刺槐中慢生根瘤菌对铜的吸附特性及抗性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用从中国甘肃省金属尾矿分离到的根瘤菌作为生物吸附剂材料去除污染水体环境中的铜,系统的研究了铜耐受菌株的生物吸附特性和吸附机理,拟为重金属污染环境的修复与治理提供新的材料和方法。
     从甘肃省金属尾矿区豆科植物刺槐根瘤中共分离得到73株根瘤菌,其中菌株CCNWGS0123对铜的抗性较高,它可在pH4.0和pH10.0的培养基上生长,耐6%浓度的氯化钠,可利用琥珀酸钠、丙酮酸钠、丙二酸钠、D-木糖、半乳糖、D-果糖、丙酸钠、L-阿拉伯糖、D-核糖、鼠李糖、甘露糖、麦芽糖、柠檬酸钠、醋酸钠、葡萄糖、蔗糖、乳糖和肌醇为唯一碳源;利用半胱氨酸、L-天门冬酰胺、DL-α-氨基酸、L-甲硫氨酸、DL-组氨酸、天冬氨酸、丙氨酸、L-胱氨酸和L-谷氨酸为唯一氮源;能够抗300μg/ml氨苄西林、300μg/ml氯霉素、100μg/ml卡那霉素、100μg/ml氨苄西林钠、300μg/ml林可霉素、50μg/ml硫酸链霉素和5μg/ml丁胺卡那霉素;菌株CCNWGS0123可在含有2.2mM铜、0.1%甲基橙、0.2%溴酚蓝、0.2%刚果红和0.2%中性红的培养基上生长;可在YMA上产过氧化氢;16S rRNA、nodA、nodC和nifH基因序列分析,确定该菌株属于Mesorhizobium amorphae。
     在菌株CCNWGS0123对铜离子的吸附特性研究中发现,其活细胞和死细胞均可作为一种生物吸附剂去除水溶液中铜污染;在pH为5.0,转速为150rpm,温度为28°C时,铜的去除率最高,30分钟到达吸附平衡。吸附等温线拟合表明,Langmuir方程比Freundlich吸附式更适于拟合吸附过程。在菌体接种量为100mg/l和铜离子初始浓度为0.5g/l时,铜离子的去除率最高。傅立叶红外光谱(FT-IR)分析表明,细胞壁上O-H、N-H、C-H、C=O、-NH、-CN、C-N、C-O、酰胺(-I、-II、-III)、不饱和烯烃、烷基和芳香团等官能团参与了菌体和铜的相互作用。扫描电镜(SEM)显示,铜胁迫下细胞出现变形、聚集及细胞表面受损等现象。X-射线扫描能谱(EDX)分析结果显示,在1.1keV,8.1keV和8.9keV处出现了三个明显的吸收峰,表明细胞表面有铜的吸附。此外,铜的富集与细胞生长和生物量的增加有关,菌株是可能通过产生胞内多糖,将铜离子固定在细胞内,或通过在细胞外和细胞壁上分泌化合物螯合铜离子。
     本研究是用M. amorphae CCNWGS0123作为铜离子吸附剂的首次研究,该菌株不仅可与刺槐作为共生固氮促进植物生长,改善土壤营养条件,还可以作为生物修复体系去除污染土壤中的铜。该研究系统的阐明了CCNWGS0123作为吸附剂移除铜离子特性和机制,发现使用少量的菌体(活细胞和死细胞)进行生物吸附去除水体中的铜是一个经济、环保的途径,可用于水体污染处理材料。
A total of76rhizobial strains were isolated from the nodules of Robinia pseudoacaciagrown in the mine tailings of Gansu Province, China. The strain CCNWGS0123was isolatedscreened and many physiological and biochemical characteristics were carried out. The resultsshowed that strain CCNWGS0123can grow in YMA medium at pH4.0to10.0or in6%NaCl. It can use the following materials as sole carbon sources: sodium succinate, sodiumpyruvate, sodium malonate, D-xylose, galactose, D-fructose, sodium propionate, L-arabinose,D-ribose, rhamnose, mannose, maltose, sodium citrate, sodium acetate, glucose, sucrose,lactose and inositol. L-cysteine, L-asparagines, DL-α-amino acid, L-methionine, DL-histidine,L-aspartic acid, L-alanine, L-cystine and L-glutamic acid could be used as sole nitrogensources. CCNWGS0123can grow on YMA plates supplemented with the followingantibiotics and chemical compounds:300μg/ml Ampicillin,300μg/ml chloramphenicol,100μg/ml kanamycin,100μg/ml ampicillin sodium,300μg/ml lincomycin,50μg/mlStreptomycin sulfate and5μg/ml Amikacin2.2mMcopper,0.1%methyl orange,0.2%Bromo-thymol blue,0.2%congo red and0.2%Neutral red. CCNWGS0123can producehydrogen peroxide in YMA. Based on the analysis of16S rRNA, nodA, nodC and nifH genessequences, the strain CCNWGS0123was identified as Mesorhizobium amorphae.
     Our studies showed that both dead and live cells of M. amorphae CCNWGS0123areeffective absorbents for copper removal from aqueous solution. The removal of copperincreased significantly by increasing the pH up to5.0, agitation speed150rpm andtemperature28°C. Equilibrium was reached within30min. The absorption isotherms could bewell fitted by the Langmuir equation followed by the Freundlich equation. The highestremoval of initial copper concentration was achieved at a dosage of100mg/L and the highestbiosorption capacity was found at an initial concentration of0.5g/L Cu (II). Fouriertransform-infrared spectroscopy (FT-IR) analysis indicated that many functional groups, suchas O-H, N-H, C-H, C=O,-NH,-CN, C-N, C-O, amide (-I,-II,-III), and unsaturated alkenes,alkyls and aromatic groups on the cell surface, were involved in the interaction betweenCCNWGS0123and Cu ion. Scanning electron microscope (SEM) results showed deformation,aggregation and cell-surface damage due to the precipitation of copper on the cell surface.Energy Dispersive X-ray Scanning (EDX) showed three distinct peaks at1.1keV,8.1keVand8.9keV, implying that copper ions have been absorbed on the cells. Moreover, copperaccumulation was related to cell growth or increased biomass. The CCNWGS0123strain could have produced the intracellular polysaccharide and immobilized the copper ions in theircells, or secreted compounds onto the extracellular space and cell wall. In addition, our resultssuggested that Robinia pseudoacacia and M. amorphae CCNWGS0123could be a system toextract copper from contaminated soils. To our knowledge, this is the first time that M.amorphae CCNWGS0123has been used as an absorbent of copper ions. Based on our results,we foresee the possibility of using Mesorhizobium amorphae CCNWGS0123for the removalof copper ions from aqueous solution compared with other biomaterials, thus reducingaqueous environmental pollution. It appears that the most economical way to use it would beto use small batches of biomass to remove toxic concentrations of copper ions from aqueoussolution. Dead and live cells of CCNWGS0123showed potential as an efficient biosorbent forthe removal of copper from aqueous solutions. Taking present findings into consideration,dead cells of CCNWGS0123were proven to be more efficient and low-cost biosorbents thanlive ones, and can be utilized as an alternative in the treatment of wastewater.
引文
Adesola Babarinde NA, Oyesiku OO, Omolola F, Dairo (2007) Isotherm andthermodynamic studies of the biosorption of copper (II) ions by Erythrodontiumbarteri. Journal of Physical Sciences Vol.2(11), pp.300-304
    Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavymetals from wastewater. Bioresource Technology98(12):2243-2257
    Akar T, Demir TA, Kiran I, Ozcan A, Ozcan AS, Tunali S (2006) Biosorption potential ofNeurospora crassa cells for decolorization of Acid Red57(AR57) dye. Journal ofChemical Technology&Biotechnology81(7),1100-1106.
    Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel (II) from aqueoussolution by loofa sponge-immobilized biomass of Chlorella sorokiniana:characterization studies. Journal of Hazardous Materials108(1-2):85-94.
    Aksu Z, Sa Y, Kutsal T (1992) The Biosorption of Copper(II) by C.vulgaris andZ.ramigera. Environmental Technology13:579-86.
    Aksu Z (2001) Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgarisin a batch system: effect of temperature. Separation and Purification Technology21(3):285-294.
    Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters ofthe batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochemistry38(1):89-99.
    Aksu Z, Balibek E (2007) Chromium (VI) biosorption by dried Rhizopus arrhizus: Effect ofsalt (NaCl) concentration on equilibrium and kinetic parameters. Journal of HazardousMaterials145(1–2):210-220.
    Aksu Z, agatay SS (2006) Investigation of biosorption of Gemazol Turquise Blue-Greactive dye by dried Rhizopus arrhizus in batch and continuous systems. Separationand Purification Technology48(1):24-35.
    Al-Asheh S, Duvnjak Z (1998) Binary metal sorption by pine bark: Study of equilibria andmechanisms. Journal Name: Separation Science and Technology; Journal Volume:33;Journal Issue:9; Other Information: PBD: Jun1998: Medium: X; Size: pp.1303-1329
    Al-Rub FAA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blankalginate beads, free and immobilized algal cells. Process Biochemistry39(11):1767-1773.
    Andreazza R, Pieniz S, Wolf L, Lee MK, Camargo FA, Okeke BC (2010)Characterization of copper bioreduction and biosorption by a highly copper Archives01-8.
    Atkinson BW, Bux F, Kasan HC (1998) Considerations for application of biosorptiontechnology to remediate metal-contaminated industrial effluents. Water SA24:129-35.
    Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake fromcontaminated water: a review Journal of Hazardous Materials97(1-3):219-243.
    Bai RS, Abraham TE (2001) Biosorption of Cr (VI) from aqueous solution byRhizopusnigricans, Bioresource Technology.79(1):73-81.
    Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-costsorbents for heavy metals. Water Research33(11):2469-2479.
    Banat IM, Nigam P, Marchant R (1996) Microbial decolorization of textile-dyecontainingeffluents: a review. Bioresource Technology58:217-27.
    Bankar AV, Kumar AR, Zinjarde SS (2009) Removal of chromium (VI) ions from aqueoussolution by adsorption onto two marine isolates of Yarrowia lipolytica. Journal ofHazardous Materials170(1):487-494.
    Bender J, Phillips P (2004) Microbial mats for multiple applications in aquaculture andbioremediation. Bioresource Technology94(3):229-238.
    Beolchini F, Pagnanelli F, Toro L, Vegliò F (2006) Ionic strength effect on copperbiosorption by Sphaerotilus natans: equilibrium study and dynamic modelling inmembrane reactor. Water Research40(1):144-152.
    Beveridge TJ, Murray RGE (1976) Uptake and retention of metals by cell walls of Bacillussubtilis. Journal of Bacteriology127:1502-18.
    Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillussubtilis. Journal of Bacteriology141:876-87.
    Bhatti HN, Mumtaz B, Hanif MA, Nadeem R (2007) Removal of Zn(II) ions from aqueoussolution using Moringa oleifera Lam.(horseradish tree) biomass. ProcessBiochemistry42(4):547-553.
    Binupriya AR, Sathishkumar M, Kavitha D, Swaminathan K, Yun SE, Mun SP (2007)Experimental and Isothermal Studies on Sorption of Congo Red by Modified MycelialBiomass of Wood-rotting Fungus. CLEAN–Soil, Air, Water35(2):143-150.
    Bohumil V (2007) Biosorption and me. Water Research41(18):4017-4029
    Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T,von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997)The cellular prion protein binds copper in vivo. Nature390(6661):684-687
    Brown N L, Barrett S R, Camakaris J, Lee B T O, Rouch D A (1995) Molecular geneticsand transport analysis of the copper-resistance determinant (pco) from Escherichiacoli plasmid pRJ1004. Mol. Microbiol.17,1153-1166.
    Can C, Jianlong W (2007) Correlating metal ionic characteristics with biosorption capacityusing QSAR model. Chemosphere69(10):1610-1616.
    Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Chamber MA,Palomares AJ (2005) Isolation and characterisation of symbiotically EffectiveRhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollarpyrite mine. Mol. Microbiol.37,1131-1140.
    Chang JS, Law R, Chang CC (1997) Biosorption of lead, copper and cadmium by biomassof Pseudomonas aeruginosa PU21. Water Research31,1651-1658.
    Chen JP, Wang L (2004) Characterization of metal adsorption kinetic properties in batch andfixed-bed reactors. Chemosphere54(3):397-404.
    Chen JP, Yang L (2006) Langmuir22,21,8906-8914.
    Chen W M, Wu C H, James E K, Chang J S (2008) Metal biosorption capability ofCupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosapudica. Journal of Hazardous Materials151(2-3),364-371.
    Chen W X, Tan Z Y, Gao J L, Li Y, Wang E T (1997) Rhizobium hainanense sp. nov.,isolated from tropical legumes, Int. Journal Systematic Bacteriology.47pp.870-873.
    Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper(II)and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids andSurfaces B: Biointerfaces46(2):101-107.
    Chen BY, Utgikar VP, Harmon SM, Tabak HH, Bishop DF, Govind R (2000) Studies onbiosorption of zinc (II) and copper (II) on Desulfovibrio desulfuricans. InternationalBiodeterioration&Biodegradation46,11-18.
    Cojocaru C, Zakrzewska-Trznadel G, Jaworska A (2009) Removal of cobalt ions fromaqueous solutions by polymer assisted ultrafiltration using experimental designapproach part1: Optimization of complexation conditions. Journal of HazardousMaterials,169,599-609.olak F, Atar N, Olgun A (2009) Biosorption of acidic dyes from aqueous solution byPaenibacillus macerans: Kinetic, thermodynamic and equilibrium studies. ChemicalEngineering Journal150,122-130.
    Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review BioresourceTechnology97:1061-85.
    Crist RH, Oberholser K, Shank N, Ming N (1981) Nature of bonding between metallic ionsand algal cell walls. Environmental Science&Technology15(10):1212-1217.
    Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metalbiosorption by brown algae. Water Research37(18):4311-4330
    Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: A review.Journal of Hazardous Materials157(2-3):220-229.
    D nmez G, Aksu Z (2002) Removal of chromium (VI) from saline wastewaters byDunaliella species. Process Biochemistry38,751-762.
    Doyle RJ, Matthews TH, Streips UN (1980) Chemical basis for selectivity of metal ions bythe Bacillus subtilis cell wall. Journal of Bacteriology143:471-80.
    Doyurum S, elik A (2006) Pb (II) and Cd (II) removal from aqueous solutions by olivecake. Journal of Hazardous Materials138(1):22-28.
    Ekmekyapar F, Aslan A, Bayhan YK, Cakici A (2006) Biosorption of copper (II) by nonliving lichen biomass of Cladonia rangiformis hoffm. Journal of Hazardous Materials137(1):293-298.
    Ekmekyapar F, Aslan A, Bayhan YK, Cakici A (2006) Biosorption of copper (II) bynonliving lichen biomass of Cladonia rangiformis hoffm. Journal of HazardousMaterials137(1):293-298.
    Esposito A, Pagnanelli F, Lodi A, Solisio C, Vegliò F (2001) Biosorption of heavy metalsby Sphaerotilus natans: an equilibrium study at different pH and biomassconcentrations. Hydrometallurgy60(2):129-141.
    Esposito A, Pagnanelli F, Vegliò F (2002) pH-related equilibria models for biosorption insingle metal systems. Chemical Engineering Science57,307-313.
    Evans JR, Davids WG, MacRae JD, Amirbahman A (2002) Kinetics of cadmium uptakeby chitosan-based crab shells. Water Research36,3219-3226.
    Fan LM, Ma ZQ, Liang JQ, Li HF, Wang ET, Wei GH (2010) Characterization of acopper-resistant symbiotic bacterium isolated from Medicago lupulina growing inmine tailings. Bioresource Technology102:703-709
    Figueira MM, Volesky B, Ciminelli VST, Roddick FA (2000) Biosorption of metals inbrown seaweed biomass. Water Research34(1):196-204.
    Figueira MMF, Volesky B, Azarian K, Ciminelli VST (1999)"Multimetal biosorption ina column using sargassum biomass,” Biohydrometallurgy and the Environment towardthe mining of the21st century (part b): International biohydrometallurgy symposium-proceedings, R. Amils and A. Ballester (Editors), Elsevier Science, Amsterdam, theNetherlands, pp.503-512.
    Freundlich H (1907) Ueber die adsorption in loesungen. Z Phys Chem57,385-470.
    Friberg L, Nordberg GF, Vouk B (1979) Handbook on the Toxicology of Metals,Elsevier/Biomedical Press, North-Holland/Amsterdam.
    Gabaldón C, Izquierdo M, Marzal P, Sempere F (2007) Evaluation of biosorbents for Curemoval from wastewater in the presence of EDTA. Journal of Chemical Technology&Biotechnology82(10):888-897.
    Gadd MG, White C, DeRome L (1988) Heavy metal and radionuclide uptake by fungi andyeasts. In: Norri PR, Kelly DP, editors. Biohydrometallurgy. Chippenham, Wilts, UK:A. Rowe.
    GAO JL, SUN JG, LI Y, WANG ET, CHEN WX (1994) Numerical Taxonomy and DNARelatedness of Tropical Rhizobia Isolated from Hainan Province, China. InternationalJournal of Systematic Bacteriology44(1):151-158.
    Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms andmicrobial processes in agricultural soils: a review. Soil Biology and Biochemistry30(10-11):1389-1414.
    Golab Z, Breitenbach M, Jezierski A (1995) Sites of copper binding in Streptomycespilosus. Water, Air,&Soil Pollution82(3):713-721.
    Gong R, Ding Y, Liu H, Chen Q, Liu Z (2005) Lead biosorption and desorption by intactand pretreated spirulina maxima biomass. Chemosphere58,125-130.
    Harris PO, Ramelow GJ (1990) Binding of metal ions by particulate biomass Derived fromChlorella vulgerris and Scendesmus quadricauda. Environmental Science Technology24:220-8.
    Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green, and red seaweeds.Chemical Engineering Journal97(2–3):249-255.
    Hassan Khani M, Reza Keshtkar A, Meysami B, Firouz Zarea M, Jalali R (2006)Biosorption of uranium from aqueous solutions by nonliving biomass of marinealgaeCystoseira indica. Electronic Journal of Biotechnology9:0-0
    Haukka K, Lindstr m K, Young J P (1998) Three phylogenetic groups of nodA and nifHgenes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing inAfrica and Latin America. Applied and Environmental Microbiology64,419-426.
    Ho YS, McKay G (1999) The sorption of lead (II) ions on peat. Water Research33(2):578-584.
    Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnummoss peat. Water Research34(3):735-742.
    Hong A, Chen T, Okey R (1995) Chelating extraction of copper from soil using S-carboxymethylcysteine, Water Environmental Research67;971-978.
    Horsfall JM, Abia AA, Spiff AI (2006) Kinetic studies on the adsorption of Cd2+, Cu2+andZn2+ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber barkwaste. Bioresource Technology97(2):283-291.
    Iyer A, Mody K, Jha B (2004) Accumulation of hexavalent chromium by anexopolysaccharide producing marine Enterobacter cloaceae. Marine PollutionBulletin49(11–12):974-977.
    Jiang W, Saxena A, Song B, Ward BB, Beveridge TJ, Myneni SCB (2004) Elucidation ofFunctional Groups on Gram-Positive and Gram-Negative Bacterial Surfaces UsingInfrared Spectroscopy. Langmuir20(26):11433-11442
    Kandah M, Abu Al-Rub FA, Al-Dabaibeh N (2002) Competitive Adsorption of Copper-Nickel and Copper-Cadmium Binaries on SMW. Engineering in Life Sciences2(8):237-243.
    Kandah M, Abu Al-Rub FA, Al-Dabaybeh N (2003) The aqueous adsorption of copper andcadmium ions on sheep manure. Adsorption Science&Technology21:501-9.
    Kapoor A, Viraraghavan T (1995) Fungal biosorption--an alternative treatment option forheavy metal bearing wastewaters: a review. Bioresource Technology53(3):195-206.
    Kefala M I, Zouboulis A I, Matis K A (1999) Biosorption of cadmium ions byActinomycetes and separation by flotation. Environmental Pollution104(2),283-293.
    Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends inBiotechnology16,291-300.
    Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: abeneficial plant–microbe interaction. Mol. Plant Microbe. Interaction.17,6-15.
    Kuyucak N, Volesky B (1989) The mechanism of gold biosorption. Biorecovery.1:219-235.
    Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001)Classification of rhizobia based on nodC and nifH gene analysis reveals a closephylogenetic relationship among Phaseolus vulgaris symbionts, Microbiology147,981-993.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum.Journal of the American Chemical Society40,1361-403.
    Lebedev VS, Veselovskii AV, Deinega E, Fedorov I (2002) The role of reactive oxygenspecies in copper-induced permeability of plasma membranes in Escherichia coli.Biofizika47,295-299.
    Li H, Lin Y, Guan W, Chang J, Xu L, Guo J, Wei G (2010) Biosorption of Zn (II) by liveand dead cells of Streptomyces ciscaucasicus strain CCNWHX72-14. Journal ofHazardous Materials179,151-159.
    Li Xm, Liao DX, Xu, XQ, Yang Q, Zeng GM, Zheng W, Guo L (2008) Kinetic studies forthe biosorption of lead and copper ions by Penicillium simplicissimum immobilizedwithin loofa sponge. Journal of Hazardous Materials159,610-615.
    Lin Y, Wang X, Wang B, Mohamad O, Wei G (2012) Bioaccumulation characterization ofzinc and cadmium by Streptomyces zinciresistens, a novel actinomycete.Ecotoxicology and Environmental Safety77(0):7-17.
    Liu H-L, Chen BY, Lan YW, Cheng YC (2004) Biosorption of Zn(II) and Cu(II) by theindigenous Thiobacillus thiooxidans. Chemical Engineering Journal97(2-3):195-201.
    Lloyd JR, Lovley DR, Macaskie LE (2003) Biotechnological Application of Metal-reducingMicroorganisms. In: Allen I. Laskin JWB, Geoffrey MG (eds) Advances in AppliedMicrobiology, vol Volume53. Academic Press, pp85-128.
    Lu S G, Gibb S W (2007) Copper removal from wastewater using spent-grain as biosorbent.Bioresource Technology,99(6):1509-1517.
    Lu WB, Shi JJ, Wang CH, Chang JS (2006) Biosorption of lead, copper and cadmium byan indigenous isolate Enterobacter sp. J1possessing high heavy-metal resistance.Journal of Hazardous Materials134(1-3):80-86
    Malik A (2004) Metal bioremediation through growing cells. Environment International30(2):261-278.
    Mameri N, Boudries N, Addour L, Belhocine D, Lounici H, Grib H, Pauss A (1999)Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. WaterResearch33(6):1347-1354
    Mashitah MD, Yus Azila Y, Bhatia S (2008) Biosorption of cadmium (II) ions byimmobilized cells of Pycnoporus sanguineus from aqueous solution. BioresourceTechnology99,4742-4748.
    Mata YN, Blázquez ML, Ballester A, González F, Mu oz JA (2008) Characterization ofthe biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus.Journal of Hazardous Materials158(2-3):316-323.
    Mata YN, Blázquez ML, Ballester A, González F, Mu oz JA (2009) Biosorption ofcadmium, lead and copper with calcium alginate xerogels and immobilized Fucusvesiculosus. Journal of Hazardous Materials163(2-3):555-562.
    McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludgeon soils, microorganisms and plants. Journal of Industrial Microbiology&Biotechnology14(2):94-104.
    McHale AP, McHale S (1994) Microbial biosorption of metals: Potential in the treatment ofmetal pollution. Biotechnology Advances12(4):647-652.
    Meena AK, Kadirvelu K, Mishra GK, Rajagopal C, Nagar PN (2008) Adsorptive removalof heavy metals from aqueous solution by treated sawdust (Acacia arabica). Journal ofHazardous Materials150(3):604-611.
    Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents--Acritical review. Journal of Hazardous Materials142(1-2):1-53.
    Mohan S, Sreelakshmi G (2008) Fixed bed column study for heavy metal removal usingphosphate treated rice husk. Journal of Hazardous Materials153(1-2):75-82.
    Monica OM, Julia WN, Raina MM (2008) Characterization of a bacterial Community in anabandoned Semiarid Lead-Zinc Mine Tailing Site. Applied Environmental Microbial.74:3899.
    Monteagudo JM, Ortiz MJ (2000) Removal of inorganic mercury from mine waste water byion exchange. Journal of Chemical Technology&Biotechnology75(9):767-772.
    Naddafi K, Nabizadeh R, Saeedi R, Mahvi AH, Vaezi F, Yaghmaeian K, Ghasri A,Nazmara S (2007) Biosorption of lead (II) and cadmium (II) by protonatedSargassum glaucescens biomass in a continuous packed bed column. Journal ofHazardous Materials147(3):785-791.
    Naja G, Volesky B (2006) Multi-metal biosorption in a fixed-bed flow-through column.Colloids and Surfaces A: Physicochemical and Engineering Aspects281(1-3):194-201.
    Nakajima A, Yasuda M, Yokoyama H, Ohya-Nishiguchi H, Kamada H (2001) Copperbiosorption by chemically treated Micrococcus luteus cells. World Journal ofMicrobiology and Biotechnology17(4):343-347.
    Ozdemir G, Ceyhan N, Ozturk T, Akirmak F, Cosar T (2004) Biosorption ofchromium(VI), cadmium(II) and copper(II) by Pantoea sp. TEM18. ChemicalEngineering Journal102(3):249-253
    Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T (2003) Heavy metal biosorption bybiomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge.Bioresource Technology90:71-74.
    Pagnanelli F, Esposito A, Toro L, Vegliò F (2003) Metal speciation and pH effect on Pb, Cu,Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model.Water Research37(3):627-633.
    Pagnanelli F, Mainelli S, De Angelis S, Toro L (2005) Biosorption of protons and heavymetals onto olive pomace: Modelling of competition effects. Water Research39(8):1639-1651.
    Pamukoglu MY, Kargi F (2006) Removal of copper (II) ions from aqueous medium bybiosorption onto powdered waste sludge. Process Biochemistry41(5):1047-1054.
    Pardo R, Herguedas M, Barrado E, Vega M (2003) Biosorption of cadmium, copper, leadand zinc by inactive biomass Pseudomonas Putida Analytical and BioanalyticalChemistry376(1):26-32.
    Patterson JW, Minear RA, Gasca E, Petropoulos C (1998) Industrial discharges of metalsto water. In: Allen, H.E., Garrison, A.W., Luther, G.W., IIIIII (Eds.), Metals inSurface Waters. Ann Arbor Press, Sleeping Bear Press, Chelsea, Michigan, USA, pp.37–65(Chapter3).
    Pohlman GC (1931) Changes produced in nitrogenous compounds by Rhizobium meliloti andR. japonicum. Soil Sci.31:385.
    Pollard SJT, Fowler GD, Sollars CJ, Perry R (1992) Low-cost adsorbents for waste andwastewater treatment: a review. The Science of the Total Environment116(1-2):31-52.
    Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacterstrain MCM B-181: Characterization studies. Journal Name: Biotechnology Progress;15,228-237
    Raize O, Argaman Y, Yannai S (2004) Mechanisms of biosorption of different heavy metalsby brown marine macroalgae. Biotechnology and Bioengineering87(4):451-458.
    Rao CS (1992) Environmental Pollution Control Engineering, Wiley Eastern, NewDelhi.Remediation. Elsevier Academic Press, Boston.
    Ruiz-Manríquez A, Maga a PI, López V, Guzmán R (1998) Biosorption of Cu byThiobacillus ferrooxidans. Bioprocess and Biosystems Engineering18(2):113-118.
    Sag Y, A ikel ü, Aksu Z, Kutsal T (1998) A comparative study for the simultaneousbiosorption of Cr (VI) and Fe (III) on C. vulgaris and R. arrhizus: application of thecompetitive adsorption models. Process Biochemistry33(3):273-281.
    Sag Y, Ak ael B, Kutsal T (2001) Evaluation, interpretation, and representation of three-metal biosorption equilibrium using a fungal biosorbent. Process Biochemistry37(1):35-50.
    Sa Y, Kutsal T (2000) Determination of the biosorption heats of heavy metal ions onZoogloea ramigera and Rhizopus arrhizus. Biochemical Engineering Journal6:145-51.
    Saleem M, Brim H, Hussain S, Arshad M, Leigh MB, Zia H (2008) Perspectives onmicrobial cell surface display in bioremediation. Biotechnology Advances26(2):151-161.
    Sambrook J, Russell D W (2001) Molecular Cloning: a Laboratory Manual, third ed. ColdSpring Harbor Laboratory Press, Cold Spring Harbor, New York.
    Sar P, Kazy SK, Asthana RK, Singh SP (1999) Metal adsorption and desorption bylyophilized Pseudomonas aeruginosa. Int. Biodeterior. Biodegradation44,101-110.
    Sar A, Tuzen M (2008) Biosorption of total chromium from aqueous solution by red algae(Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal ofHazardous Materials160(2–3):349-355.
    Sarioglu M, Atay üA, Cebeci Y (2005) Removal of copper from aqueous solutions byphosphate rock. Desalination181(1-3):303-311
    Sarret Gr, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-B ard L,Menthonnex JJ (1998) Structural Determination of Zn and Pb Binding Sites inPenicillium chrysogenum Cell Walls by EXAFS Spectroscopy. Environmental Science&Technology32,1648-1655.
    Savvaidis I, Hughes MN, Poole RK (2003) Copper biosorption by Pseudomonas cepaciaand other strains. World Journal of Microbiology and Biotechnology19(2):117-121.
    Sawalha MF, Peralta-Videa JR, Romero-González J, Gardea-Torresdey JL (2006)Biosorption of Cd (II), Cr (III), and Cr (VI) by saltbush (Atriplex canescens) biomass:Thermodynamic and isotherm studies. Journal of Colloid and Interface Science300(1):100-104.
    Seki K, Saito N, Aoyama M (1997) Removal of heavy metal ions from solutions byconiferous barks. Wood Science and Technology31(6):441-447.
    Shen J, Duvnjak Z (2005) Adsorption kinetics of cupric and cadmium ions on corncobparticles. Process Biochemistry40(11):3446-3454
    Smith SR (1997) Rhizobium in soils contaminated with copper and zinc following the long-term application of sewage sludge and other organic wastes. Soil Biology&Biochemistry29,1475-1489.
    Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia. Springer-Verlag, Berlin.
    Sousa AI, Cacador I, Lillebo AI, Pardal MA (2008) Heavy metal accumulation inHalimione portulacoides: intra-and extra-cellular metal binding sites.Chemosphere70,850-857.
    Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent forsequestering heavy metal ions from aqueous solutions-A review. BioresourceTechnology99(14):6017-6027.
    Suhasini IP, Sriram G, Asolekar SR, Sureshkumar GK (1999) Biosorptive removal andrecovery of cobalt from aqueous systems. Process Biochemistry34(3):239-247.
    Sun LN, Zhang YF, He LY, Chen Z J, Wang QY, Qian M, Sheng XF (2010) Geneticdiversity and characterization of heavy metal-resistant-endophytic bacteria fromtwo copper-tolerant plant species on copper mine wasteland. Bioresourse. Technology.101,501-509.
    Tan Z Y, Xu X D, Wang E T, Gao J L, Martinez-Romero E, Chen W X (1997)Phylogenetic and genetic relationships of Mesorhizobium tianshanense and relatedrhizobia. International Journal of Systematic Bacteriology47,874-879.
    Tangaromsuk J, Pokethitiyook P, Kruatrachue M, Upatham ES (2002) Cadmiumbiosorption by Sphingomonas paucimobilis biomass. Bioresource Technology85,103-105.
    Thompson JP, Skerman VBD (1979) Azotobacteriaceae. Academic Press, Inc., New York.
    Thomson B, Turney W (1995) Mineral and mine drainage, Water Environmental. Research67;527-529.
    Tobin JM, Cooper DG, Neufeld RJ (1990) Investigation of the mechanism of metal uptakeby denatured Rhizopus arrhizus biomass. Enzyme and Microbial Technology12(8):591-595.
    Toroglu S, Toroglu E, Dincer S, Kara C, Kertmen M (2009) Resistances ofantibiotics and heavy metals in Enterobacteriaceae spp. isolated from gills andintestines of Achanthobrama marmid (Heckel,1843) from Sir Dam lake Turkey.Journal Environmental Biology.30,23-31.
    Tsezos M (2001) Biosorption of metals. The experience accumulated and the outlook fortechnology development. Hydrometallurgy59(2-3):241-243.
    Tunali S, Akar T, zcan AS, Kiran I, zcan A (2006) Equilibrium and kinetics ofbiosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola.Separation and Purification Technology47(3):105-112.
    Tunali S, abuk A, Akar T (2006) Removal of lead and copper ions from aqueous solutionsby bacterial strain isolated from soil. Chemical Engineering Journal115(3):203-211.
    UNEP (1989) Environmental aspects of the metal finishing industry: A technical guide,United Nations Environment Programme, Industry and Environment Office, Paris,pp.19-39and53-57.
    USEPA, EPA-822-R-02-047(2002) Update of Ambient Water Quality Criteria for Copper.USEPA, April2002.
    Uslu G, Tanyol M (2006) Equilibrium and thermodynamic parameters of single and binarymixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: Effectof temperature. Journal of Hazardous Materials135(1-3):87-93.
    Van der Wal A, Norde W, Zehnder AJB, Lyklema J (1997) Determination of the totalcharge in the cell walls of Gram-positive bacteria. Colloids and Surfaces B:Biointerfaces9(1-2):81-100.
    Vannela R, Verma S (2006) Cu Removal and recovery by SORB: batch stirred and up-flowpacked bed columnar reactor systems. Bioprocess and Biosystems Engineering29(1):7-17.
    Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants:Biodiversity prospecting for phytoremediation technology. Electronic Journal ofBiotechnology,6,285-321.
    Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy44(3):301-316.
    Vijayaraghavan K, Han MH, Choi SB, Yun YS (2007) Biosorption of Reactive black5byCorynebacterium glutamicum biomass immobilized in alginate and polysulfonematrices. Chemosphere68(10):1838-1845.
    Vijayaraghavan K, Palanivelu K, Velan M (2006) Biosorption of copper (II) and cobalt (II)from aqueous solutions by crab shell particles. Bioresource Technology97(12):1411-1419.
    Vijayaraghavan K, Yun YS (2007) Utilization of fermentation waste (Corynebacterium
    glutamicum) for biosorption of Reactive Black5from aqueous solution. Journal of
    Hazardous Materials141(1):45-52
    Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnology
    Advances26(3):266-291.
    Vijayaraghavan K, Palanivelu K, Velan M (2006) Biosorption of copper (II) and cobalt (II)
    from aqueous solutions by crab shell particles. Bioresource Technology97,1411-1419.
    Vilar VJP, Botelho CMS, Loureiro JM, Boaventura RAR (2008) Biosorption of copper by
    marine algae Gelidium and algal composite material in a packed bed column.
    Bioresource Technology99(13):5830-5838.
    Villaescusa I, Martínez M, Miralles N (2000) Heavy metal uptake from aqueous solution by
    cork and yohimbe bark wastes. Journal of Chemical Technology&Biotechnology75
    (9):812-816.
    Vincent J M (1970) A Manual for the Practical Study of Root-Nodule Bacteria. Blackwell,
    Oxford.
    Vinuesa P, Silva C, Lorite M J, Izaguirre-Mayoral M L, Bedmar EJ, Martínez-Romero
    E (2005) Molecular systematics of rhizobia based on maximum likelihood and
    Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use
    in the classification of Sesbania microsymbionts from Venezuelan wetlands.
    Systematic and Applied Microbiology28(8),702-716.
    Volesky B (2001) b Detoxification of metal-bearing effluents: biosorption for the next
    century. Hydrometallurgy59(2–3),203-216.
    Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnology Program11:235-
    250.
    Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: A review.
    Biotechnology Advances24(5):427-451.
    Wang J, Chen C (2008) Biosorbents for heavy metals removal and their future.
    Biotechnology Advances27(2):195-226.
    Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting
    Rhizobium on the performance of pea grown in metal-amended soil. Archives o1-8.
    Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting
    Bradyrhizobium sp.(Vigna) on growth, symbiosis, seed yield and metal uptake by
    green gram plants. Chemosphere70,36-45.
    Ware GW, Whitacre DM, Albert LA, Voogt P, Gerba CP, Hutzinger O, Knaak JB,
    Mayer FL, Morgan DP, Park DL, Tjeerdema RS, Yang RSH, Gunther FA,
    Krishnani K, Ayyappan S (2006) Heavy Metals Remediation of Water Using Plants
    and Lignocellulosic Agrowastes. In: Reviews of Environmental Contamination and
    Toxicology, vol188. Reviews of Environmental Contamination and Toxicology.
    Springer New York, pp59-84.
    White L0(1972) The taxonomy of the crown gall organism Agrobacterium tumefaciens and
    its relationship to rhizobia and other agrobacteria. Journal of General Microbiology.
    72565-574.
    Wu L, Lin SL (2006) Copper tolerance and copper uptake of Lotus purshianus (Benth.) Clem.
    &Clem and its symbiotic Rhizobium loti derived from a copper mine waste
    population. New Phytol.116,531–539.f Environmental Contamination and
    Toxicology55,33-42.
    Yang J, Volesky B (1999) Modeling Uranium-Proton Ion Exchange in Biosorption.
    Environmental Science&Technology33(22):4079-4085.
    Yavuz, Altunkaynak Y, Güzel F (2003) Removal of copper, nickel, cobalt and manganese
    from aqueous solution by kaolinite. Water Research37(4):948-952.
    Yee N, Benning LG, Phoenix VR, Ferris FG (2003) Characterization of
    Metala’Cyanobacteria Sorption Reactions: A Combined Macroscopic and Infrared
    Spectroscopic Investigation. Environmental Science&Technology38(3):775-782.
    Yuan Hp, Zhang Jh, Lu Zm, Min H, Wu C (2009) Studies on biosorption equilibrium and
    kinetics of Cd2+by Streptomyces sp. K33and HL-12. Journal of Hazardous Materials
    164,423-431.
    Yun YS, Park D, Park JM, Volesky B (2001) Biosorption of Trivalent Chromium on the
    Brown Seaweed Biomass. Environmental Science&Technology35,4353-4358.
    Zheng Y, Fang X, Ye Z, Li Y, Cai w (2008) Biosorption of Cu (II) on extracellular polymers
    from Bacillus sp. F19. Journal of Environmental Sciences20,1288-1293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700