溴化乙锭诱导培养对肺癌细胞生物学行为的影响及其诱导线粒体降解的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     线粒体是真核细胞内存在的双层膜细胞器,是细胞内代谢和能量产生的中心环节,同时还是不同细胞信号通路的通信站。实际上,线粒体的功能远远不止于此,他还是氧化磷酸化的副产物-内源性活性氧(reactive oxygen species,ROS)的主要来源。过量的ROS具有潜在毒性,可能导致线粒体内蛋白质、线粒体DNA及脂质损害,甚至可能通过活化内源性凋亡途径导致细胞死亡。此外,线粒体还与线粒体功能紊乱、心脏功能障碍、衰老和其他疾病相关。因此,线粒体的数量和功能都需要受到精确调控,以发挥维持细胞能量代谢稳态及其他细胞关键进程的作用。到目前为止,已经有证据表明自噬引起的选择性线粒体降解在调节线粒体数量和功能方面发挥着重要作用。因此,线粒体与自噬之间的关系在于自噬可以选择性清除异常增多或者受到损害的线粒体,这一过程又叫做线粒体自噬。
     最开始研究自噬的时候,一般认为其在细胞内是一保护性过程。基础水平的自噬通过再循环和利用细胞内成分在维持细胞稳态方面发挥着重要的作用。发展到现在,有关自噬的研究已经超出最初的定义,广泛应用于生理及病理学的研究。例如,自噬水平异常升高可能与一系列病理过程相关,如感染、神经退行性疾病、心血管疾病、衰老及肿瘤等。有关自噬与肿瘤的研究中,Beclin-1是最早发现的把自噬和肿瘤联系起来的基因,并在刚发现时将其定义为肿瘤抑制基因。进一步的研究发现,包括MAP-1-LC3和HsGSA7等在内的其他一些自噬相关基因(ATG)也与肿瘤的发生发展密切相关。与自噬相关基因相对应,自噬相关蛋白是自噬过程中的必需因子。微管相关蛋白轻链3(LC3)是哺乳动物体内酵母Atg8的同源物,通过剪切体内新合成PorLC3C端氨其酸形成LC3-Ⅰ。进而,具有E2样酶活性的Atg7再将LC3-Ⅰ C端的22个氨基酸剪切,形成LC3-Ⅱ,而LC3-Ⅱ直接参与自噬体的合成,并且是自噬现象的标志性蛋白。
     正常情况下,基础水平的自噬通过生理性清除受损细胞器和长寿命蛋白维持细胞稳态,而在代谢应激或能量危机如营养、生长因子或氧气剥夺,抑或线粒体损害时,自噬途径被持续激活。我们知道,线粒体在细胞生长、分裂及能量代谢等过程中发挥着非常重要的作用。显而易见,线粒体的这些功能也是肿瘤细胞增殖、存活及转移所必需的。根据文献报道,在血清饥饿条件下,自发线粒体膜电位去极化的频率是增加的,这些受损的线粒体进入酸性液泡,被自噬体和自噬溶酶体内捕获及降解。为研究肺癌细胞的能量代谢,我们通过低剂量溴化乙锭(ethidium bromide,EtBr)诱导培养的方法敲逐步敲除线粒体DNA,在线粒体DNA逐步缺失的过程中,我们研究发现线粒体数量大量减少,线粒体膜电位下降,更重要的是,在诱导培养过程中发现自噬标志物明显增高。因此,我们推测在EtBr诱导的肺癌细胞线粒体DNA敲除过程中,自噬通路被激活,并可能是线粒体降解的机制之一。因此,本文研究在使用低剂量EtBr诱导肺癌细胞线粒体DNA缺失过程中,研究mtDNA缺失程度对肺癌细胞生物学行为的影响,以及进一步探讨线粒体降解的可能机制。
     研究方法:
     1.肺癌细胞低剂量EtBr诱导培养及线粒体DNA缺失程度的鉴定
     人肺癌细胞系A549、SPC-A1和H322在含有10%的FBS及双抗的培养基中培养,当细胞融合度达到90%~95%时进行传代。为逐步敲除线粒体DNA,细胞培养基中加入250ng/ml的溴化乙锭,连续培养7天,培养时隔天换液。同时,培养基中额外加入50μg/ml的尿嘧啶和100μg/ml的丙酮酸钠。分别收集EtBr诱导培养前,及培养后第1、3、5和7天的肺癌细胞,通过实时定量PCR检测肺癌细胞中线粒体DNA含量及COX II的mRNA表达水平。另外鉴定EtBr诱导培养7天后肺癌细胞对尿嘧啶的营养依赖特性。
     2.线粒体DNA缺失程度对肺癌细胞生物学行为的影响
     人肺癌细胞A549、SPC-A1和H322在含EtBr的培养基中分别培养1、3、5和7天,将细胞用胰酶消化并计数,分别进行细胞增殖、克隆形成及细胞迁移实验,以检测肺癌细胞mtDNA敲除过程中细胞的增殖及迁移能力。此外,通过PI染色和Annexin V-FITC染色进行流式检测,分别测定不同mtDNA缺失程度肺癌细胞的细胞周期和早期凋亡水平的改变。同时,我们在体内研究mtDNA缺失不同程度肺癌细胞的生长情况。首先,用NOD/SCID小鼠建立肺癌细胞的皮下异种移植模型,每只小鼠在左侧皮下注射1×106个EtBr处理不同时间的细胞,待肿瘤体积肉眼可见后每周测量两次肿瘤体积,到限值时处死小鼠,取出肿瘤测量肿瘤直径及计算体积。
     3. EtBr诱导肺癌细胞线粒体降解的鉴定
     首先,用激光共聚焦验证线粒体的溶酶体降解过程。EtBr诱导培养不同时间的肺癌细胞在检测前20分钟同时加入200nM的绿色线粒体荧光探针和200nM的红色溶酶体荧光探针,孵育结束后用新鲜配置的PBS溶液洗涤三遍。随后在激光共聚焦显微镜下观察,共聚焦图像以2μm间隔进行采集。然后,使用TMRM荧光探针和JC-1荧光探针孵育细胞,分别通过激光共聚焦显微镜和流式细胞仪检测线粒体膜电位的变化情况。最后,将EtBr诱导培养后的肺癌细胞固定染色,在透射电镜下进一步研究EtBr引起的线粒体数量及超微结构的改变。
     4. EtBr诱导肺癌细胞线粒体降解的机制研究
     首先,通过LTR、MTG双色荧光探针共定位技术分析线粒体的降解途径,以及电镜下观察线粒体降解的超微结构。然后,我们采用GFP-LC3瞬时转染EtBr诱导培养的肺癌细胞,在共聚焦显微镜下观察LC3的表达水平。随后,我们用Western Blot检测EtBr诱导培养细胞里自噬相关蛋白Beclin-1和LC3的表达情况。同时使用自噬抑制剂3-MA处理,观察EtBr诱导培养引发的自噬现象能否被抑制。另外,采用免疫荧光技术检测EtBr处理肺癌细胞中Beclin-1和PINK1的表达水平。
     研究结果:
     1.低剂量EtBr诱导培养能逐步敲除肺癌细胞mtDNA
     我们通过低剂量EtBr诱导培养的方法,能有效地逐步敲除肺癌细胞的线粒体DNA。实时定量PCR结果显示肺癌细胞线粒体DNA的两个标志物在EtBr诱导培养后显著下降;显微镜下可见细胞形态逐渐向长梭形改变。同时EtBr诱导培养后肺癌细胞对营养依赖性的检测发现,EtBr诱导培养7天的肺癌细胞在不含尿嘧啶的培养基中表现出增殖速度减慢,贴壁能力减弱,并逐渐漂浮死亡。因此,本文研究中使用的EtBr剂量能有效敲除肺癌细胞的线粒体DNA,需要补充外源性尿嘧啶维持细胞存活。
     2. EtBr诱导培养显著抑制肺癌细胞在体外、体内的生长
     体外细胞增殖、克隆形成及迁移实验表明EtBr诱导培养导致的肺癌细胞生长和迁移抑制与mtDNA缺失程度密切相关,即线粒体DNA缺失能影响肺癌细胞的生物学行为,但是并不会明显引发细胞早期凋亡事件。细胞周期检测表明EtBr诱导培养引发细胞周期G0-G1期阻滞。肺癌异种移植模型显示,EtBr预处理的肺癌细胞比对照组生长明显减慢,且与mtDNA缺失程度相关。另外,解剖后发现,与对照组相比,EtBr诱导培养后肺癌细胞体内发生转移的机率也明显降低。
     3. EtBr诱导培养过程中线粒体发生降解
     LTR、MTG双色荧光探针标记的共聚焦显微镜检测结果显示,EtBr诱导培养肺癌细胞的LTR与MTG共定位细胞器结构显著多于对照细胞。我们在经典的血清饥饿诱导培养模型中也观察到相同的结果。但是与血清饥饿组细胞相比,EtBr诱导培养引发的LTR和MTG共定位结构增多更显著。而在电镜下观察也发现EtBr诱导培养后肺癌细胞中的线粒体数量逐渐减少,且与mtDNA的缺失程度相关。另外,TMRM共聚焦结果和JC-1流式细胞检测均证实mtDNA逐步缺失过程中线粒体的膜电位显著下降。
     4. EtBr诱导肺癌细胞线粒体降解通过自噬途径完成
     在EtBr诱导培养的肺癌细胞中,观察到MTG标记的线粒体数量明显减少而LTR结构明显增多,并且更多MTG标记的线粒体移向LTR结构中。此外,EtBr诱导培养肺癌细胞中GFP-LC3蛋白的表达明显增多,且从细胞质中的弥散分布向点状聚集改变。Western Blot实验结果也表明在线粒体降解过程中,LC3-II的表达水平明显增加,此过程能被自噬抑制剂3-MA抑制。同时,在EtBr诱导的线粒体降解过程中, Beclin-1蛋白的表达水平也有明显增高,同样能被3-MA抑制。而免疫荧光检测也发现EtBr处理肺癌细胞中Beclin-1和PINK1的表达水平较对照细胞显著增高。
     结论:
     1.低剂量EtBr诱导培养可以有效敲除肺癌细胞的线粒体DNA,随着诱导培养时间增加逐步出现对尿嘧啶的依赖性,且诱导培养后细胞形态发生改变。EtBr诱导培养后肺癌细胞的增殖、克隆形成及迁移能力均减弱,且与mtDNA的缺失程度相关;在体内,经EtBr预处理的肺癌细胞的肿瘤形成能力及生长能力均减弱,同时EtBr诱导培养后肺癌细胞的转移潜能下降。
     2. EtBr诱导肺癌细胞mtDNA逐步缺失过程中伴随线粒体的降解,表现为线粒体膜电位下降和线粒体数量减少。在线粒体的降解过程中,自噬信号通路被激活,该过程能被自噬抑制剂3-MA抑制,因此我们认为自噬是溴化乙锭诱导肺癌细胞线粒体降解的机制之一,并可能受PI3K-Beclin1信号通路的调控。而Beclin-1和PINK1的高表达也表明线粒体是通过自噬途径被降解。
Introduction
     Mitochondria, a type of double membrane-bound compartments, are highly essentialand dedicated organelles present in all eukaryotic cells. Mitochondria function as chemicalfactories for key metabolic reactions and energy generation, and as communication site fordiverse signaling pathways. However, the role of mitochondria goes beyond the above, theyare also the major source of endogenous reactive oxygen species (ROS), the side productsof oxidative phosphorylation. Excessive ROS is potentially deleterious and may causedamage to mitochondrial proteins, mtDNA and lipids, even lead to cell death by promotingthe intrinsic apoptotic pathway. In addition, mitochondria have been implicated inmitochondrial disorders, cardiac dysfunction, aging process and other human diseases.From this point, the quality and quantity of mitochondria need to be accurately controlledfor energy metabolism homeostasis and other key essential cellular processes. To date,several lines of evidence suggest that the selective degradation of mitochondria byautophagy controls mitochondrial number and health. Clearly, the link between autophagyand mitochondria is the selective removal of superfluous and damaged mitochondria, aprocess termed mitophagy.
     Autophagy is primarily supposed to be a protective process for the cell. Basal levels ofautophagy play critical role in maintaining normal cellular homeostasis by recycling ofintracellular components. Today, the role of autophagy has been extended up through tohuman diseases and physiology. For example, unregulated activation of autophagy likelycontributes to a broad spectrum of pathological processes, ranging from infections,neurodegeneration, heart disease to aging and cancer. Autophagy is firstly associated withcancer through the identification and characterization of the beclin1gene, which issuggested as a tumor suppressor. Moreover, several other autophagy genes are implicated in tumorigenesis, including MAP1-LC3(ATG8homolog) and HsGSA7gene (ATG7ortholog).Accordingly, Atg proteins, the products of Atg genes, are essential factors for the process ofautophagy. LC3(microtubule associated protein light chain3), a mammalianautophagosomal ortholog of yeast Atg8, is identified to form LC3-Ⅰ by cleaving the C-terminus of newly synthesized ProLC3. Then, an E2-like enzyme Atg7cleaves22aminoacids from the C-terminus to form LC3-Ⅱ, which is recruited to form autophagosomes andserves as an autophagic marker protein.
     Under normal conditions, basal levels of autophagy serve to maintain cellularhomeostasis by physiologically elimination of damaged organelles and long-lived proteins,and autophagy is activated in response to metabolic stress or energy crisis, such as nutrient,growth factor, and oxygen deprivation or mitochondria damage. We know that,mitochondria plays crucial role in cellular functions, including cell growth, division, andenergy metabolism. Obviously, these functions are also necessary for cancer cellproliferation, survival and migration. According to previous study, the rate of spontaneousdepolarization of mitochondrial membrane potential is increased under serum deprivation.Then these damaged mitochondria are demonstrated to move into acidic vacuoles, besequestrated and digested in autophagosomes and autolysosomes. During our establishmentof human lung cancer cell lines lacking mtDNA, progressive depopulation of mitochondriawas indentified. What’s important, autophagy was activated in the process. In the presentstudy, we try to indentify the involvement of autophagy in mitochondrial degradation, toexplore its molecular mechanisms and the potential impacts on biological behaviors of lungcancer cells.
     Methods
     1. Establishment and identification of lung cancer cells lacking mitochondrial DNA
     A549, SPC-A1and H322human lung cancer cell lines were maintained in mediumsupplemented with10%FBS and100ng/ml penicillin and streptomycin. The cells werepassaged when cells were90%~95%confluent. For EtBr treatment, cells were exposed to250ng/ml ethidium bromide for7days. The medium was additionally supplemented with50μg/ml uridine and100μg/ml pyruvate. The mtDNA content and the mRNA expressionof cytochrome c oxidase subunit II (COX II) were measured by quantitative real-time PCR.
     2. The effects of EtBr on tumor growth in vitro and in vivo
     Cells treated with EtBr for1,3,5or7days were trypsinized and counted. Cellproliferation assay, clonogenic assay and cell migration assay were carried out to evaluatethe ability of cell proliferation and migration after mtDNA knocked out. Additionally, cellcycle and cell apoptosis were investigated by PI staining and Annexin V-FITC flowcytometry, respectively. Finally, In vivo analysis of tumor growth was performed.NOD/SCID mice (five mice per group) were injected subcutaneously in the left flank with-treated cells suspended in200μl phosphate-buffered saline (PBS). Tumor volume wasmeasured with calipers twice a week for6weeks, after which the mice were sacrificed.Tumors were removed and photographed.
     3. Investigation of mitochondrial degradation after EtBr treatment
     Firstly, confocal microscopy was used to identify the mitochondrial degradation bylysosome. The treated cells were co-loaded with200nM MitoTracker Green and200nMred-fluorescing LTR for20min. After fluorescence loading, cells were washed thrice withfresh PBS. Confocal images were collected at2μm intervals. Secondly, confocalmicroscopy and flow cytometry were employed to verify loss of mitochondrial membranepotential. Lastly, mitochondrial degradation during EtBr treatment was further studied withtransmission electron microscopy.
     4. Mechanism study of EtBr-caused mitochondrial degradation
     Confocal microscopy and transmission electron microscopy were carried out toidentify the autophagic structures in EtBr treated cells. The cells were transfected with GFP-LC3, and then the distribution pattern was studied by confocal microscopy. Then autophagyrelated protein expression of Beclin-1and LC3was detected. We also examined whether3-MA, an autophagy inhibitor, could inhibit EtBr-induced autophagy or not, which could helpus understand better of the EtBr caused mitochondrial degradation pathways. Finally, weuse immuno-fluoresence to detect the expression level of Beclin-1and PINK1.
     Results
     1. Success in establishing lung cancer cells lacking mtDNA
     We have succeeded in establishing the lung cancer cells lacking mitochondrial DNA.The PCR results demonstrated that these two markers significantly decreased in a time-dependent manner after EtBr treatment. Confocal of TMRM loading, used for detectingpolarized mitochondria, showed that EtBr-caused decrease of mitochondrial membrane potential (MMP) was in a time-dependent manner, which was consistent with the PCRresults. In other words, EtBr can knock down the mitochondrial gene.
     2. EtBr inhibits lung cancer cells growth in vitro and in vivo.
     In vitro cell proliferation, clonogenic and migration assays demonstrated that EtBrinhibited lung cancer cell growth and migration in a time-dependent manner, but there wasno significant increase in apoptotic events in EtBr-treated cells. The PI staining resultsdemonstrated that EtBr-treated cells underwent cell cycle arrest. In vivo, EtBr-treated cellsgrew more slowly than untreated control cells in lung cancer xenograft models.
     3. Confocal microscopy and TEM revealed mitochondrial degradation
     Dual-labeled confocal microscopy revealed that LTR and MTG co-localizationstructures significantly increased in EtBr-treated lung cancer cells, in contrast to the controlgroup. Similar observation was evidenced in cells under starvation. Compared withstarvation, EtBr treatment more dramatically increased the co-localization of MTG-andLTR-positive structures. In addition, the numbers of mitochondria in cells treated with EtBrwere discovered to be less compared to the control cells with TEM.
     4. Mitochondrial degradation in the presence of EtBr was completed via autophagy
     After EtBr treatment, an increasing of LTR was observed with the decreasing ofmitochondria. Also, more MTG-labeled mitochondria were identified to move into the LTRstructures after EtBr treatment. Further, GFP-LC3expression level was dramaticallyincreased after the treatment, which distributed as green dots. Then the recruitment of LC3-II to autophagosomes during mitochondrial degradation was further identified by westernblot analysis, and the process could be inhibited by3-MA. Besides, an obvious increased ofBeclin-1protein was verified by WB. Besides, the expression level of Beclin-1and PINK1were shown to be increased via immuno-fluorescence.
     Conclusions
     1. We have succeeded in establishing lung cancer cells lacking mtDNA with a lowconcentration of EtBr, which was identified by PCR results of mtDNA content and mRNAexpression level of cytochrome c oxidase subunit II. EtBr treatment led to decreased cellproliferation, colony formation and migration in vitro. Tumor suppression effect of EtBrtreatment was also observed in lung cancer xenograft model.
     2. Imaging method identified progressive depopulation of mitochondria during EtBrtreatment, accompanied by increased LTR uptake and co-localization of LTR-and MTG-positive structures. We conclude that autophagy is responsible for mitochondrialdegradation when exposed to a low concentration of EtBr, most likely through the PI3K-Beclin1pathway. The high expersson level of Beclin-1and PINK1detected by immuno-fluorescence also demonstrated they were involved in the process of autophagic degradationof mitochondria.
引文
1Hurst, J.H. and H.G. Dohlman. Dynamic Ubiquitination of the Mitogen-activated Protein Kinase Kinase (MAPKK) Ste7Determines Mitogen-activated Protein Kinase (MAPK) Specificity. J Biol Chem.2013,288(26):18660-18671.
    2Maiuri, M.C., E. Zalckvar, A. Kimchi and G. Kroemer. Self-eating and self-killing: crosstalk between autophagy andapoptosis. Nat Rev Mol Cell Biol.2007,8(9):741-752.
    3Yang, Z. and D.J. Klionsky. Eaten alive: a history of macroautophagy. Nat Cell Biol.2010,12(9):814-822.
    4El Bounkari, O. and J. Bernhagen. MIF and autophagy: a novel link beyond "eating". Cell Res.2012,22(6):950-953.
    5Fimia, G.M., G. Kroemer and M. Piacentini. Molecular mechanisms of selective autophagy. Cell Death Differ.2013,20(1):1-2.
    6Nedelsky, N.B., P.K. Todd and J.P. Taylor. Autophagy and the ubiquitin-proteasome system: collaborators inneuroprotection. Biochim Biophys Acta.2008,1782(12):691-699.
    7Yang, Z. and D.J. Klionsky. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol.2009,335:1-32.
    88Stromhaug, P.E. and D.J. Klionsky. Approaching the molecular mechanism of autophagy. Traffic.2001,2(8):524-531.
    1Ohsumi, Y. Molecular mechanism of autophagy in yeast, Saccharomyces cerevisiae. Philos Trans R Soc Lond B Biol Sci.1999,354(1389):1577-1580; discussion1580-1571.
    2Mizushima, N. The role of the Atg1/ULK1complex in autophagy regulation. Curr Opin Cell Biol.2010,22(2):132-139.
    3Jaber, N., Z. Dou, J.S. Chen, J. Catanzaro, Y.P. Jiang, L.M. Ballou, E. Selinger, X. Ouyang, R.Z. Lin, J. Zhang, et al.Class III PI3K Vps34plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci U S A.2012,109(6):2003-2008.
    4Tanida, I., T. Ueno and E. Kominami. LC3and Autophagy. Methods Mol Biol.2008,445:77-88.
    5Reggiori, F. and S.A. Tooze. Autophagy regulation through Atg9traffic. J Cell Biol.2012,198(2):151-153.
    6Martina, J.A., Y. Chen, M. Gucek and R. Puertollano. MTORC1functions as a transcriptional regulator of autophagy bypreventing nuclear transport of TFEB. Autophagy.2012,8(6):903-914.
    7Yang, Z.J., C.E. Chee, S. Huang and F.A. Sinicrope. The role of autophagy in cancer: therapeutic implications. MolCancer Ther.2011,10(9):1533-1541.
    8Kimmelman, A.C. The dynamic nature of autophagy in cancer. Genes Dev.2011,25(19):1999-2010.
    9Li, X., L. He, M. Zhang, Z. Yue and Y. Zhao. The BECN1coiled coil domain: an "imperfect" homodimer interface thatfacilitates ATG14and UVRAG binding. Autophagy.2012,8(8):1258-1260.
    1Kung, C.P., A. Budina, G. Balaburski, M.K. Bergenstock and M. Murphy. Autophagy in tumor suppression and cancer
    2therapy. Crit Rev Eukaryot Gene Expr.2011,21(1):71-100.Yang, Z.J., C.E. Chee, S. Huang and F.A. Sinicrope. The role of autophagy in cancer: therapeutic implications. Mol
    3Cancer Ther.2011,10(9):1533-1541.Wrighton, K.H. Metabolism: Putting energy into mitophagy. Nat Rev Mol Cell Biol.2013,14(6):324.
    1Sohl, C.D., R. Kasiviswanathan, W.C. Copeland and K.S. Anderson. Mutations in human DNA polymerase gammaconfer unique mechanisms of catalytic deficiency that mirror the disease severity in mitochondrial disorder patients. HumMol Genet.2013,22(6):1074-1085.
    2Ashrafi, G. and T.L. Schwarz. The pathways of mitophagy for quality control and clearance of mitochondria. Cell DeathDiffer.2013,20(1):31-42.
    3Kukat, A., C. Kukat, J. Brocher, I. Schafer, G. Krohne, I.A. Trounce, G. Villani and P. Seibel. Generation of rho0cellsutilizing a mitochondrially targeted restriction endonuclease and comparative analyses. Nucleic Acids Res.2008,36(7):e44.
    4Yu, M., Y. Shi, X. Wei, Y. Yang, Y. Zhou, X. Hao, N. Zhang and R. Niu. Depletion of mitochondrial DNA by ethidiumbromide treatment inhibits the proliferation and tumorigenesis of T47D human breast cancer cells. Toxicol Lett.2007,170(1):83-93.
    5Hashiguchi, K. and Q.M. Zhang-Akiyama. Establishment of human cell lines lacking mitochondrial DNA. Methods MolBiol.2009,554:383-391.
    1Villarroya, J., M.C. Lara, B. Dorado, M. Garrido, E. Garcia-Arumi, A. Meseguer, M. Hirano and M.R. Vila. Targetedimpairment of thymidine kinase2expression in cells induces mitochondrial DNA depletion and reveals molecularmechanisms of compensation of mitochondrial respiratory activity. Biochem Biophys Res Commun.2011,407(2):333-338.
    1Parikh, S., R. Saneto, M.J. Falk, I. Anselm, B.H. Cohen, R. Haas and T.M. Medicine Society. A modern approach to the
    2treatment of mitochondrial disease. Curr Treat Options Neurol.2009,11(6):414-430.Chatterjee, A., E. Mambo and D. Sidransky. Mitochondrial DNA mutations in human cancer. Oncogene.2006,25(34):4663-4674.
    1Ponchel, F., C. Toomes, K. Bransfield, F.T. Leong, S.H. Douglas, S.L. Field, S.M. Bell, V. Combaret, A. Puisieux, A.J.Mighell, et al. Real-time PCR based on SYBR-Green I fluorescence: an alternative to the TaqMan assay for a relativequantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol.2003,3:18.
    1Warburg, O., and Negelein, E. Ueber den stoffwechsel der tumoren. Biochemische Zeitschrift.1924,152:319-344.
    2Czarnecka, A.M., W. Kukwa, T. Krawczyk, A. Scinska, A. Kukwa and F. Cappello. Mitochondrial DNA mutations incancer--from bench to bedside. Front Biosci (Landmark Ed).2010,15:437-460.
    3Wang, Y., V.W. Liu, W.C. Xue, A.N. Cheung and H.Y. Ngan. Association of decreased mitochondrial DNA contentwith ovarian cancer progression. Br J Cancer.2006,95(8):1087-1091.
    1Nicholls, T.J., J. Rorbach and M. Minczuk. Mitochondria: mitochondrial RNA metabolism and human disease. Int JBiochem Cell Biol.2013,45(4):845-849.
    2Ubah, O.C. and H.M. Wallace. Cancer Therapy: Targeting Mitochondria and other sub-cellular organelles. Curr PharmDes.2013.
    1Schafer, K.A. The cell cycle: a review. Vet Pathol.1998,35(6):461-478.
    2Ow, Y.P., D.R. Green, Z. Hao and T.W. Mak. Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol.2008,9(7):532-542.
    3Marsden, V.S., L. O'Connor, L.A. O'Reilly, J. Silke, D. Metcalf, P.G. Ekert, D.C. Huang, F. Cecconi, K. Kuida, K.J.Tomaselli, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9apoptosome. Nature.2002,419(6907):634-637.
    1Fischer, F., A. Hamann and H.D. Osiewacz. Mitochondrial quality control: an integrated network of pathways. TrendsBiochem Sci.2012,37(7):284-292.
    2Chen, Q., E.J. Vazquez, S. Moghaddas, C.L. Hoppel and E.J. Lesnefsky. Production of reactive oxygen species bymitochondria: central role of complex III. J Biol Chem.2003,278(38):36027-36031.
    1Tuppen, H.A., E.L. Blakely, D.M. Turnbull and R.W. Taylor. Mitochondrial DNA mutations and human disease.Biochim Biophys Acta.2010,1797(2):113-128.
    2Greaves, L.C. and R.W. Taylor. Mitochondrial DNA mutations in human disease. IUBMB Life.2006,58(3):143-151.
    3Chatterjee, A., E. Mambo and D. Sidransky. Mitochondrial DNA mutations in human cancer. Oncogene.2006,25(34):4663-4674.
    4Peng, T.I. and M.J. Jou. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci.2010,1201:183-188.
    5Rhoads, D.M., A.L. Umbach, C.C. Subbaiah and J.N. Siedow. Mitochondrial reactive oxygen species. Contribution tooxidative stress and interorganellar signaling. Plant Physiol.2006,141(2):357-366.
    1Gottlieb, E., S.M. Armour, M.H. Harris and C.B. Thompson. Mitochondrial membrane potential regulates matrixconfiguration and cytochrome c release during apoptosis. Cell Death Differ.2003,10(6):709-717.
    2Chen, L.B. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol.1988,4:155-181.
    3Ly, J.D., D.R. Grubb and A. Lawen. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update.Apoptosis.2003,8(2):115-128.
    1Engel, A. and C. Colliex. Application of scanning transmission electron microscopy to the study of biological structure.Curr Opin Biotechnol.1993,4(4):403-411.
    1McCoy, M.K. and M.R. Cookson. Mitochondrial quality control and dynamics in Parkinson's disease. Antioxid RedoxSignal.2012,16(9):869-882.
    2Lemasters, J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress,mitochondrial dysfunction, and aging. Rejuvenation Res.2005,8(1):3-5.
    3Rambold, A.S. and J. Lippincott-Schwartz. Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle.2011,10(23):4032-4038.
    1Yin, X.M., W.X. Ding and W. Gao. Autophagy in the liver. Hepatology.2008,47(5):1773-1785.
    2Jaber, N., Z. Dou, J.S. Chen, J. Catanzaro, Y.P. Jiang, L.M. Ballou, E. Selinger, X. Ouyang, R.Z. Lin, J. Zhang, et al.Class III PI3K Vps34plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci U S A.2012,109(6):2003-2008.
    3Shanware, N.P., K. Bray and R.T. Abraham. The PI3K, metabolic, and autophagy networks: interactive partners incellular health and disease. Annu Rev Pharmacol Toxicol.2013,53:89-106.
    4Simonsen, A. and S.A. Tooze. Coordination of membrane events during autophagy by multiple class III PI3-kinasecomplexes. J Cell Biol.2009,186(6):773-782.
    5Sarkar, S., B. Ravikumar, R.A. Floto and D.C. Rubinsztein. Rapamycin and mTOR-independent autophagy inducersameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ.2009,16(1):46-56.
    6Park, I.H., C.E. Yeum, G.T. Chae and S.B. Lee. Effect of rifampicin to inhibit rapamycin-induced autophagy via thesuppression of protein phosphatase2A activity. Immunopharmacol Immunotoxicol.2008,30(4):837-849.
    1Fimia, G.M., G. Kroemer and M. Piacentini. Molecular mechanisms of selective autophagy. Cell Death Differ.2013,20(1):1-2.
    2Kopitz, J., G.O. Kisen, P.B. Gordon, P. Bohley and P.O. Seglen. Nonselective autophagy of cytosolic enzymes byisolated rat hepatocytes. J Cell Biol.1990,111(3):941-953.
    3Johansen, T. and T. Lamark. Selective autophagy mediated by autophagic adapter proteins. Autophagy.2011,7(3):279-296.
    4Hirota, Y., Y. Aoki and T. Kanki.[Mitophagy: selective degradation of mitochondria by autophagy]. Seikagaku.2011,83(2):126-130
    5Kraft, C., M. Peter and K. Hofmann. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol.2010,12(9):836-841.
    6Phillips, A.R., A. Suttangkakul and R.D. Vierstra. The ATG12-conjugating enzyme ATG10Is essential for autophagicvesicle formation in Arabidopsis thaliana. Genetics.2008,178(3):1339-1353.
    7Tanida, I., T. Ueno and E. Kominami. LC3and Autophagy. Methods Mol Biol.2008,445:77-88.
    1Klionsky, D.J., F.C. Abdalla, H. Abeliovich, R.T. Abraham, A. Acevedo-Arozena, K. Adeli, L. Agholme, M. Agnello, P.Agostinis, J.A. Aguirre-Ghiso, et al. Guidelines for the use and interpretation of assays for monitoring autophagy.Autophagy.2012,8(4):445-544.
    2Kang, R., H.J. Zeh, M.T. Lotze and D. Tang. The Beclin1network regulates autophagy and apoptosis. Cell Death Differ.2011,18(4):571-580.
    3Liang, X.H., S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh and B. Levine. Induction of autophagy andinhibition of tumorigenesis by beclin1. Nature.1999,402(6762):672-676.
    4Marquez, R.T. and L. Xu. Bcl-2:Beclin1complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch.Am J Cancer Res.2012,2(2):214-221.
    5Liang, C., P. Feng, B. Ku, I. Dotan, D. Canaani, B.H. Oh and J.U. Jung. Autophagic and tumour suppressor activity of anovel Beclin1-binding protein UVRAG. Nat Cell Biol.2006,8(7):688-699.
    6Kung, C.P., A. Budina, G. Balaburski, M.K. Bergenstock and M. Murphy. Autophagy in tumor suppression and cancertherapy. Crit Rev Eukaryot Gene Expr.2011,21(1):71-100.
    1Heutink, P. PINK-1and DJ-1--new genes for autosomal recessive Parkinson's disease. J Neural Transm Suppl.2006(70):215-219.
    2Matsuda, S., Y. Kitagishi and M. Kobayashi. Function and characteristics of PINK1in mitochondria. Oxid Med CellLongev.2013,2013:601587.
    3Vincow, E.S., G. Merrihew, R.E. Thomas, N.J. Shulman, R.P. Beyer, M.J. MacCoss and L.J. Pallanck. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci U S A.2013,110(16):6400-6405.
    1Levine, B. and D.J. Klionsky. Development by self-digestion: molecular mechanisms and biological functions ofautophagy. Dev Cell.2004,6(4):463-477.
    2Shintani, T. and D.J. Klionsky. Autophagy in health and disease: a double-edged sword. Science.2004,306(5698):990-995.
    3Levine, B. and D.J. Klionsky. Development by self-digestion: molecular mechanisms and biological functions ofautophagy. Dev Cell.2004,6(4):463-477.
    4Fimia, G.M., A. Stoykova, A. Romagnoli, L. Giunta, S. Di Bartolomeo, R. Nardacci, M. Corazzari, C. Fuoco, A. Ucar, P.Schwartz, et al. Ambra1regulates autophagy and development of the nervous system. Nature.2007,447(7148):1121-1125.
    5Mizushima, N., T. Noda and Y. Ohsumi. Apg16p is required for the function of the Apg12p-Apg5p conjugate in theyeast autophagy pathway. EMBO J.1999,18(14):3888-3896.
    1Jin, S. Autophagy, mitochondrial quality control, and oncogenesis. Autophagy.2006,2(2):80-84.
    2Mathew, R., C.M. Karp, B. Beaudoin, N. Vuong, G. Chen, H.Y. Chen, K. Bray, A. Reddy, G. Bhanot, C. Gelinas, et al.Autophagy suppresses tumorigenesis through elimination of p62. Cell.2009,137(6):1062-1075.
    3Qu, X., J. Yu, G. Bhagat, N. Furuya, H. Hibshoosh, A. Troxel, J. Rosen, E.L. Eskelinen, N. Mizushima, Y. Ohsumi, et al.Promotion of tumorigenesis by heterozygous disruption of the beclin1autophagy gene. J Clin Invest.2003,112(12):1809-1820.
    4Liang, X.H., S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh and B. Levine. Induction of autophagy andinhibition of tumorigenesis by beclin1. Nature.1999,402(6762):672-676.
    5Mathew, R., C.M. Karp, B. Beaudoin, N. Vuong, G. Chen, H.Y. Chen, K. Bray, A. Reddy, G. Bhanot, C. Gelinas, et al.Autophagy suppresses tumorigenesis through elimination of p62. Cell.2009,137(6):1062-1075.
    6Tang, D., R. Kang, K.M. Livesey, C.W. Cheh, A. Farkas, P. Loughran, G. Hoppe, M.E. Bianchi, K.J. Tracey, H.J. Zeh,
    73rd, et al. Endogenous HMGB1regulates autophagy. J Cell Biol.2010,190(5):881-892.Degenhardt, K., R. Mathew, B. Beaudoin, K. Bray, D. Anderson, G. Chen, C. Mukherjee, Y. Shi, C. Gelinas, Y. Fan, etal. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell.2006,10(1):51-64.
    8White, E. and R.S. DiPaola. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res.2009,15(17):5308-5316.
    1Mathew, R., C.M. Karp, B. Beaudoin, N. Vuong, G. Chen, H.Y. Chen, K. Bray, A. Reddy, G. Bhanot, C. Gelinas, et al.Autophagy suppresses tumorigenesis through elimination of p62. Cell.2009,137(6):1062-1075.
    2Semenza, G.L. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev.2010,20(1):51-56.
    3Yang, S., X. Wang, G. Contino, M. Liesa, E. Sahin, H. Ying, A. Bause, Y. Li, J.M. Stommel, G. Dell'antonio, et al.Pancreatic cancers require autophagy for tumor growth. Genes Dev.2011,25(7):717-729.
    4Lu, Z., R.Z. Luo, Y. Lu, X. Zhang, Q. Yu, S. Khare, S. Kondo, Y. Kondo, Y. Yu, G.B. Mills, et al. The tumor suppressorgene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest.2008,118(12):3917-3929.
    5Kanzawa, T., L. Zhang, L. Xiao, I.M. Germano, Y. Kondo and S. Kondo. Arsenic trioxide induces autophagic cell deathin malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene.2005,24(6):980-991.
    6Turcotte, S., D.A. Chan, P.D. Sutphin, M.P. Hay, W.A. Denny and A.J. Giaccia. A molecule targeting VHL-deficientrenal cell carcinoma that induces autophagy. Cancer Cell.2008,14(1):90-102.
    7Amaravadi, R.K., D. Yu, J.J. Lum, T. Bui, M.A. Christophorou, G.I. Evan, A. Thomas-Tikhonenko and C.B. Thompson.Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest.2007,117(2):326-336.
    8Ertmer, A., V. Huber, S. Gilch, T. Yoshimori, V. Erfle, J. Duyster, H.P. Elsasser and H.M. Schatzl. The anticancer drugimatinib induces cellular autophagy. Leukemia.2007,21(5):936-942.
    1Li, X. and Z. Fan. The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells bydownregulating HIF-1alpha and Bcl-2and activating the beclin1/hVps34complex. Cancer Res.2010,70(14):5942-5952.
    2Zhu, K., K. Dunner, Jr. and D.J. McConkey. Proteasome inhibitors activate autophagy as a cytoprotective response inhuman prostate cancer cells. Oncogene.2010,29(3):451-462.
    3Han, J., W. Hou, L.A. Goldstein, C. Lu, D.B. Stolz, X.M. Yin and H. Rabinowich. Involvement of protective autophagyin TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem.2008,283(28):19665-19677.
    4Liu, Y.L., P.M. Yang, C.T. Shun, M.S. Wu, J.R. Weng and C.C. Chen. Autophagy potentiates the anti-cancer effects ofthe histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy.2010,6(8):1057-1065.
    5Kanzawa, T., L. Zhang, L. Xiao, I.M. Germano, Y. Kondo and S. Kondo. Arsenic trioxide induces autophagic cell deathin malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene.2005,24(6):980-991.
    6Bursch, W., A. Ellinger, H. Kienzl, L. Torok, S. Pandey, M. Sikorska, R. Walker and R.S. Hermann. Active cell deathinduced by the anti-estrogens tamoxifen and ICI164384in human mammary carcinoma cells (MCF-7) in culture: the roleof autophagy. Carcinogenesis.1996,17(8):1595-1607.
    7Huang, S. and F.A. Sinicrope. Celecoxib-induced apoptosis is enhanced by ABT-737and by inhibition of autophagy inhuman colorectal cancer cells. Autophagy.2010,6(2):256-269.
    8Gills, J.J., J. Lopiccolo and P.A. Dennis. Nelfinavir, a new anti-cancer drug with pleiotropic effects and many paths toautophagy. Autophagy.2008,4(1):107-109.
    9Turcotte, S., D.A. Chan, P.D. Sutphin, M.P. Hay, W.A. Denny and A.J. Giaccia. A molecule targeting VHL-deficientrenal cell carcinoma that induces autophagy. Cancer Cell.2008,14(1):90-102.
    10Meric-Bernstam, F. and A.M. Gonzalez-Angulo. Targeting the mTOR signaling network for cancer therapy. J ClinOncol.2009,27(13):2278-2287.
    11O'Reilly, K.E., F. Rojo, Q.B. She, D. Solit, G.B. Mills, D. Smith, H. Lane, F. Hofmann, D.J. Hicklin, D.L. Ludwig, et al.mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res.2006,66(3):1500-1508.
    12Chresta, C.M., B.R. Davies, I. Hickson, T. Harding, S. Cosulich, S.E. Critchlow, J.P. Vincent, R. Ellston, D. Jones, P.Sini, et al. AZD8055is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycinkinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res.2010,70(1):288-298.
    13Thoreen, C.C., S.A. Kang, J.W. Chang, Q. Liu, J. Zhang, Y. Gao, L.J. Reichling, T. Sim, D.M. Sabatini and N.S. Gray.An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J BiolChem.2009,284(12):8023-8032.
    1Annunziato, L., S. Amoroso, A. Pannaccione, M. Cataldi, G. Pignataro, A. D'Alessio, R. Sirabella, A. Secondo, L.Sibaud and G.F. Di Renzo. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases andintracellular calcium ions. Toxicol Lett.2003,139(2-3):125-133.
    2Brune, B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ.2003,10(8):864-869.
    3Stankiewicz, T.R., E.K. Schroeder, N.A. Kelsey, R.J. Bouchard and D.A. Linseman. C-terminal binding proteins areessential pro-survival factors that undergo caspase-dependent downregulation during neuronal apoptosis. Mol CellNeurosci.2013,56C:322-332.
    4Yuan, S. and C.W. Akey. Apoptosome structure, assembly, and procaspase activation. Structure.2013,21(4):501-515.
    5Maiuri, M.C., E. Zalckvar, A. Kimchi and G. Kroemer. Self-eating and self-killing: crosstalk between autophagy andapoptosis. Nat Rev Mol Cell Biol.2007,8(9):741-752.
    1Pennarun, B., A. Meijer, E.G. de Vries, J.H. Kleibeuker, F. Kruyt and S. de Jong. Playing the DISC: turning on TRAILdeath receptor-mediated apoptosis in cancer. Biochim Biophys Acta.2010,1805(2):123-140.
    2Fulda, S. and K.M. Debatin. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene.2006,25(34):4798-4811.
    3Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol.2001,2(3):211-216.
    4Cotter, T.G. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer.2009,9(7):501-507.
    5Pramanik, K.C., S.R. Boreddy and S.K. Srivastava. Role of mitochondrial electron transport chain complexes incapsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One.2011,6(5):e20151.
    6Gao, Y., Y. Su, L. Qu, S. Xu, L. Meng, S.Q. Cai and C. Shou. Mitochondrial apoptosis contributes to the anti-cancereffect of Smilax glabra Roxb. Toxicol Lett.2011,207(2):112-120.
    1Kinnally, K.W., P.M. Peixoto, S.Y. Ryu and L.M. Dejean. Is mPTP the gatekeeper for necrosis, apoptosis, or both?Biochim Biophys Acta.2011,1813(4):616-622.
    2Maquoi, E., D. Assent, J. Detilleux, C. Pequeux, J.M. Foidart and A. Noel. MT1-MMP protects breast carcinoma cellsagainst type I collagen-induced apoptosis. Oncogene.2012,31(4):480-493.
    3Kulikov, A.V., E.S. Shilov, I.A. Mufazalov, V. Gogvadze, S.A. Nedospasov and B. Zhivotovsky. Cytochrome c: theAchilles' heel in apoptosis. Cell Mol Life Sci.2012,69(11):1787-1797.
    4Marquez, R.T. and L. Xu. Bcl-2:Beclin1complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch.Am J Cancer Res.2012,2(2):214-221.
    5Wirawan, E., L. Vande Walle, K. Kersse, S. Cornelis, S. Claerhout, I. Vanoverberghe, R. Roelandt, R. De Rycke, J.Verspurten, W. Declercq, et al. Caspase-mediated cleavage of Beclin-1inactivates Beclin-1-induced autophagy andenhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis.2010,1:e18.
    6Yin, X., L. Cao, Y. Peng, Y. Tan, M. Xie, R. Kang, K.M. Livesey and D. Tang. A critical role for UVRAG in apoptosis.Autophagy.2011,7(10):1242-1244.
    7Radoshevich, L., L. Murrow, N. Chen, E. Fernandez, S. Roy, C. Fung and J. Debnath. ATG12conjugation to ATG3
    8regulates mitochondrial homeostasis and cell death. Cell.2010,142(4):590-600.Rubinstein, A.D., M. Eisenstein, Y. Ber, S. Bialik and A. Kimchi. The autophagy protein Atg12associates withantiapoptotic Bcl-2family members to promote mitochondrial apoptosis. Mol Cell.2011,44(5):698-709.
    9Pyo, J.O., M.H. Jang, Y.K. Kwon, H.J. Lee, J.I. Jun, H.N. Woo, D.H. Cho, B. Choi, H. Lee, J.H. Kim, et al. Essentialroles of Atg5and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death.J Biol Chem.2005,280(21):20722-20729.
    1Yousefi, S., R. Perozzo, I. Schmid, A. Ziemiecki, T. Schaffner, L. Scapozza, T. Brunner and H.U. Simon. Calpain-mediated cleavage of Atg5switches autophagy to apoptosis. Nat Cell Biol.2006,8(10):1124-1132.
    2Crighton, D., S. Wilkinson, J. O'Prey, N. Syed, P. Smith, P.R. Harrison, M. Gasco, O. Garrone, T. Crook and K.M. Ryan.DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell.2006,126(1):121-134.
    3Liang, X.H., L.K. Kleeman, H.H. Jiang, G. Gordon, J.E. Goldman, G. Berry, B. Herman and B. Levine. Protectionagainst fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol.1998,72(11):8586-8596.
    4Bakhshi, A., J.P. Jensen, P. Goldman, J.J. Wright, O.W. McBride, A.L. Epstein and S.J. Korsmeyer. Cloning thechromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome14and near atranscriptional unit on18. Cell.1985,41(3):899-906.
    5Yao, Q., J. Chen, Y. Lv, T. Wang, J. Zhang, J. Fan and L. Wang. The significance of expression of autophagy-relatedgene Beclin, Bcl-2, and Bax in breast cancer tissues. Tumour Biol.2011,32(6):1163-1171.
    6Oberstein, A., P.D. Jeffrey and Y. Shi. Crystal structure of the Bcl-XL-Beclin1peptide complex: Beclin1is a novelBH3-only protein. J Biol Chem.2007,282(17):13123-13132.
    7Feng, W., S. Huang, H. Wu and M. Zhang. Molecular basis of Bcl-xL's target recognition versatility revealed by the
    8structure of Bcl-xL in complex with the BH3domain of Beclin-1. J Mol Biol.2007,372(1):223-235.Ito, H., H. Aoki, F. Kuhnel, Y. Kondo, S. Kubicka, T. Wirth, E. Iwado, A. Iwamaru, K. Fujiwara, K.R. Hess, et al.Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst.2006,98(9):625-636.
    9Kroemer, G. and B. Levine. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol.2008,9(12):1004-1010.
    1. Hurst, J.H. and H.G. Dohlman. Dynamic Ubiquitination of the Mitogen-activatedProtein Kinase Kinase (MAPKK) Ste7Determines Mitogen-activated Protein Kinase(MAPK) Specificity. J Biol Chem.2013,288(26):18660-18671.
    2. Xu, L. and Z. Qu. Roles of protein ubiquitination and degradation kinetics in biologicaloscillations. PLoS One.2012,7(4):e34616.
    3. Zetter, B.R. and U. Mangold. Ubiquitin-independent degradation and its implication incancer. Future Oncol.2005,1(5):567-570.
    4. Maiuri, M.C., E. Zalckvar, A. Kimchi and G. Kroemer. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol.2007,8(9):741-752.
    5. Murrow, L. and J. Debnath. Autophagy as a stress-response and quality-controlmechanism: implications for cell injury and human disease. Annu Rev Pathol.2013,8:105-137.
    6. Yang, Z. and D.J. Klionsky. Eaten alive: a history of macroautophagy. Nat Cell Biol.2010,12(9):814-822.
    7. El Bounkari, O. and J. Bernhagen. MIF and autophagy: a novel link beyond "eating".Cell Res.2012,22(6):950-953.
    8. Mizushima, N. Autophagy: process and function. Genes Dev.2007,21(22):2861-2873.
    9. Cecconi, F. and B. Levine. The role of autophagy in mammalian development: cellmakeover rather than cell death. Dev Cell.2008,15(3):344-357.
    10. Reggiori, F. and D.J. Klionsky. Autophagy in the eukaryotic cell. Eukaryot Cell.2002,1(1):11-21.
    11. Fimia, G.M., G. Kroemer and M. Piacentini. Molecular mechanisms of selectiveautophagy. Cell Death Differ.2013,20(1):1-2.
    12. Kundu, M. and C.B. Thompson. Macroautophagy versus mitochondrial autophagy: aquestion of fate? Cell Death Differ.2005,12Suppl2:1484-1489.
    13. Nedelsky, N.B., P.K. Todd and J.P. Taylor. Autophagy and the ubiquitin-proteasomesystem: collaborators in neuroprotection. Biochim Biophys Acta.2008,1782(12):691-699.
    14. Cecarini, V., L. Bonfili, M. Cuccioloni, M. Mozzicafreddo, G. Rossi, L. Buizza, D.Uberti, M. Angeletti and A.M. Eleuteri. Crosstalk between the ubiquitin-proteasomesystem and autophagy in a human cellular model of Alzheimer's disease. BiochimBiophys Acta.2012,1822(11):1741-1751.
    15. Yang, Z. and D.J. Klionsky. An overview of the molecular mechanism of autophagy.Curr Top Microbiol Immunol.2009,335:1-32.
    16. Wang, C.W. and D.J. Klionsky. The molecular mechanism of autophagy. Mol Med.2003,9(3-4):65-76.
    17. Stromhaug, P.E. and D.J. Klionsky. Approaching the molecular mechanism ofautophagy. Traffic.2001,2(8):524-531.
    18. Ohsumi, Y. Molecular mechanism of autophagy in yeast, Saccharomyces cerevisiae.Philos Trans R Soc Lond B Biol Sci.1999,354(1389):1577-1580; discussion1580-1571.
    19. Mizushima, N. The role of the Atg1/ULK1complex in autophagy regulation. CurrOpin Cell Biol.2010,22(2):132-139.
    20. Jaber, N., Z. Dou, J.S. Chen, J. Catanzaro, Y.P. Jiang, L.M. Ballou, E. Selinger, X.Ouyang, R.Z. Lin, J. Zhang, et al. Class III PI3K Vps34plays an essential role inautophagy and in heart and liver function. Proc Natl Acad Sci U S A.2012,109(6):2003-2008.
    21. Tanida, I., T. Ueno and E. Kominami. LC3and Autophagy. Methods Mol Biol.2008,445:77-88.
    22. Otomo, C., Z. Metlagel, G. Takaesu and T. Otomo. Structure of the humanATG12~ATG5conjugate required for LC3lipidation in autophagy. Nat Struct MolBiol.2013,20(1):59-66.
    23. Reggiori, F. and S.A. Tooze. Autophagy regulation through Atg9traffic. J Cell Biol.2012,198(2):151-153.
    24. Molejon, M.I., A. Ropolo, A.L. Re, V. Boggio and M.I. Vaccaro. The VMP1-Beclin1interaction regulates autophagy induction. Sci Rep.2013,3:1055.
    25. Martina, J.A., Y. Chen, M. Gucek and R. Puertollano. MTORC1functions as atranscriptional regulator of autophagy by preventing nuclear transport of TFEB.Autophagy.2012,8(6):903-914.
    26. Pous, C. and P. Codogno. Lysosome positioning coordinates mTORC1activity andautophagy. Nat Cell Biol.2011,13(4):342-344.
    27. Yang, Z.J., C.E. Chee, S. Huang and F.A. Sinicrope. The role of autophagy in cancer:therapeutic implications. Mol Cancer Ther.2011,10(9):1533-1541.
    28. Scherz-Shouval, R. and Z. Elazar. Regulation of autophagy by ROS: physiology andpathology. Trends Biochem Sci.2011,36(1):30-38.
    29. Heath-Engel, H.M., N.C. Chang and G.C. Shore. The endoplasmic reticulum inapoptosis and autophagy: role of the BCL-2protein family. Oncogene.2008,27(50):6419-6433.
    30. Kimmelman, A.C. The dynamic nature of autophagy in cancer. Genes Dev.2011,25(19):1999-2010.
    31. Liu, E.Y. and K.M. Ryan. Autophagy and cancer--issues we need to digest. J Cell Sci.2012,125(Pt10):2349-2358.
    32. Li, X., L. He, M. Zhang, Z. Yue and Y. Zhao. The BECN1coiled coil domain: an"imperfect" homodimer interface that facilitates ATG14and UVRAG binding.Autophagy.2012,8(8):1258-1260.
    33. Kung, C.P., A. Budina, G. Balaburski, M.K. Bergenstock and M. Murphy. Autophagyin tumor suppression and cancer therapy. Crit Rev Eukaryot Gene Expr.2011,21(1):71-100.
    34. Gozuacik, D. and A. Kimchi. Autophagy as a cell death and tumor suppressormechanism. Oncogene.2004,23(16):2891-2906.
    35. Wrighton, K.H. Metabolism: Putting energy into mitophagy. Nat Rev Mol Cell Biol.2013,14(6):324.
    36. Ashrafi, G. and T.L. Schwarz. The pathways of mitophagy for quality control andclearance of mitochondria. Cell Death Differ.2013,20(1):31-42.
    37. Sohl, C.D., R. Kasiviswanathan, W.C. Copeland and K.S. Anderson. Mutations inhuman DNA polymerase gamma confer unique mechanisms of catalytic deficiency thatmirror the disease severity in mitochondrial disorder patients. Hum Mol Genet.2013,22(6):1074-1085.
    38. Kukat, A., C. Kukat, J. Brocher, I. Schafer, G. Krohne, I.A. Trounce, G. Villani and P.Seibel. Generation of rho0cells utilizing a mitochondrially targeted restrictionendonuclease and comparative analyses. Nucleic Acids Res.2008,36(7):e44.
    39. Yu, M., Y. Shi, X. Wei, Y. Yang, Y. Zhou, X. Hao, N. Zhang and R. Niu. Depletion ofmitochondrial DNA by ethidium bromide treatment inhibits the proliferation andtumorigenesis of T47D human breast cancer cells. Toxicol Lett.2007,170(1):83-93.
    40. Hashiguchi, K. and Q.M. Zhang-Akiyama. Establishment of human cell lines lackingmitochondrial DNA. Methods Mol Biol.2009,554:383-391.
    41. Villarroya, J., M.C. Lara, B. Dorado, M. Garrido, E. Garcia-Arumi, A. Meseguer, M.Hirano and M.R. Vila. Targeted impairment of thymidine kinase2expression in cellsinduces mitochondrial DNA depletion and reveals molecular mechanisms ofcompensation of mitochondrial respiratory activity. Biochem Biophys Res Commun.2011,407(2):333-338.
    42. Schroeder, P., T. Gremmel, M. Berneburg and J. Krutmann. Partial depletion ofmitochondrial DNA from human skin fibroblasts induces a gene expression profilereminiscent of photoaged skin. J Invest Dermatol.2008,128(9):2297-2303.
    43. Parikh, S., R. Saneto, M.J. Falk, I. Anselm, B.H. Cohen, R. Haas and T.M. MedicineSociety. A modern approach to the treatment of mitochondrial disease. Curr TreatOptions Neurol.2009,11(6):414-430.
    44. Pfeffer, G., K. Majamaa, D.M. Turnbull, D. Thorburn and P.F. Chinnery. Treatmentfor mitochondrial disorders. Cochrane Database Syst Rev.2012,4:CD004426.
    45. Chatterjee, A., E. Mambo and D. Sidransky. Mitochondrial DNA mutations in humancancer. Oncogene.2006,25(34):4663-4674.
    46. Zhang, S.P., S.J. Song and Y.X. Li.[Association between mitochondrial DNAmutations and cancer in human]. Yi Chuan.2008,30(3):263-268.
    47. Ponchel, F., C. Toomes, K. Bransfield, F.T. Leong, S.H. Douglas, S.L. Field, S.M. Bell,V. Combaret, A. Puisieux, A.J. Mighell, et al. Real-time PCR based on SYBR-Green Ifluorescence: an alternative to the TaqMan assay for a relative quantification of generearrangements, gene amplifications and micro gene deletions. BMC Biotechnol.2003,3:18.
    48. Warburg, O., and Negelein, E. Ueber den stoffwechsel der tumoren. BiochemischeZeitschrift.1924,152:319-344.
    49. Czarnecka, A.M., W. Kukwa, T. Krawczyk, A. Scinska, A. Kukwa and F. Cappello.Mitochondrial DNA mutations in cancer--from bench to bedside. Front Biosci(Landmark Ed).2010,15:437-460.
    50. Wang, Y., V.W. Liu, W.C. Xue, A.N. Cheung and H.Y. Ngan. Association ofdecreased mitochondrial DNA content with ovarian cancer progression. Br J Cancer.2006,95(8):1087-1091.
    51. Kurt, B., Y. Gulcan-Kurt, T. Cayci and E.O. Akgul. Mitochondrial DNA depletion mayalso have a role in pathogenesis of osteosarcoma. Int J Exp Pathol.2013.
    52. Schneider Berlin, K.R., C.V. Ammini and T.C. Rowe. Dequalinium induces a selectivedepletion of mitochondrial DNA from HeLa human cervical carcinoma cells. Exp CellRes.1998,245(1):137-145.
    53. Nicholls, T.J., J. Rorbach and M. Minczuk. Mitochondria: mitochondrial RNAmetabolism and human disease. Int J Biochem Cell Biol.2013,45(4):845-849.
    54. Duchen, M.R. and G. Szabadkai. Roles of mitochondria in human disease. EssaysBiochem.2010,47:115-137.
    55. Ubah, O.C. and H.M. Wallace. Cancer Therapy: Targeting Mitochondria and othersub-cellular organelles. Curr Pharm Des.2013.
    56. Schafer, K.A. The cell cycle: a review. Vet Pathol.1998,35(6):461-478.
    57. Ow, Y.P., D.R. Green, Z. Hao and T.W. Mak. Cytochrome c: functions beyondrespiration. Nat Rev Mol Cell Biol.2008,9(7):532-542.
    58. Marsden, V.S., L. O'Connor, L.A. O'Reilly, J. Silke, D. Metcalf, P.G. Ekert, D.C.Huang, F. Cecconi, K. Kuida, K.J. Tomaselli, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9apoptosome. Nature.2002,419(6907):634-637.
    59. Fischer, F., A. Hamann and H.D. Osiewacz. Mitochondrial quality control: anintegrated network of pathways. Trends Biochem Sci.2012,37(7):284-292.
    60. Chen, Q., E.J. Vazquez, S. Moghaddas, C.L. Hoppel and E.J. Lesnefsky. Production ofreactive oxygen species by mitochondria: central role of complex III. J Biol Chem.2003,278(38):36027-36031.
    61. Tuppen, H.A., E.L. Blakely, D.M. Turnbull and R.W. Taylor. Mitochondrial DNAmutations and human disease. Biochim Biophys Acta.2010,1797(2):113-128.
    62. Greaves, L.C. and R.W. Taylor. Mitochondrial DNA mutations in human disease.IUBMB Life.2006,58(3):143-151.
    63. Taylor, R.W. and D.M. Turnbull. Mitochondrial DNA mutations in human disease. NatRev Genet.2005,6(5):389-402.
    64. Imanishi, H., K. Hattori, R. Wada, K. Ishikawa, S. Fukuda, K. Takenaga, K. Nakadaand J. Hayashi. Mitochondrial DNA mutations regulate metastasis of human breastcancer cells. PLoS One.2011,6(8):e23401.
    65. Peng, T.I. and M.J. Jou. Oxidative stress caused by mitochondrial calcium overload.Ann N Y Acad Sci.2010,1201:183-188.
    66. Rhoads, D.M., A.L. Umbach, C.C. Subbaiah and J.N. Siedow. Mitochondrial reactiveoxygen species. Contribution to oxidative stress and interorganellar signaling. PlantPhysiol.2006,141(2):357-366.
    67. Gottlieb, E., S.M. Armour, M.H. Harris and C.B. Thompson. Mitochondrial membranepotential regulates matrix configuration and cytochrome c release during apoptosis.Cell Death Differ.2003,10(6):709-717.
    68. Chen, L.B. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol.1988,4:155-181.
    69. Ly, J.D., D.R. Grubb and A. Lawen. The mitochondrial membrane potential(deltapsi(m)) in apoptosis; an update. Apoptosis.2003,8(2):115-128.
    70. Sharbatoghli, M., M.R. Valojerdi, M. Amanlou, F. Khosravi and M.A. Jafar-abadi.Relationship of sperm DNA fragmentation, apoptosis and dysfunction of mitochondrialmembrane potential with semen parameters and ART outcome after intracytoplasmicsperm injection. Arch Gynecol Obstet.2012,286(5):1315-1322.
    71. Engel, A. and C. Colliex. Application of scanning transmission electron microscopy tothe study of biological structure. Curr Opin Biotechnol.1993,4(4):403-411.
    72. McCoy, M.K. and M.R. Cookson. Mitochondrial quality control and dynamics inParkinson's disease. Antioxid Redox Signal.2012,16(9):869-882.
    73. Shutt, T.E. and H.M. McBride. Staying cool in difficult times: mitochondrial dynamics,quality control and the stress response. Biochim Biophys Acta.2013,1833(2):417-424.
    74. Lemasters, J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defenseagainst oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res.2005,8(1):3-5.
    75. Eiyama, A., N. Kondo-Okamoto and K. Okamoto. Mitochondrial degradation duringstarvation is selective and temporally distinct from bulk autophagy in yeast. FEBS Lett.2013,587(12):1787-1792.
    76. Rambold, A.S. and J. Lippincott-Schwartz. Mechanisms of mitochondria andautophagy crosstalk. Cell Cycle.2011,10(23):4032-4038.
    77. Kanki, T. and D.J. Klionsky. The molecular mechanism of mitochondria autophagy inyeast. Mol Microbiol.2010,75(4):795-800.
    78. Yin, X.M., W.X. Ding and W. Gao. Autophagy in the liver. Hepatology.2008,47(5):1773-1785.
    79. Shanware, N.P., K. Bray and R.T. Abraham. The PI3K, metabolic, and autophagynetworks: interactive partners in cellular health and disease. Annu Rev PharmacolToxicol.2013,53:89-106.
    80. Simonsen, A. and S.A. Tooze. Coordination of membrane events during autophagy bymultiple class III PI3-kinase complexes. J Cell Biol.2009,186(6):773-782.
    81. Sarkar, S., B. Ravikumar, R.A. Floto and D.C. Rubinsztein. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expandedhuntingtin and related proteinopathies. Cell Death Differ.2009,16(1):46-56.
    82. Park, I.H., C.E. Yeum, G.T. Chae and S.B. Lee. Effect of rifampicin to inhibitrapamycin-induced autophagy via the suppression of protein phosphatase2A activity.Immunopharmacol Immunotoxicol.2008,30(4):837-849.
    83. Reggiori, F., M. Komatsu, K. Finley and A. Simonsen. Autophagy: more than anonselective pathway. Int J Cell Biol.2012,2012:219625.
    84. Park, C. and A.M. Cuervo. Selective Autophagy: Talking with the UPS. Cell BiochemBiophys.2013.
    85. Kopitz, J., G.O. Kisen, P.B. Gordon, P. Bohley and P.O. Seglen. Nonselectiveautophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol.1990,111(3):941-953.
    86. Welter, E., M. Thumm and R. Krick. Quantification of nonselective bulk autophagy inS. cerevisiae using Pgk1-GFP. Autophagy.2010,6(6):794-797.
    87. Johansen, T. and T. Lamark. Selective autophagy mediated by autophagic adapterproteins. Autophagy.2011,7(3):279-296.
    88. Hirota, Y., Y. Aoki and T. Kanki.[Mitophagy: selective degradation of mitochondriaby autophagy]. Seikagaku.2011,83(2):126-130.
    89. Kim, I., S. Rodriguez-Enriquez and J.J. Lemasters. Selective degradation ofmitochondria by mitophagy. Arch Biochem Biophys.2007,462(2):245-253.
    90. Kim, I. and J.J. Lemasters. Mitophagy selectively degrades individual damagedmitochondria after photoirradiation. Antioxid Redox Signal.2011,14(10):1919-1928.
    91. Kraft, C., M. Peter and K. Hofmann. Selective autophagy: ubiquitin-mediatedrecognition and beyond. Nat Cell Biol.2010,12(9):836-841.
    92. Kim, P.K., D.W. Hailey, R.T. Mullen and J. Lippincott-Schwartz. Ubiquitin signalsautophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U SA.2008,105(52):20567-20574.
    93. Phillips, A.R., A. Suttangkakul and R.D. Vierstra. The ATG12-conjugating enzymeATG10Is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics.2008,178(3):1339-1353.
    94. Kuma, A., M. Matsui and N. Mizushima. LC3, an autophagosome marker, can beincorporated into protein aggregates independent of autophagy: caution in theinterpretation of LC3localization. Autophagy.2007,3(4):323-328.
    95. Yoshioka, A., H. Miyata, Y. Doki, M. Yamasaki, I. Sohma, K. Gotoh, S. Takiguchi, Y.Fujiwara, Y. Uchiyama and M. Monden. LC3, an autophagosome marker, is highlyexpressed in gastrointestinal cancers. Int J Oncol.2008,33(3):461-468.
    96. Klionsky, D.J., F.C. Abdalla, H. Abeliovich, R.T. Abraham, A. Acevedo-Arozena, K.Adeli, L. Agholme, M. Agnello, P. Agostinis, J.A. Aguirre-Ghiso, et al. Guidelines forthe use and interpretation of assays for monitoring autophagy. Autophagy.2012,8(4):445-544.
    97. Klionsky, D.J., H. Abeliovich, P. Agostinis, D.K. Agrawal, G. Aliev, D.S. Askew, M.Baba, E.H. Baehrecke, B.A. Bahr, A. Ballabio, et al. Guidelines for the use andinterpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy.2008,4(2):151-175.
    98. Kang, R., H.J. Zeh, M.T. Lotze and D. Tang. The Beclin1network regulatesautophagy and apoptosis. Cell Death Differ.2011,18(4):571-580.
    99. Liang, X.H., S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh and B.Levine. Induction of autophagy and inhibition of tumorigenesis by beclin1. Nature.1999,402(6762):672-676.
    100. Marquez, R.T. and L. Xu. Bcl-2:Beclin1complex: multiple, mechanisms regulatingautophagy/apoptosis toggle switch. Am J Cancer Res.2012,2(2):214-221.
    101. Liang, C., P. Feng, B. Ku, I. Dotan, D. Canaani, B.H. Oh and J.U. Jung. Autophagicand tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat CellBiol.2006,8(7):688-699.
    102. Fu, L.L., Y. Cheng and B. Liu. Beclin-1: autophagic regulator and therapeutic target incancer. Int J Biochem Cell Biol.2013,45(5):921-924.
    103. Heutink, P. PINK-1and DJ-1--new genes for autosomal recessive Parkinson's disease.J Neural Transm Suppl.2006(70):215-219.
    104. Venderova, K., G. Kabbach, E. Abdel-Messih, Y. Zhang, R.J. Parks, Y. Imai, S.Gehrke, J. Ngsee, M.J. Lavoie, R.S. Slack, et al. Leucine-Rich Repeat Kinase2interacts with Parkin, DJ-1and PINK-1in a Drosophila melanogaster model ofParkinson's disease. Hum Mol Genet.2009,18(22):4390-4404.
    105. Matsuda, S., Y. Kitagishi and M. Kobayashi. Function and characteristics of PINK1inmitochondria. Oxid Med Cell Longev.2013,2013:601587.
    106. Vincow, E.S., G. Merrihew, R.E. Thomas, N.J. Shulman, R.P. Beyer, M.J. MacCossand L.J. Pallanck. The PINK1-Parkin pathway promotes both mitophagy and selectiverespiratory chain turnover in vivo. Proc Natl Acad Sci U S A.2013,110(16):6400-6405.
    107. Shiba-Fukushima, K., Y. Imai, S. Yoshida, Y. Ishihama, T. Kanao, S. Sato and N.Hattori. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primesmitochondrial translocation of Parkin and regulates mitophagy. Sci Rep.2012,2:1002.
    1. Levine, B. and D.J. Klionsky. Development by self-digestion: molecular mechanismsand biological functions of autophagy. Dev Cell.2004,6(4):463-477.
    2. Shintani, T. and D.J. Klionsky. Autophagy in health and disease: a double-edged sword.Science.2004,306(5698):990-995.
    3. Levine, B. and V. Deretic. Unveiling the roles of autophagy in innate and adaptiveimmunity. Nat Rev Immunol.2007,7(10):767-777.
    4. Mizushima, N. Autophagy: process and function. Genes Dev.2007,21(22):2861-2873.
    5. Levine, B. and G. Kroemer. Autophagy in the pathogenesis of disease. Cell.2008,132(1):27-42.
    6. Mizushima, N., B. Levine, A.M. Cuervo and D.J. Klionsky. Autophagy fights diseasethrough cellular self-digestion. Nature.2008,451(7182):1069-1075.
    7. Sinha, S. and B. Levine. The autophagy effector Beclin1: a novel BH3-only protein.Oncogene.2008,27Suppl1:S137-148.
    8. Yorimitsu, T. and D.J. Klionsky. Autophagy: molecular machinery for self-eating. CellDeath Differ.2005,12Suppl2:1542-1552.
    9. Fimia, G.M., A. Stoykova, A. Romagnoli, L. Giunta, S. Di Bartolomeo, R. Nardacci, M.Corazzari, C. Fuoco, A. Ucar, P. Schwartz, et al. Ambra1regulates autophagy anddevelopment of the nervous system. Nature.2007,447(7148):1121-1125.
    10. Mizushima, N., T. Noda and Y. Ohsumi. Apg16p is required for the function of theApg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J.1999,18(14):3888-3896.
    11. Ichimura, Y., T. Kirisako, T. Takao, Y. Satomi, Y. Shimonishi, N. Ishihara, N.Mizushima, I. Tanida, E. Kominami, M. Ohsumi, et al. A ubiquitin-like systemmediates protein lipidation. Nature.2000,408(6811):488-492.
    12. Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat RevMol Cell Biol.2001,2(3):211-216.
    13. Maiuri, M.C., E. Zalckvar, A. Kimchi and G. Kroemer. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol.2007,8(9):741-752.
    14. Jin, S. Autophagy, mitochondrial quality control, and oncogenesis. Autophagy.2006,2(2):80-84.
    15. Karantza-Wadsworth, V. and E. White. Role of autophagy in breast cancer. Autophagy.2007,3(6):610-613.
    16. Jin, S. and E. White. Role of autophagy in cancer: management of metabolic stress.Autophagy.2007,3(1):28-31.
    17. Mathew, R., C.M. Karp, B. Beaudoin, N. Vuong, G. Chen, H.Y. Chen, K. Bray, A.Reddy, G. Bhanot, C. Gelinas, et al. Autophagy suppresses tumorigenesis throughelimination of p62. Cell.2009,137(6):1062-1075.
    18. Qu, X., J. Yu, G. Bhagat, N. Furuya, H. Hibshoosh, A. Troxel, J. Rosen, E.L. Eskelinen,N. Mizushima, Y. Ohsumi, et al. Promotion of tumorigenesis by heterozygousdisruption of the beclin1autophagy gene. J Clin Invest.2003,112(12):1809-1820.
    19. Liang, X.H., S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh and B.Levine. Induction of autophagy and inhibition of tumorigenesis by beclin1. Nature.1999,402(6762):672-676.
    20. Tang, D., R. Kang, K.M. Livesey, C.W. Cheh, A. Farkas, P. Loughran, G. Hoppe, M.E.Bianchi, K.J. Tracey, H.J. Zeh,3rd, et al. Endogenous HMGB1regulates autophagy. JCell Biol.2010,190(5):881-892.
    21. Degenhardt, K., R. Mathew, B. Beaudoin, K. Bray, D. Anderson, G. Chen, C.Mukherjee, Y. Shi, C. Gelinas, Y. Fan, et al. Autophagy promotes tumor cell survivaland restricts necrosis, inflammation, and tumorigenesis. Cancer Cell.2006,10(1):51-64.
    22. White, E. and R.S. DiPaola. The double-edged sword of autophagy modulation incancer. Clin Cancer Res.2009,15(17):5308-5316.
    23. Semenza, G.L. HIF-1: upstream and downstream of cancer metabolism. Curr OpinGenet Dev.2010,20(1):51-56.
    24. Yang, S., X. Wang, G. Contino, M. Liesa, E. Sahin, H. Ying, A. Bause, Y. Li, J.M.Stommel, G. Dell'antonio, et al. Pancreatic cancers require autophagy for tumor growth.Genes Dev.2011,25(7):717-729.
    25. Lu, Z., R.Z. Luo, Y. Lu, X. Zhang, Q. Yu, S. Khare, S. Kondo, Y. Kondo, Y. Yu, G.B.Mills, et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancyin human ovarian cancer cells. J Clin Invest.2008,118(12):3917-3929.
    26. Kanzawa, T., L. Zhang, L. Xiao, I.M. Germano, Y. Kondo and S. Kondo. Arsenictrioxide induces autophagic cell death in malignant glioma cells by upregulation ofmitochondrial cell death protein BNIP3. Oncogene.2005,24(6):980-991.
    27. Shao, Y., Z. Gao, P.A. Marks and X. Jiang. Apoptotic and autophagic cell deathinduced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A.2004,101(52):18030-18035.
    28. Turcotte, S., D.A. Chan, P.D. Sutphin, M.P. Hay, W.A. Denny and A.J. Giaccia. Amolecule targeting VHL-deficient renal cell carcinoma that induces autophagy. CancerCell.2008,14(1):90-102.
    29. Amaravadi, R.K., D. Yu, J.J. Lum, T. Bui, M.A. Christophorou, G.I. Evan, A. Thomas-Tikhonenko and C.B. Thompson. Autophagy inhibition enhances therapy-inducedapoptosis in a Myc-induced model of lymphoma. J Clin Invest.2007,117(2):326-336.
    30. Kanzawa, T., I.M. Germano, T. Komata, H. Ito, Y. Kondo and S. Kondo. Role ofautophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell DeathDiffer.2004,11(4):448-457.
    31. Abedin, M.J., D. Wang, M.A. McDonnell, U. Lehmann and A. Kelekar. Autophagydelays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ.2007,14(3):500-510.
    32. Mukubou, H., T. Tsujimura, R. Sasaki and Y. Ku. The role of autophagy in thetreatment of pancreatic cancer with gemcitabine and ionizing radiation. Int J Oncol.2010,37(4):821-828.
    33. Li, J., N. Hou, A. Faried, S. Tsutsumi and H. Kuwano. Inhibition of autophagyaugments5-fluorouracil chemotherapy in human colon cancer in vitro and in vivomodel. Eur J Cancer.2010,46(10):1900-1909.
    34. Paglin, S., T. Hollister, T. Delohery, N. Hackett, M. McMahill, E. Sphicas, D. Domingoand J. Yahalom. A novel response of cancer cells to radiation involves autophagy andformation of acidic vesicles. Cancer Res.2001,61(2):439-444.
    35. Ertmer, A., V. Huber, S. Gilch, T. Yoshimori, V. Erfle, J. Duyster, H.P. Elsasser andH.M. Schatzl. The anticancer drug imatinib induces cellular autophagy. Leukemia.2007,21(5):936-942.
    36. Li, X. and Z. Fan. The epidermal growth factor receptor antibody cetuximab inducesautophagy in cancer cells by downregulating HIF-1alpha and Bcl-2and activating thebeclin1/hVps34complex. Cancer Res.2010,70(14):5942-5952.
    37. Zhu, K., K. Dunner, Jr. and D.J. McConkey. Proteasome inhibitors activate autophagyas a cytoprotective response in human prostate cancer cells. Oncogene.2010,29(3):451-462.
    38. Han, J., W. Hou, L.A. Goldstein, C. Lu, D.B. Stolz, X.M. Yin and H. Rabinowich.Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumorcells. J Biol Chem.2008,283(28):19665-19677.
    39. Liu, Y.L., P.M. Yang, C.T. Shun, M.S. Wu, J.R. Weng and C.C. Chen. Autophagypotentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellularcarcinoma. Autophagy.2010,6(8):1057-1065.
    40. Goussetis, D.J., J.K. Altman, H. Glaser, J.L. McNeer, M.S. Tallman and L.C. Platanias.Autophagy is a critical mechanism for the induction of the antileukemic effects ofarsenic trioxide. J Biol Chem.2010,285(39):29989-29997.
    41. Bursch, W., A. Ellinger, H. Kienzl, L. Torok, S. Pandey, M. Sikorska, R. Walker andR.S. Hermann. Active cell death induced by the anti-estrogens tamoxifen and ICI164384in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy.Carcinogenesis.1996,17(8):1595-1607.
    42. Huang, S. and F.A. Sinicrope. Celecoxib-induced apoptosis is enhanced by ABT-737and by inhibition of autophagy in human colorectal cancer cells. Autophagy.2010,6(2):256-269.
    43. Gills, J.J., J. Lopiccolo and P.A. Dennis. Nelfinavir, a new anti-cancer drug withpleiotropic effects and many paths to autophagy. Autophagy.2008,4(1):107-109.
    44. Meric-Bernstam, F. and A.M. Gonzalez-Angulo. Targeting the mTOR signalingnetwork for cancer therapy. J Clin Oncol.2009,27(13):2278-2287.
    45. O'Reilly, K.E., F. Rojo, Q.B. She, D. Solit, G.B. Mills, D. Smith, H. Lane, F. Hofmann,D.J. Hicklin, D.L. Ludwig, et al. mTOR inhibition induces upstream receptor tyrosinekinase signaling and activates Akt. Cancer Res.2006,66(3):1500-1508.
    46. Chresta, C.M., B.R. Davies, I. Hickson, T. Harding, S. Cosulich, S.E. Critchlow, J.P.Vincent, R. Ellston, D. Jones, P. Sini, et al. AZD8055is a potent, selective, and orallybioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with invitro and in vivo antitumor activity. Cancer Res.2010,70(1):288-298.
    47. Feldman, M.E., B. Apsel, A. Uotila, R. Loewith, Z.A. Knight, D. Ruggero and K.M.Shokat. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1and mTORC2. PLoS Biol.2009,7(2):e38.
    48. Yu, K., C. Shi, L. Toral-Barza, J. Lucas, B. Shor, J.E. Kim, W.G. Zhang, R. Mahoney,C. Gaydos, L. Tardio, et al. Beyond rapalog therapy: preclinical pharmacology andantitumor activity of WYE-125132, an ATP-competitive and specific inhibitor ofmTORC1and mTORC2. Cancer Res.2010,70(2):621-631.
    49. Thoreen, C.C., S.A. Kang, J.W. Chang, Q. Liu, J. Zhang, Y. Gao, L.J. Reichling, T. Sim,D.M. Sabatini and N.S. Gray. An ATP-competitive mammalian target of rapamycininhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem.2009,284(12):8023-8032.
    50. Janes, M.R., J.J. Limon, L. So, J. Chen, R.J. Lim, M.A. Chavez, C. Vu, M.B. Lilly, S.Mallya, S.T. Ong, et al. Effective and selective targeting of leukemia cells using aTORC1/2kinase inhibitor. Nat Med.2010,16(2):205-213.
    51. Annunziato, L., S. Amoroso, A. Pannaccione, M. Cataldi, G. Pignataro, A. D'Alessio, R.Sirabella, A. Secondo, L. Sibaud and G.F. Di Renzo. Apoptosis induced in neuronalcells by oxidative stress: role played by caspases and intracellular calcium ions. ToxicolLett.2003,139(2-3):125-133.
    52. Shimizu, S., Y. Eguchi, W. Kamiike, Y. Itoh, J. Hasegawa, K. Yamabe, Y. Otsuki, H.Matsuda and Y. Tsujimoto. Induction of apoptosis as well as necrosis by hypoxia andpredominant prevention of apoptosis by Bcl-2and Bcl-XL. Cancer Res.1996,56(9):2161-2166.
    53. Sepulveda, M., L. Gonano, T.G. Back, S.R. Chen and M.V. Petroff. Role of CaMKIIand ROS in rapid pacing-induced apoptosis. J Mol Cell Cardiol.2013.
    54. Brune, B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ.2003,10(8):864-869.
    55. Fang, J., Y. Lian, K. Xie, S. Cai and P. Wen. Epigenetic modulation of neuronalapoptosis and cognitive functions in sepsis-associated encephalopathy. Neurol Sci.2013.
    56. Stankiewicz, T.R., E.K. Schroeder, N.A. Kelsey, R.J. Bouchard and D.A. Linseman. C-terminal binding proteins are essential pro-survival factors that undergo caspase-dependent downregulation during neuronal apoptosis. Mol Cell Neurosci.2013,56C:322-332.
    57. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol.2007,35(4):495-516.
    58. Yuan, S. and C.W. Akey. Apoptosome structure, assembly, and procaspase activation.Structure.2013,21(4):501-515.
    59. Giansanti, V., A. Torriglia and A.I. Scovassi. Conversation between apoptosis andautophagy:"Is it your turn or mine?". Apoptosis.2011,16(4):321-333.
    60. Pennarun, B., A. Meijer, E.G. de Vries, J.H. Kleibeuker, F. Kruyt and S. de Jong.Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer.Biochim Biophys Acta.2010,1805(2):123-140.
    61. Fulda, S. and K.M. Debatin. Extrinsic versus intrinsic apoptosis pathways in anticancerchemotherapy. Oncogene.2006,25(34):4798-4811.
    62. Sayers, T.J. Targeting the extrinsic apoptosis signaling pathway for cancer therapy.Cancer Immunol Immunother.2011,60(8):1173-1180.
    63. Cotter, T.G. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer.2009,9(7):501-507.
    64. Rasul, A., J. Di, F.M. Millimouno, M. Malhi, I. Tsuji, M. Ali, J. Li and X. Li. Reactiveoxygen species mediate isoalantolactone-induced apoptosis in human prostate cancercells. Molecules.2013,18(8):9382-9396.
    65. Pramanik, K.C., S.R. Boreddy and S.K. Srivastava. Role of mitochondrial electrontransport chain complexes in capsaicin mediated oxidative stress leading to apoptosis inpancreatic cancer cells. PLoS One.2011,6(5):e20151.
    66. Gao, Y., Y. Su, L. Qu, S. Xu, L. Meng, S.Q. Cai and C. Shou. Mitochondrial apoptosiscontributes to the anti-cancer effect of Smilax glabra Roxb. Toxicol Lett.2011,207(2):112-120.
    67. Kinnally, K.W., P.M. Peixoto, S.Y. Ryu and L.M. Dejean. Is mPTP the gatekeeper fornecrosis, apoptosis, or both? Biochim Biophys Acta.2011,1813(4):616-622.
    68. Maquoi, E., D. Assent, J. Detilleux, C. Pequeux, J.M. Foidart and A. Noel. MT1-MMPprotects breast carcinoma cells against type I collagen-induced apoptosis. Oncogene.2012,31(4):480-493.
    69. Kulikov, A.V., E.S. Shilov, I.A. Mufazalov, V. Gogvadze, S.A. Nedospasov and B.Zhivotovsky. Cytochrome c: the Achilles' heel in apoptosis. Cell Mol Life Sci.2012,69(11):1787-1797.
    70. Marquez, R.T. and L. Xu. Bcl-2:Beclin1complex: multiple, mechanisms regulatingautophagy/apoptosis toggle switch. Am J Cancer Res.2012,2(2):214-221.
    71. Wirawan, E., L. Vande Walle, K. Kersse, S. Cornelis, S. Claerhout, I. Vanoverberghe,R. Roelandt, R. De Rycke, J. Verspurten, W. Declercq, et al. Caspase-mediatedcleavage of Beclin-1inactivates Beclin-1-induced autophagy and enhances apoptosis bypromoting the release of proapoptotic factors from mitochondria. Cell Death Dis.2010,1:e18.
    72. Rohn, T.T., E. Wirawan, R.J. Brown, J.R. Harris, E. Masliah and P. Vandenabeele.Depletion of Beclin-1due to proteolytic cleavage by caspases in the Alzheimer'sdisease brain. Neurobiol Dis.2011,43(1):68-78.
    73. Li, Z.Y., Y. Yang, M. Ming and B. Liu. Mitochondrial ROS generation for regulation ofautophagic pathways in cancer. Biochem Biophys Res Commun.2011,414(1):5-8.
    74. Yin, X., L. Cao, Y. Peng, Y. Tan, M. Xie, R. Kang, K.M. Livesey and D. Tang. Acritical role for UVRAG in apoptosis. Autophagy.2011,7(10):1242-1244.
    75. Radoshevich, L., L. Murrow, N. Chen, E. Fernandez, S. Roy, C. Fung and J. Debnath.ATG12conjugation to ATG3regulates mitochondrial homeostasis and cell death. Cell.2010,142(4):590-600.
    76. Rubinstein, A.D., M. Eisenstein, Y. Ber, S. Bialik and A. Kimchi. The autophagyprotein Atg12associates with antiapoptotic Bcl-2family members to promotemitochondrial apoptosis. Mol Cell.2011,44(5):698-709.
    77. Pyo, J.O., M.H. Jang, Y.K. Kwon, H.J. Lee, J.I. Jun, H.N. Woo, D.H. Cho, B. Choi, H.Lee, J.H. Kim, et al. Essential roles of Atg5and FADD in autophagic cell death:dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem.2005,280(21):20722-20729.
    78. Yousefi, S., R. Perozzo, I. Schmid, A. Ziemiecki, T. Schaffner, L. Scapozza, T. Brunnerand H.U. Simon. Calpain-mediated cleavage of Atg5switches autophagy to apoptosis.Nat Cell Biol.2006,8(10):1124-1132.
    79. Crighton, D., S. Wilkinson, J. O'Prey, N. Syed, P. Smith, P.R. Harrison, M. Gasco, O.Garrone, T. Crook and K.M. Ryan. DRAM, a p53-induced modulator of autophagy, iscritical for apoptosis. Cell.2006,126(1):121-134.
    80. Feng, Q., Y. Zhang, Y. Li, Z. Liu, J. Zuo and F. Fang. Two domains are critical for thenuclear localization of soluble adenylyl cyclase. Biochimie.2006,88(3-4):319-328.
    81. Liang, X.H., L.K. Kleeman, H.H. Jiang, G. Gordon, J.E. Goldman, G. Berry, B.Herman and B. Levine. Protection against fatal Sindbis virus encephalitis by beclin, anovel Bcl-2-interacting protein. J Virol.1998,72(11):8586-8596.
    82. Bakhshi, A., J.P. Jensen, P. Goldman, J.J. Wright, O.W. McBride, A.L. Epstein and S.J.Korsmeyer. Cloning the chromosomal breakpoint of t(14;18) human lymphomas:clustering around JH on chromosome14and near a transcriptional unit on18. Cell.1985,41(3):899-906.
    83. Cleary, M.L. and J. Sklar. Nucleotide sequence of a t(14;18) chromosomal breakpointin follicular lymphoma and demonstration of a breakpoint-cluster region near atranscriptionally active locus on chromosome18. Proc Natl Acad Sci U S A.1985,82(21):7439-7443.
    84. Yao, Q., J. Chen, Y. Lv, T. Wang, J. Zhang, J. Fan and L. Wang. The significance ofexpression of autophagy-related gene Beclin, Bcl-2, and Bax in breast cancer tissues.Tumour Biol.2011,32(6):1163-1171.
    85. Oberstein, A., P.D. Jeffrey and Y. Shi. Crystal structure of the Bcl-XL-Beclin1peptidecomplex: Beclin1is a novel BH3-only protein. J Biol Chem.2007,282(17):13123-13132.
    86. Feng, W., S. Huang, H. Wu and M. Zhang. Molecular basis of Bcl-xL's targetrecognition versatility revealed by the structure of Bcl-xL in complex with the BH3domain of Beclin-1. J Mol Biol.2007,372(1):223-235.
    87. Ku, B., J.S. Woo, C. Liang, K.H. Lee, H.S. Hong, X. E, K.S. Kim, J.U. Jung and B.H.Oh. Structural and biochemical bases for the inhibition of autophagy and apoptosis byviral BCL-2of murine gamma-herpesvirus68. PLoS Pathog.2008,4(2):e25.
    88. Sinha, S., C.L. Colbert, N. Becker, Y. Wei and B. Levine. Molecular basis of theregulation of Beclin1-dependent autophagy by the gamma-herpesvirus68Bcl-2homolog M11. Autophagy.2008,4(8):989-997.
    89. Li, X., L. He, K.H. Che, S.F. Funderburk, L. Pan, N. Pan, M. Zhang, Z. Yue and Y.Zhao. Imperfect interface of Beclin1coiled-coil domain regulates homodimer andheterodimer formation with Atg14L and UVRAG. Nat Commun.2012,3:662.
    90. Huang, W., W. Choi, W. Hu, N. Mi, Q. Guo, M. Ma, M. Liu, Y. Tian, P. Lu, F.L. Wang,et al. Crystal structure and biochemical analyses reveal Beclin1as a novel membranebinding protein. Cell Res.2012,22(3):473-489.
    91. Ito, H., H. Aoki, F. Kuhnel, Y. Kondo, S. Kubicka, T. Wirth, E. Iwado, A. Iwamaru, K.Fujiwara, K.R. Hess, et al. Autophagic cell death of malignant glioma cells induced bya conditionally replicating adenovirus. J Natl Cancer Inst.2006,98(9):625-636.
    92. Peng, P.L., W.H. Kuo, H.C. Tseng and F.P. Chou. Synergistic tumor-killing effect ofradiation and berberine combined treatment in lung cancer: the contribution ofautophagic cell death. Int J Radiat Oncol Biol Phys.2008,70(2):529-542.
    93. Kroemer, G. and B. Levine. Autophagic cell death: the story of a misnomer. Nat RevMol Cell Biol.2008,9(12):1004-1010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700