis of the Zymomonasmohilis enzyme. [J] Biochim. Biophys. Acta.1998,1385,323-338.
    [4]Raj, K. C.; Ingram, L.O.; Maupin-Furlow, J. A. Pyruvate decarboxylase:a key enzyme for the oxidative metabolism of lactic acid by Acetohacterpasteurianus.[J] Arch. Microhiol.2001,176,443-451.
    [5]Chen, G. C.; Jordan, F. Brewers-yeast pyruvate decarboxylase produces acetoin from acetaldehyde-A novel tool to study the mechanism of steps subsequent to carbon-dioxide loss. [J] Biochemistry,1984,23,3576-3582.
    [6]Hyon, S. S.; Peter, L. R.Production of L-Phenylacetylcarbinol from benzaldehyde using partially purified pyruvate decarboxylase.[J] Biotechnol. Bioeng.1996,49, 52-62.
    [7]Rogers, P. L.; Shin, H. S.; Wang, B. Biotransformation for L-ephedrine production.[J] Adv. Biochem. Eng./Biotechnol.1997,56,33-59.
    [8]Pohl, M.; Lingen, B.; Miiller, M. Thiamin-diphosphate-dependent enzymes:new aspects of asymmetric C-C bond formation. [J] Chem. Eur. J.,2002,8,5289-5295.
    [9]Mizuhara, S.; Handler, P. Mechanism of thiamine-catalyzed reaction. [J]J. Am. Chem.Soc.1954,76,571-573.
    [10]Breslow, R. On the mechanism of thiamine action. IV. Evidence from studies on model systems. [J] J. Am. Chem. Soc.1958,80,3719-3726.
    [11]Schowen, R. L. Thiamin-dependent enzymes, in Comprehensive biological catalysiss-A mechanistic reference, [M] ed. M. Sinnot, Academic Press:London, U.K.1998,2,217-266.
    [12]Karimian, K.; Mohtarami F.; Askari, M. Mechanism of base-catalysed hydrogen-deuterium exchange in thiazolium ion:evidence for the involvement of a tetrahedral intermediate. [J] J. Chem. Soc.Perkin Trans. Ⅱ 1981,2,1538-1543.
    [13]Meyer, D.; Neumann, P.; Parthier, C.; Friedemann, R.; Nemeria, N.; Jordan, F.; Tittmann, K. Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate. [J] Biochemistry 2010,49,8197-8212.
    [14]Dyda, F.; Furey, W.; Swaminathan, S.; Sax, M.; Farrenkopf, B.; Jordan, F Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4-A resolution. [J] Biochemistry 1993,32,6165-6170.
    [15]Dobritzsch, D.; Konig, S.; Schneider, G.; Lu, G. G. High resolution crystal structure of pyruvate decarboxylase from Zymomonasmobilis. Implications for substrate activation in pyruvate decarboxylases.[J] J. Biol. Chem.1998,273, 20196-20204.
    [16]Arjunan, P.; Umland, T.; Dyda, F.; Swaminathan, S.; Furey, W.; Sax, M.; Farrenkopf, B.; Gao, Y.; Zhang, D.; Jordan, F. Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylasc from the yeast Saccharomyces cerevisiae at 2.3 A resolution. [J] J. Mol. Biol.1996,256, 590-600.
    [17]Versees, W.; Spaepen, S.; Vanderleyden, J.; Steyaert, J. The crystal structure of phenylpyruvate decarboxylase from Azospirillumbrasilense at 1.5 A resolution [J] Febs J 2007,274,2363-2375
    [18]Franka, R. A. W.; Leeper, F. J.;Luisi, B. F. Structure, mechanism and catalytic duality of thiamine-dependent enzymes. [J] Cell. Mol. Life Sci.2007,64,892-905.
    [19]Huang, C. Y.; Chang, A. K.; Nixon, P. F.;Duggleby, R. G. Site-directed mutagenesis of the ionizable groups in the active site of Zymomonasmobilis pyruvate decarboxylase:effect on activity and pH dependence. [J] Eur. J. Biochem. 2001,265,3558-3565.
    [20]Wu, Y. G.; Chang, A. K.; Nixon, P. F.; Li, W.;Duggleby, R. G. Mutagenesis at Asp-27 of pyruvate decarboxylase from Zymomonasmobilis:effect on its ability to form acetoin and acetolactate. [J] Eur. J. Biochem.2000,267,6493-6500.
    [21]Chang, A. K.; Nixon, P. F.;Duggleby, R. G.Aspartate-27 and glutamate-473 are involved in catalysis by Zymomonasmobilis pyruvate decarboxylase. [J] Biochem. J.1999,339,255-260.
    [22]Schenk, G.; Leeperz, F. J.; England, R.; Nixon, P. F.; Duggleby, R. G. The role of His113 and His114 in pyruvate decarboxylase from Zymomonasmobilis. [J] Eur. J. Biochem.1997,248,63-71.
    [23]Tittmann, K.; Golbik, R.; Uhlemann, K.; Khailova, L.; Schneider, G.; Patel, M.; Jordan, F.; Chipman, D. M.; Duggleby, R. G.;Hubner, G. NMR analysis of covalenl intermediates in thiamin diphosphate enzymes. [J] Biochemistry 2003,42, 7885-7891.
    [24]Wang, J. Y.; Dong, H.; Li, S. H.; He, H. W. Theoretical study toward understanding the catalytic mechanism of pyruvate decarboxylase. [J] J. Phys Chem.B 2005,109,18664-18672.
    [25]Sakaki, S.; Musashi, Y.; Ohkubo, K. Decarboxylation of 2-lactylthiazolium cation. AM1 and ab initio MO/MP2 studies.[J] J. Am. Chem. Soc.1993,115, 1515-1519.
    [26]Lie, M. A.; Celik, L.; J(?)rgensen, K. A.; Schiott, B. Cofactor activation and substrate binding in pyruvate decarboxylase. Insights into the reaction mechanism from molecular dynamics simulations. [J] Biochemistry 2005,44,14792-14806.
    [27]Pei, X. Y.; Erixon, K. M.; Luisi, B. F.;Leeper, F. J. Structural insights into the prereaction state of pyruvate decarboxylase from Zymomonasmobilis. [J] Biochemistry,2010,49,1727-1736.
    [28]Zhang, C. H.; Guo, Y.; Xue, Y. QM/MM study on catalytic mechanism of aspartate racemase from Pyrococcushorikoshii OT3. [J] Theor. Chem. Ace.2011, 129,781-791.
    [29]Smith, C. R.; Smith, G. K.; Yang, Z. X.; Xu, D. G.; Guo, H. Quantum mechanical/molecular mechanical study of anthrax lethal factor catalysis. [J] Theor. Chem. Acc.2011,128,83-90.
    [30]Wu,R. B.; Wang, S. L.; Zhou, N. J.; Cao, Z. X.; Zhang, Y. K. A proton-shuttle reaction mechanism for histone deacetylase 8 and the catalytic role of metal ions. [J] J. Am. Chem. Soc.2010,132,9471-9479.
    [31]Gomez, H.; Polyak, I.; Thiel, W.; Lluch, J. M.; Masgrau. L. Retaining glycosyltransferase mechanism studied by QM/MM methods: lipopolysaccharyl-α-1,4-galactosyltransferase C transfers a-galactose via an oxocarbenium ion-like transition state. [J] J. Am. Chem. Soc.2012,134, 4743-4752.
    [32]Humphrey, W.; Dalke, A.; Schulten, K.VMD-Visual Molecular Dynamics. [J] J. Mol. Graphics1996,14,33-38.
    [33]Frisch, M. J. et al Gaussian 03, Revision C.02, Gaussian, Inc, Wallingford, CT, 2004.
    [34]Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. [J] J. Comput. Chem.1998,19, 1639-1662.
    [35]Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM:A program for macromolecular energy, minimization, and dynamics calculations. [J]J. Comput. Chem.1983,4,187-217.
    [36]Chen, J. H.; Im, W.; Brooks, C. L. Balancing Solvation and Intramolecular Interactions:Toward a Consistent Generalized Born Force Field [J] J. Am. Chem. Soc.2006,128,3728-3736.
    [37]Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; lmpey, R. W.; Klein, M. L. Comparison of simple potential functions for modelling water. [J] J. Chem. Phys. 1983,79,926-935.
    [38]Berkowitz, M.; McCammon, J. A. Molecular Dynamics with Stochastic Boundary Conditions. [J] Chem. Phys. Lett. 1982, 90, 215-217.
    [39]Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbaeh, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegcn, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F. Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafcr, A.; Lennartz, C. QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis. [J] J. Mol. Struct. (THEOCHEM) 2003, 632, 1-28.
    [40]Ahlrichs, R.; Bar, M.; Hascr, M.; Horn, H.; Kolmel, C. Electronic structure calculations on workstation computers: The program system turbomole.[J] Chem. Phys. Lett. 1989, 162, 165-169.
    [41]Smith, W.; Forester, T. R. DLPOLY 2.0: a general-purpose parallel molecular dynamics simulation package. [J] J. Mol. Graph. 1996, 14, 136-141.
    [42]Billeter, S. R.; Turner, A. J.; Thiel, W. Linear scaling geometry optimization and transition state search in hybrid delocalised internal coordinates. [J] Phys. Chem. Chem. Phys. 2000, 2, 2177-2186.
    [43]Bakowies D.; Thiel, W. Hybrid models for combined quantum mechanical and molecular mechanical approaches. [J] J. Phys. Chem. 1996, 100, 10580-10594.
    [44]Kern, D.; Kern, G.; Necf, H.; Tittmann, K.; Killenberg-Jabs, M.; Schneider, C. W.; Hubner, G. How thiamine diphosphate is activated in enzymes. [J| Science 1997, 275, 67-70.
    [45]Jordan, F.; Nemeria, N. S.; Zhang, S.; Yan, Y.; Arjunan, P.; Furey, W. Dual catalytic apparatus of the thiamin diphosphate coenzyme: acid-base via the I' 4'-iminopyrimidine tautomer along with its electrophilic role. [J] J. Am. Chem. Sac. 2003, 127, 12732-12738.
    [46]Friedemanna, R.; Tittmannb, K.; Golbikb R.; Hubner, G DFT and MP2 studies on the C2 C2a bond cleavage in thiamin catalysis. [J] J. Mol. Catal. B: Enzym. 2009, 61, 36-38.
    [47]Li, H.; Robertson A. D.; Jensen, J. H.Very fast empirical prediction and rationalization of protein pKa values. |J] Proteins: Struct. Fund. Bioinf. 2005, 61, 704-721.
    [48]Bas, D. C.; Rogers D. M.; Jensen, J.H. [J] Proteins: Struct. Fund. Bioinf. 2008, 73, 765-73
    [1]Lindahl, T.; Wood, R. D. Quality control by DNA repair. [J] Science 1999,286, 1897-1905.
    [2]Shukla, P. K.; Mishra, P. C.; Suhai, S. Reactions of guanine with methyl chloride and methyl bromide:06-methylation versus charge transfer complex formation. [J] Int. J. Quantum Chem.2007,107,1270-1283.
    [3]Wyatt, M. D.; Pittman, D. L. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks.[J] Chem. Res. Toxicol. 2006, 19, 1580-1594.
    [4]Mishina, Y.; Duguid, E. M.; He, C. Direct Reversal of DNA Alkylation Damage. [J] Chem. ReV. 2006, 106, 215-232.
    [5]Loechler, E. L.; Green, C. L.; Essigmann, J. M. Proc. In vivo mutagenesis by O6-methylguanine built into a unique site in a viral genome. [J] Nail. Acad. Sci. U.S.A. 1984,81,6271-6275.
    [6]Hickman, M. J.; Samson, L. D. Apoptotic signaling in response to a single type of DNA lesion, O(6)-methylguanine. [J] Mol. Cell 2004, 14, 105-116.
    [7]Meikrantz, W.; Bergom, M. A.; Memisoglu, A.; Samson, L. O6-alkylguanine DNA lesions trigger apoptosis. [J] Carcinogenesis 1998, 19, 369-372.
    [8]Tubbs, J. L.; Pegg, A. E.; Tainer, J. A. DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by O6-alkylguanine-DNA alkyltransfera.se and its implications for cancer chemotherapy. [J] DNA Repair 2007, 6, 1100-1115.
    [9]Pegg, A. E.; Fang, Q.; Loktionova, N. A. Human variants of O6-alkylguanine-DNA alkyltransferase. [J] DNA Repair 2007, 6, 1071-1078.
    [10]Mitra, S. MGMT: a personal perspective. [J] DNA Repair 2007, 6, 1064-1070.
    [11]Kaina, B.; Fritz, G.; Mitra, S.; Coquerelle, T. Transfection and expression of human O6-methylguanine-DNA methyltransferase MGMT cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxie effects of alkylating agents. [J] Carcinogenesis 1991, 12, 1857-1867.
    [12]Daniels, D. S.; Woo, T. T.; Luu, K. X.; Noll, D. M.; Clarke, N. D.; Pegg, A. E. Tainer, J. A. DNA binding and nucleotide flipping by the human DNA repair protein AGT. [J] Nat. Struct. Mol. Biol. 2004, 11, 714-720.
    [13| Duguid, E. M.; Rice, P. A.; He, C. The structure of the human agt protein bound to DNA and its implications for damage detection. [J] J. Mol. Biol. 2005, 350, 657-666.
    [14]Georgieva, P.; Himo, F. Density functional theory study of the reaction mechanism of the DNA repairing enzyme alkylguanine alkyltransferase. [J] Chem. Phvs. Lett. 2008, 463, 214-218.
    [15]Jena, N. R.; Shukla, P. K.; Jena, H. S.; Mishra, P. C.; Suhai, S. O6-methylguanine repair by 06-alkylguanine-DNA alkyltransferase. [J] J. Phys. Chem. B 2009, 113, 16285-16290.
    [16]Shukla, P. K.; Mishra, P. C. Repair of 06-methylguanine to guanine by cysleine in the absence and presence of histidine and by cysteine thiolate anion:a quantum chemical study. [J] Phys. Chem. Chem. Phys.2009,11,8191-8202.
    [17]Senn, H. M.; Thiel, W. QM/MM Methods for Biomolecular Systems. [J] Angew. Chem. Int. Ed.2009,48,1198-1229.
    [18]Gao, J. L.; Ma, S. H.; Major, D. T.; Nam, K.; Pu, J. Z.; Truhlar, D. G. Mechanisms and free energies of enzymatic reactions. [J] Chem. ReV.2006,106, 3188-3209.
    [19]Cui, Q.; Karplus, M. Catalysis and specificity in enzymes:a study of triosephosphate isomerase and comparison with methyl glyoxal synthase. [J] AdV. Protein Chem.2003,66,315-372.
    [20]Gao, J. L.; Truhlar, D. G. Quantum mechanical methods for enzymes kinetics. [J] Annu. ReV. Phys. Chem.2002,53,467-505.
    [21]Field, M. J.; Bash, P. A.; Karplus, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. [J] J. Comput. Chem.1990,11,700-733.
    [22]Warshel, A.; Levitt, M. Theoretical studies of enzymatic reactions:dielectric electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. [J] J. Mol. Biol.1976,103,227-249.
    [23]Marti-Renom, M. A.; Stuart, A. C.; Fiser, A.; Sanchez, R.; Melo, F.; Sali, A. Comparative protein structure modeling of genes and genomes. [J] Annu. ReV. Biophys. Biomol. Struct.2000,29,291-325.
    [24]Daniels, D. S.; Mol, C. D.; Arvai, A. S.; Kanugula, S.; Pegg, A. E.; Tainer, J. A. Active and alkylated human AGT structures:a novel zinc site, inhibitor and extrahelical base binding.[J] EMBO J.2000,19,1719-1730.
    [25]Humphrey, W.; Dalke, A.; Schulten, K. VMD-Visual Molecular Dynamics. [J] J. Mol. Graphics 1996,14,33-38.
    [26]Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM:A program for macromolecular energy, minimization, and dynamics calculations. [J] J. Comput. Chem.1983,4,187-217.
    [27]MacKerell, A. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. [J] J. Phys. Chem. B 1998,102,3586-3616.
    [28]Bakowies, D.; Thiel, W. Hybrid models for combined quantum mechanical and molecular mechanical approaches. [J]J. Phys. Chem.1996,100,10580-10594.
    [29]Sherwood, P.; de Vries, A. H.; Collins, S. J.; Greatbanks, S. P.; Burton, N. A. Vincent, M. A.; Hillier, I. H. Computer simulation of zeolite structure and reactivity using embedded cluster methods. [J] Faraday Discuss. 1997, 106, 79-92.
    [30]Bakowies, D.; Thiel, W. Hybrid models for combined quantum mechanical and molecular mechanical approaches. [J] J. Phvs. Chem. 1996, 100, 10580.
    [31]de Vries, A. H.; Sherwood, P.; Collins, S. J.; Rigby, A. M.; Rigutto, M.; Kramer, G. J. Ze Zeolite Structure and Reactivity by Combined Quantum-Chemical-Classical Calculationsions. [J] J. Phys. Chem. B 1999, 103, 6133-6141.
    [32]Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Callow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C; Casci, J.; Watson, M.; King, F. Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafer, A.; Lennartz, C. QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis. [J] J. Mol. Struct. (THEOCHEM) 2003, 632, 1-28.
    [33]Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Electronic structure calculations on workstation eomputers:The program system turbomole. [J] Chem. Phys. Lett. 1989, 162, 165-169.
    [34]Smith, W.; Forester, T. R. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. [J] J. Mol. Graph. 1996, 14, 136-141.
    [35]Rasimas, J. J.; Pegg, A. E.; Fried, M. G. Effects of protein and DNA alkylation on complex stability. [J]J. Biol. Chem. 2003, 278, 7973-7980.
    [36]Noll, D. E.; Clarke, N. D. Covalent capture of a human O(6)-alkylguanine alkyltransferase-DNA complex using N(1),O(6)-ethanoxanlhosine, a mechanism-based crosslinker. [J] Nucleic Acids Res. 2001, 29, 4025-4034.
    [37]Edara, S.; Goodtzova, K.; Pegg, A. E. The role of tyrosine-158 in O6-alkylguanine-DNA alkyltransferase activity. [J] Carcinogenesis 1995, 16, 1637-1642.
    [38]Morgan, S. E.; Kelley, M. R.; Pieper, R. O. The role of the carboxyl-tenninal tail in human O6-melhylguanine DNA methyltransferase substrate specillcity and temperature sensitivity. [J]J. Biol. Chem. 1993, 268, 19802-19809.
    [39]Guengerich, F. P.; Fang, Q.; Eiu, L.; Hachey, D. L.; Pegg, A. E O6-alkylguanine-DNA alkyltransferase: low pKa and high reactivity of cysteine 145. [J] Biochemistry 2003, 42, 10965-10970.
    [1]Gunne, L. M. Relative adrenaline content in brain tissue. [J] Acta Physiol. Scand. 1962,56,324-333.
    [2]Fuller, R. W. Pharmacology of brain epinephrine neurons.[J] Annu. Rev. Pharmacol. Toxicol.1982,22,31-55.
    [3]Saavedra, J. M.; Grobecker, H.; Axelrod, J. Adrenaline-forming enzyme in brainstem:elevation in genetic and experimental hypertension. [J] Science 1976, 191,483-484.
    [4]Rothballer, A.B. The effects of catecholamines on the central nervous system.[J] Pharmacol. Rev.1959,11,494-547.
    [5]Burke, W. J.; Chung, H. D.; Strong, R.; Mattammal, M. B.; Marshall, G. L.; Nakra, R.; Grossberg, G. T.; Haring,J.H.; Job, T. H. [M] Central Nervous System Disorders of Aging:Clinical Intervention and Research:Raven Press:New York, 1988, pp.41-70.
    [6]Kennedy, B. P.; Bottiglieri, T.; Arning, E.; Ziegler, M. G.; Hansen, L. A.; Masliah, E. Elevated S-adenosylhomocysteine in Alzheimer brain:influence on methyltransferases and cognitive function. Journal of Neural Transmission. [J] J. Neural. Transm.2004,111,547-567.
    [7]Axelrod J. Noradrenaline:fate and control of its synthesis. [J] Science 1971,19, 1251-1254.
    [8]Minson, J.; Llewellyn-Smith, I.; Neville, A.; Somogyi, P.; Chalmers, J. Quantitative analysis of spinally projecting adrenaline-synthesising neurons of C1, C2 and C3 groups in rat medulla oblongata. [J] J. Auton. NerV. Syst.1990,30, 209-220.
    [9]Kirshner, N.; Goodall, M. The formation of adrenaline from noradrenaline. [J] Biochem. Biophys. Acta.1959,24,658-659.
    [10]Axelrod, J. Purification and properties of phenylethanolamine-N-methyl transferase. [J]J. Biol. Chem.1962,237,1657-1660.
    [11]Bondinell, W. E.; Chapin, F. W.; Frazee, J. S.; Girard, G. R.; Holden, K. G.; Kaiser, C.; Maryanoff, C.; Perchonock, C. D.; Gessner, G. W.; Hieble, J. P.; Hillegass, L. M.; Pendleton, R. G.; Sawyer, J. L. Inhibitors of phenylethanolamine N-methyltransferase and epinephrine biosynthesis:a potential source of new drugs. [J] Drug Metab. Rev.1983,14,709-721.
    [12]Toomey, R. E.; Horng, J. S.; Hemrick-Luecke, S. K.; Fuller, R. W. α-Adrenoreceptor affinity of some inhibitors of norepinephrine N-methyl-transferase. [J] Life Sci.1981,29,2467-2472.
    [13]Goldstein, M.; Saito, M.; Lew, J. Y.; Hieble, J. P.; Pendleton, R. G. The blockade of alpha2-adrenoceptors by the PNMT inhibitor SK & F 64139. [J] Eur. J. Pharmacol.1980,67,305-308.
    [14]Grunewald, G. L.; Dahanukar, V. H.; Jalluri, R. K.; Criscione, K. R. Synthesis, biochemical evaluation, and classical and three-dimensional quantitative structure-activity relationship studies of 7-substituted-1,2,3,4-tetrahydroisoquinolines and their relative affinities toward phenylethanolamine N-methyltransferase and the a2-adrenoceptor. [J]J. Med. Chem.1999,42,118-134.
    [15]McMillan, F. M.; Archbold, J.; McLeish, M. J.; Caine, J. M.; Criscione, K. R.; Grunewald, G. L.; Martin, J. L. Molecular recognition of sub-micromolar inhibitors by the adrenaline synthesising enzyme PNMT. [J]J. Med. Chem.2004, 47,37-44.
    [16]Gee, C. L.; Drinkwatcr, N.; Tyndall, J. D. A.; Grunewald, G. L.; Wu, Q.; McLeish, M. J.; Martin, J. L. Structure of hPNMT with inhibitor 3-fluoromethyl-7-trifluoropropyl-THIQ and AdoHcy.[J] J. Med. Chem.2007,50, 4845-4853.
    [17]Drinkwater, N.; Gee, C. L.; Puri, M.; Criscione, K. R.; McLeish, M. J.; Grunewald, G. L.; Martin, J. L. Molecular recognition of physiological substrate noradrenaline by the adrenaline synthesising enzyme PNMT and factors influencing its methyltransferase activity. [J] Biochem. J.2009,422,463-471.
    [18]Drinkwater, N.; Vu, H.; Lovell, K. M.; Criscione, K. R.; Collins, B. M.; Prisinzano, T. E.; Poulsen, S. A.; McLeish, M. J.; Grunewald, G. L.; Martin, J. L. Fragment-based screening by X-ray crystallography, MS and isothermal titration calorimetry to identify PNMT (phenylethanolamine N-methyltransferase) inhibitors. [J] Biochem. J.2010,431,51-61.
    [19]Martin, J. L.; Begun, J.; McLeish, M. J.; Caine, J. M.; Grunewald, G. L. Getting the adrenaline going:crystal structure of the adrenaline-synthesizing enzyme PNMT. [J] Structure 2001,9,977-985.
    [20]Georgieva, P.; Wu, Q.; McLeish, M. J.; Himo, F. The reaction mechanism of phenylethanolamine N-methyltransferase:A density functional theory study. [J] Biochim. et Biophys. Acta.2009,1794,1831-1837.
    [21]Kamerlin, S. C. L.; Chu, Z. T. A. Warshel, On catalytic preorganization in oxyanion holes:highlighting the problems with the gas-phase modeling of oxyanion holes and illustrating the need for complete enzyme models.[J]J. Org. Chem.2010,75,6391-6401.
    [22]Grigorenko, B. L.; Shadrina, M. S.; Topol, I. A.; Collins, J. R.; Nemukhin, A. V. Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu. [J] Biochim. Biophys. Acta, Proteins Proteomics 2008,1784,1908-1917.
    [23]Bellocchi, D.; Macchiarulo, A.; Carotti, A.; Pellicciari, R. Quantum mechanics/molecular mechanics (QM/MM) modeling of the irreversible transamination of L-kynurenine to kynurenic acid:The round dance of kynurenine aminotransferase Ⅱ.[J] Biochimi. Biophys. Acta. Proteins Proteomics 2009,1794, 1802-1812
    [24]Riccardi, D.; Yang, S.; Cui, Q. Proton transfer function of carbonie anhydrase: Insights from QM/MM simulations. [J] Biochimi. Biophys. Acta. Proteins Proteomics 2010,1804,342-351.
    [25]Wu, R. B.; Wang, S. L.; Zhou, N. J.; Cao, Z. X.; Zhang, Y. K. A proton-shuttle reaction mechanism for histone deacetylase 8 and the catalytic role of metal ions. [J]J. Am. Chem. Soc.2010,132,9471-9479.
    [26]Basner, J. E.; Schwartz, S. D. How enzyme dynamics helps catalyze a reaction in atomic detail:a transition path sampling study. [J] J. Am. Chem. Soc.2005,127, 13822-13831.
    [27]Senn, H. M.; Thiel, W. QM/MM Methods for Biomolecular Systems. [J] Angew. Chem., Int. Ed.2009,48,1198-1229.
    [28]Gao, J. L.; Ma, S. H.; Major, D. T.; Nam, K.; Pu, J. Z.; Truhlar, D. G. Mechanisms and free energies of enzymatic reactions. [J] Chem. ReV.2006,106, 3188-3209.
    [29]Cui, Q.; Karplus, M. Catalysis and specificity in enzymes:A study of triosephosphate isomerase (TIM) and comparison with methylglyoxal synthase (MGS). [J] AdV. Protein Chem.2003,66,315-372.
    [30]Gao, J. L.; Truhlar, D. G. Quantum mechanical methods for enzyme kinetics. [J] Annu. ReV. Phys. Chem.2002,53,467-505.
    [31]Field, M. J.; Bash, P. A.; Karplus, M. A combined quantum-mechanical and molecular mechanical potential for molecular dynamics simulations. [J] J. Comput. Chem.1990,11,700-733.
    [32]Warshel, A.; Levitt, M. Theoretical studies of enzymic reactions:Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. [J]J. Mol. Biol.1976,103,227-249.
    [33]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, revision A.3; Gaussian, Inc.:Pittsburgh, PA,2003.
    [34]Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarekian genetic algorithm and empirical binding free energy function.[J] J. Comput. Chem.1998,19, 1639-1662.
    [35]Li, H.; Robertson, A. D.; Jensen, J. H. Very fast empirical prediction and rationalization of protein pKa values. [J] Prot. Struct. Funct. Bioinf.2005,61, 704-721.
    [36]Bas, D. C.; Rogers, D. M.; Jensen, J. H. Very fast prediction and rationalization of pKa values for protein-ligand complexes. [J] Prot. Struct. Funct. Bioinf.2008, 73, 765-783.
    [37]MacKerell, A.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. [J] J. Phys. Chem. B 1998, 102, 3586-3616.
    [38]Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. [J] J. Comput. Phys. 1977, 23, 327-341.
    [39]Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; Slates, D. J.; Swaminathan, S.; Karplus, M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. [J] J. Comput. Chem. 1983,4, 187-217.
    [40]Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Electronic structure calculations on workstation compulers:The program system lurbomole. [J] Chem. Phys. Lett. 1989, 162, 165-169.
    [41]Smith, W.; Forester, T. R. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. [J] J. Mol. Graph. 1996, 14, 136-141.
    [42]Zhang, Y.; Lee, T.; Yang, W. A pseudobond approach to combining quantum mechanical and molecular mechanical methods. [J] J. Chem. Phys. 1999, 110, 46-54.
    [43]Zhang, Y. Improved pseudobonds for combined ab initio quantum mechanical/molecular mechanical methods. [J] J. Chem. Phys.2005, 122, 024-114.
    [44]Bakowies, D.; Thiel, W. Hybrid models for combined Quantum mechanical and molecular mechanical approaches. [J] J Phys. Chem. 1996, 100, 10580-10594.
    [45]Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G; Callow, C. R. A. French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casei, J.; Watson, M.; King, F. Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafer, A.; Lennartz., C. QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis. [J] J. Mol. Struct. (THEOCHEM) 2003, 632, 1-28.
    [46]Gee, C. L.; Tyndall, J. D. A.; Gruncwald, G L.; Wu, Q.; McLeish, M. J.; Martin, J. L. Binding mode of methyl acceptor substrates to the adrenaline-synthesizing enzyme phenylethanolamine N-methyltransferase: Implications for catalysis. [J] Biochemistry 2005, 44, 16875-16885.
    [1]Swaving, J.; de Bont, J. A. M. Microbial transformation of cpoxides. [J] Enzyme Microb. Technol 1998,22,19-26.
    [2]Rink, R.; Jansscn, D. B. Kinetic mechanism of the enantioselective conversion of styrene oxide by epoxide hydrolase from Agrobaeterium radiobaeter AD1.[J] Biochemistry 1998,37,18119-18127.
    [3]Nardini, M.; Ridder, I. S.; Rozeboom, H. J.; Kalk, K. H.; Rink, R.; Janssen, D. B.: Dijkstra, B. W. The X-ray strueture of epoxide hydrolase from Agrobacterium radiobaeter AD1-An enzyme to detoxify harmful epoxides.[J]J. Biol. Chem. 1999,274,14579.-14586.
    [4]Bellucci, G.; Berti, G.; Ferretti, M.; Marioni, F.; Re, F. The epoxide hydrolase catalyzed hydrolysis of -3-bromo-1,2-epoxycyclohexane. A direct proof for a general base catalyzed mechanism of the enzymatic hydration. [J] Biochem. Biophys. Res. Commun.1981,102,838-844.
    [5]Borhan, B.; Jones, A. D.; Pinot, F.; Grant, D. F.; Kurth, M. J.; Hammock, B. D. Mechanism of soluble epoxide hydrolase:formation of an a-hydroxy ester-enzyme intermediate Asp-333. [J] J. Biol. Chem.1995,270,26923-26930.
    [6]Weijers, C. A. G. M.; de Bont, J. A. M. Epoxide hydrolases from yeasts and other sources:versatile tools in biocatalysis. [J] J. Mol. Catal. B:Enzym.1999,6, 199-214.
    [7]Yamada, T.; Morisseau, C.; Maxwell, J. E.; Argiriadi, M. A.; Christianson, D. W.; Hammock, B. D. Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolases. [J] J. Biol. Chem.2000, 275,23082-23088.
    [8]Rink, R.; Kingma, J.; Spelberg, J. H. L.; Janssen, D. B. Tyrosine residues serve as proton donor in the catalytic mechanism of epoxide hydrolase from Agrobacterium radiobacter. [J] Biochemistry 2000,39,5600-5613.
    [9]van der Werf, M. J.; Overkamp, K. M.; de Bont, J. A. M. Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases. [J] J. Bacteriol.1998,180,5052-5057.
    [10]van der Werf, M. J.; Swarts, H. J.; de Bont, J. A. M. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. [J] Appl. Environ. Microbiol.1999,65,2092-2102.
    [11]Arand, M.; Hallberg, B. M.; Zou, J. Y.; Bergfors, T.; Oesch, F.; van der Werf, M. J.; de Bont, J. A. M.; Jones, T. A.; Mowbray, S. L. Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. [J] EMBO J.2003,22,2583-2592.
    [12]Nakamura, T.; Nagasawa, T.; Yu, F.; Watanabe, I.; Yamada, H. Purification and characterization of two epoxide hydrolases from Corynebacterium sp. strain N-1074. [J] Appl. Envir. Microbiol 1994,60,4630-4633.
    [13]Rick Rink; Marko Fennema; Minke Smids; Uwe Dehmel; Janssen, D. B. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. [J]J. Biol. Chem.1997,272,14650-14657.
    [14]Zheng, H. B.; Reetz, M. T. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis. [J] J. Am. Chem. Soc.2010,132,15744-15751.
    [15]Johansson, P.; Unge, T.; Cronin, A.; Arand, M.; Bergfors, T.; Jones, T. A.; Mowbray, S. L. Structure of an atypical epoxide hydrolase from mycobactcrium tuberculosis gives insights into its function. [J] J. Mol. Biol.2005,351, 1048-1056.
    [16]Hopmann, K. H.; Hallberg, B. M.; Himo, F. Catalytic mechanism of limonene epoxide hydrolase, a theoretical study. [J] J. Am. Chem. Soc.2005,127, 14339-14347.
    [17]Kamerlin, S. C. L.; Chu, Z. T. A. Warshel, On catalytic preorganization in oxyanion holes:highlighting the problems with the gas-phase modeling of oxyanion holes and illustrating the need for complete enzyme models. [J]J. Org. Chem.2010,75,6391-6401.
    [18]Warshel, A.; Levitt, M. Theoretical studies of enzymatic reactions:dielectric electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. [J]J. Mol. Biol.1976,103,227-249.
    [19]Field, M. J.; Bash, P. A.; Karplus, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. [J]J. Comput. Chem.1990,11,700-733.
    [20]Gao, J. L.; Truhlar, D. G. Quantum mechanical methods for enzyme kinetics, [J] Annu. Re V. Phys. Chem.2002,53,467-505.
    [21]Senn, H. M.; Thiel, W. QM/MM Methods for Biomolecular Systems.[J] Angew. Chem., Int. Ed 2009,48,1198-1229.
    [22]Grigorenko, B. L.; Shadrina, M. S.; Topol, I.A.; Collins, J.R.; Nemukhin, A.V. Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu. [J] Biochim. Biophys. Acta, Proteins Pwteomics 2008,1784,1908-1917.
    [23]Wu, R. B.; Wang, S. L.; Zhou, N. J.; Cao, Z. X.; Zhang, Y. K. A proton-shuttle reaction mechanism for histone dcacetylase 8 and the catalytic role of metal ions. [J]J. Am. Chem. Soc.2010,132,9471-9479.
    [24]Basner, J. E.; Schwartz, S. D. How enzyme dynamics helps catalyze a reaction in atomic detail:a transition path sampling study. [J]J. Am. Chem. Soc.2005,127, 13822-13831.
    [25]Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W.E.; Belew, R. K.; Olson, A. J. Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. [J] J. Comput. Chem.1998,19, 1639-1662.
    [26]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, revision A.3; Gaussian, Inc.:Pittsburgh, PA,2003.
    [27]Humphrey, W.; Dalke, A.; Schulten, K. VMD:Visual molecular dynamics. [J] J. Mol. Graphics. Modell.1996,14,33-38.
    [28]Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM:A program for macromolecular energy, minimization, and dynamics calculations. [J] J. Comput. Chem.1983,4,187-217.
    [29]Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. [J] J. Chem. Phys.1983,79,926-935.
    [30]MacKerell, A.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. [J] J. Phys. Chem. B 1998,102,3586-3616.
    [31]Bakowies, D.; Thiel, W. Hybrid models for combined (?)uantum mechanical and molecular mechanical approaches. [J] J. Phys. Chem.1996,100,10580-10594.
    [32]de Vries, A.H.; Sherwood, P.; Collins, S.J.; Rigby, A.M.; Rigutto, M.; Kramer, G.J.; Zeolite structure and reactivity by combined quantum-chemical-classical calculations. [J] J. Phys. Chem. B 1999,103,6133-6141.
    [33]Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafer, A.; Lennartz, C. QUASI:A general purpose implementation of the QM/MM approach and its application to problems in catalysis. [J] J. Mol. Struct. (THEOCHEM) 2003,632,1-28.
    [34]Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Electronic structure calculations on workstation computers:The program system turbomole. [J] Chem. Phys. Lett.1989,162,165-169.
    [35]Smith, W.; Forester, T. R. DL_POLY_2.0:a general-purpose parallel molecular dynamics simulation package.[J]J. Mol. Graph.1996,14,136-141
    [36]Hu, P.; Zhang, Y. K. Catalytic mechanism and product specificity of the histone lysine melhyltransferase SHT7/9:an ab initio QM/MM-FE study with multiple initial structures.[J]J. Am. Chem. Soc.2006,128,1272-1278.
    [37]Thomaeus, A.; Carlsson, J.; Aqvisl, J.; Widersten, M. Active site of epoxide hydrolases revisited: A noncanonical residue in potato StEH1 promotes both formation and breakdown of the Alkylenzyme intermediate. [J] Biochemistry 2007, 46, 2466-2479.
    [1]Moore, B. Bifunctional andmoonlighting enzymes:lighting the way to regulatory control. [J] Trends Plant Sci.2004,9,221-228.
    [2]Fushinobu, S.; Nishimasu, H.; Hattori, D.; Song, H. J.; Wakagi, T. Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase. [J] Nature 2011,478,538-541
    [3]Rashid, N. et al. A novel candidate for the true fructose-1,6-bisphosphatase in archaea. [J] J. Biol. Chem.2002,277,30649-30655.
    [4]Du, J.; Say, R. F.; Lu, W.; Fuchs G.; Einsle, O. Active-site remodelling in the bifunctional fructose-1,6-bisphosphate aldolase/phosphatase.[J] Nature 2011,478 534-537.
    [5]Machajewski, T. D.; Wong, C. H. The catalytic asymmetric aldol reaction. [J] Angewandte Chemie 2000,39,1352-1375.
    [6]Lai, C. Y.; Oshima, T. Studies on the structure of rabbit muscle aldolase.3. Primary structure of the BrCN peptide containing the active site. [J] Arch. Biochem. Biophys.1971,144,363-374.
    [7]Gefflaut, T.; Blonski, C.; Perie, J.; Willson, M. Class Ⅰ aldolases:substrate specificity, mechanism, inhibitors and structural aspects. [J] Prog. Biophys. Mol. Biol.1995,63,301-340.
    [8]Belasco, J. G.; Knowles, J. R. Polarization of substrate carbonyl groups by yeast aldolase:investigation by Fourier transform infrared spectroscopy. [J] Biochemistry 1983,22,122-129.
    [9]Szwergold, B. S.; Ugurbil, K.; Brown, T. R. Properties of fructose-1,6-bisphosphate aldolase from Escherichia coli:an NMR analysis.[J] Arch. Biochem. Biophys.1995,317,244-252.
    [10]Dreyer, M. K.; Schulz, G. E. Catalytic mechanism of the metal-dependent fuculose aldolase from Escherichia coli as derived from the structure.[J] J. Mol. Biol.1996,259,458-466.
    [11]Frisch M. J. et al Gaussian 03, Revision C.02, Gaussian, Inc, Wallingford, CT, 2004.
    [12]Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. [J] J. Comput. Chem.1998,19,1639-1662.
    [13]Brooks, B. R.; Bruccoleri, R. E.; Olafson B. D.; States D. J.; Swaminathan, S.; Karplus, M. [J] J. Comput. Chem.1983,4,187-217.
    114] Chen, J. H.; Im, W.; Brooks, C. L. Balancing Solvation and Intramolecular Interactions:Toward a Consistent[J] J. Am. Chem. Soc.2006,128,3728-3736.
    [15]Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water, [J] J Chem. Phys. 1983, 79,926-935.
    [16]Berkowitz, M.; McCammon, J. A. Molecular dynamics with stochastic boundary conditions. [J] Chem. Phys. Lett. 1982, 90, 215-217.
    [17]Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F. Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafer, A.; Lennartz, C. QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis. [J] J. Mol. Struct. (THEOCHEM) 2003, 632, 1 -28.
    [18]Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Electronic structure calculations on workstation computers: The program system turbomole. [J| Chem. Phys. Lett. 1989, 162, 165-169.
    [19]Smith, W.; Forester, T. R. DL POLY 2.0: a general-purpose parallel molecular dynamics simulation package. [J] J. Mol. Graph. 1996, 14, 136-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700