单时相NOAA/AVHRR资料监测土壤湿度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文讨论了各种遥感监测土壤水分方法的适用范围和特点,并对各种方法进行了评价。基于以往方法的不足,在借鉴前人工作经验的基础上,本研究首次尝试应用了单时相乘积法监测土壤水分。该方法综合考虑地表温度和地表反射特征,用单时相1通道反射率与4通道亮温的乘积值直接与土壤相对湿度建模,并将该方法的计算结果与表观热惯量法和植被供水指数法进行对比分析,得出以下结论:
     1.利用2002年4—7月的NOAA AVHRR 1.1km分辨率的遥感资料以及对应时段全国250多个气象观测站0—100cm的土壤湿度资料,分不同时段、不同植被条件、不同土层深度、不同方法建立统计模型,探导土壤湿度状况。该遥感资料覆盖了我国中轴线以东的大部分省、市、自治区,幅原辽阔,气候、植被类型多样。
     2.分别用直线、对数、指数模型,分低、中、高植被覆盖和不同土层深度,对1、4通道乘积值、表观热惯量和植被供水指数分别与土壤相对湿度进行拟合,结果表明:单时相乘积法的直线模型能较好地估算低、中、高三种植被覆盖情况下10cm-70cm深度的土壤含水量,相对误差在20%以内,为直接预估深层次土壤水分提供了新思路。表观热惯量法的指数模型能较好地估算土壤表层(10cm-20cm)相对含水量,较适合于低植被覆盖或裸地的情况;植被供水指数法的指数模型能较好地估算20cm-50cm深度的土壤相对含水量,较适合于高植被覆盖的情况;
     3.单时相乘积法的拟合精度优于表观热惯量法和植被供水指数法,不仅提高了在低植被和高植被覆盖的反演精度,而且还创造性地为中植被覆盖下的土壤水分反演提供了新方法。运用单时相乘积法反演土壤湿度,比在低植被条件下运用热惯量法在10cm、20cm的相对误差分别下降了4%、3%,平均下降了3.5%,比在中植被条件下运用植被供水指数法在10cm、20cm、50cm的相对误差分别下降了1.5%、3.5%、2%,平均下降了2.4%,比在高植被条件下运用植被供水指数法在10cm、20cm、50cm的相对误差分别下降了1.3%、1.4%、0.3%,平均下降了1%。
     4.由于单时相乘积法只需要单时相卫星资料,且适合任意植被覆盖情况下、大范围的土壤湿度监测,解决了热惯量法因需要获得连续12h内两次晴空资料以
    
    及作物缺水指数法和农田蒸散双层模型等方法因依靠大量地面气象资料而不能解
    决的时效性和连续性问题。
     5.经可替代性分析后,利用单时相乘积法建立了4月至7月份的通用模型,
    其模型为:10e血:卜113.69一1.44Q;20em:W=113.13一1.36Q;50em:W=110.74-
    1.23Q,经严格的统计学检验,证明其具有一定的通用性,并用此模型反演了5月
    31日、7月30日0一20cm的平均相对土壤湿度,取得了较好的效果。
     综上所述,单时相乘积法适合于我国中东部地区4一7月任意植被覆盖下、大
    范围的土壤湿度实时监测。该方法解决了以往不能连续监测土壤含水量、监测范
    围小、所需气象资料太多的问题,获取资料方便,计算简便,能够较好地保证土
    壤湿度监测的实时性和实效性。
In the research work, by analyzing the NOAA/AVHRR (resolution is 1. 1km) data(from April to August in 2000) and soil humidity(0-100cm) of the corresponding period of NOAA/AVHRR data observed by more than 250 meteorologic stations , the statistical models have been made out between the NOAA/AVHRR data and the soil moisture index(W) according to different periods, different soil deepness, different surface cover attributes, different methods and different regressive functions. And the NOAA/AVHRR data cover most provinces, cities and municipalities of China that include large scale and many kinds of climates and vegetations.
    This study discusses the applying scopes and the characteristics of the apparent soil inertia method and the vegetation supply water index method, and then values the two methods. Because of the shortages of the two methods, and on the basis of the former investigator' s study, single phase product method is put forward in the study first. The method considering surface temperature and reflection attributes and was built between the value of product of channel 1 and channel 4 of single phase NOAA/AVHRR and the soil moisture index, and then the result of single phase product method was compared with the result of the apparent soil inertia method and vegetation supply water index method. The conclusions are as follows:
    1 ) L.inear, logarithmic and exponential empirical models were applied to develop the relation ship between soil moisture index (0-100cm) and apparent soil inertia and between soil moisture index (0-100cm) and vegetation supply water index and between soil moisture index (0-100cm) and the value of the product of channel 1 and channel 4 of single phase NOAA/AVHRR respectively. The result indicates that the logarithmic models of apparent soil inertia method has better performance in estimating soil surface(10-20cm) moisture index than others for bare soil or lowly covered soil. And the logarithmic models of vegetation supply water index method has better performance in estimating the deepness of 20~50cm of soil moisture than others for highly covered soil. And the linear model of single phase product method has better performance in estimating the deepness of 10-100cm of soil moisture than others for any level covered soil, and the mean relative error is controlled within 20% on the whole, it offers a new idea
     for using variable estimate deep soil moisture directly.
    2) The result indicated that the precision of the model built by single phase product method is better than the models built by apparent soil inertia method and by vegetation supply water index method. It not only improve the precision for lowly soil and highly soil, but also offers a new method for partly covered soil creationaryly. The retrieved values of single phase product method is 3% and 4%
    
    
    lower than that of apparent soil inertia method and the mean is reduced 3. 5% for lowly covered soil at the deepness of 10cm and 20cm respectively; it is 1. 5%, 3. 5% and 2% lower than that of vegetation supply water method and the mean was reduced 2.4% at the deepness of 10cm, 20cm and 50cm for the partly covered soil respectively; it is 1. 3%, 1. 4% and 0.3% lower than that of vegetation supply water method and the mean is reduced 1% at the deepness of 10cm, 20cm and 50cm for the highly covered soil respectively.
    3) It can resolve those questions about efficiency and continuity which can' t
    be resolved by apparent soil inertia method because of its ordered two-phases cloudless remote sensing data in 12 hours and by Crop Water Stress Index method and so on because of its ordered too many ground weather data. In addition it could be used to monitor soil moisture in large scale with any level covered soil.
    4) Currency model for April to August was built by using single phase product method after analyzing the replaceable between each model. The currency model was as follows: 10cm: W=113.69-1.44Q; 20cm: ff=113.13-1.36Q; 50cm: 1=110.74-1.230, all of them were qualified in terms of statistic test and had certain degree
引文
[1]王鹏新 黄土高原典型区域土壤水分遥感模型的研究,武汉大学博士学位论文2001,4;
    [2]裴浩等 利用气象卫星遥感监测土壤含水量,干旱区资源与环境,1999,13(1):73-76;
    [3]董谢琼等 利用NOAA/AVHRR资料监测云南大面积干旱业务流程,气象,2000,27(1):31-34;
    [4]李亚春 我国土壤水分遥感监测中热惯量模式的研究现状与进展,中国农业气象,2000,21(2):40-43
    [5]徐冠华 遥感信息科学的进展和展望,地理学报,1996,51(5)
    [6]鹿洁忠.根据表层数据估算深层土壤水分[J].农业气象,1987,2:60~62
    [7]Biswas B C, Dasgupta S K Estimate of Soil Moistureat Deeper Depth from Surface Layer Data. Mausam, 1979,30(4):40~45
    [8]刘良明 NOAA AVHRR数据在制作中国归一化植被指数图和干旱监测中的应用,武汉测绘科技大学硕士学位论文,1999,4
    [9]裴浩等 土壤墒情的监测方法,内蒙古气象,1997(6):24-27
    [10]K Waston, L.C.Rowan and T.W.Offield Application of thermal modeling in geologic interpretation of IR imaged Proc. 7th Int. Symp. Remote Sensing Environ, 1971, Vol. 3:2017-2041
    [11]Watson K, Pohn H A. Thermal Inertia Mapping from Satellites Discrimination of Geologic Unitsin Oman. Jres Geol Suvr, 1974, 2(2): 147-158
    [12]Pratt A, Ellyett C D. The ThermalInertia Approachto Mapping of Soil Moistureand Geology. Ramote Sens Environ, 1979, 8: 151-168.
    [13]Lapen D R. The Measurement of Two Simple Topographic Indices of Wind Sheltering-Exposure from Raster Digital Elevation Models Computer &Geosciences, 1993, 19(6):769~779
    [14]王让会 土壤水分遥感研究进展,遥感技术与应用,1994,9(4):61-65
    [15]Owe M. Estimating Surface Soil Moisture from Satellite Microwave Measurementanda Satellite Derived Vegetation Index. Ramote Sens Environ, 1988, 24: 331-345.
    [16]Seguin B. The Assessment of Regional Crop Water Conditions from Meteorological Satellite Thermal Infrared Data. Remote Sens Environ, 1991, 35:141-148
    [17]Price J C. On the Analysis of Thermal Infrared Imagery. The Limited Utility of Apparent Thermal Inertia Remote Sens Environ, 1985, 18:59-73
    [18]Carlsorn T N. Regional Scale Estimates of Surface Luoisture Availability and Thermal Inertia Using Remote Thermal Measurements.Remote Sens Environ, 1986, 1: 197-247.
    [19]Hall F G. Satellite Remote Sensing of Surface Energy Balance: Success, Failure, and Unsolved Issuesin FIFE. J Geophy Res, 1992, 97:19061-19089
    [20]Vining R G. Estimation of Sensible Heat Flux from Remotely Sensed Canopy Temperature. J Geophy Res,1992, 97:18951-18959
    [21]Norman J M. Algorithm for Extracting Information from Remote Sensing Thermal-I R Observations of the Earth's Surface. Remote Sens Environ, 1995, 51:157-168
    [22]Matthews K B. Climate Soil Moisture Deficit Climte and Soil Data Integrationina GIS Climate, 1994, 28:273-283
    
    
    [23]蔡斌等 气象卫星条件植被指数监测土壤状况,国土资源遥感,1995(4)
    [24]马蔼乃 遥感系列丛书之二——遥感信息模型,北京:北京大学出版社,1997
    [25]肖乾广等 用NOAA/AVHRR资料监测土壤湿度,遥感信息,1990(1)
    [26]隋洪智、田国良 热惯量方法监测土壤水分,田国良主编,黄河流域典型地区遥感动态研究,北京:科学出版社,1990.
    [27]田田国良等 冬小麦旱情遥感监测模型研究,环境遥感,1992,7(2):83-89
    [28]陈维英等 距平植被指数在1992年特大干旱监测中的应用,环境遥感,1994,9(2):106-112
    [29]肖乾广等 用气象卫星监测土壤水分的试验研究,应用气象学报,1994,5(2):312-317
    [30]余涛、田国良.热惯量法在监测土壤表层水分变化中的研究,遥感学报,1997,1(1):24-31.
    [31]刘培君等 卫星遥感估测土壤水分的一种方法,遥感学报,1997,1(2):135-138
    [32]陈怀亮 麦田土壤水分NOAA/AVHRR遥感监测方法研究,遥感技术与应用,1998,13(4):27-35
    [33]隋洪智等 农田蒸散双层模型及其在干旱遥感监测中的应用,遥感学报,1997,1(3):220-224
    [34]金一锷等 利用气象卫星GMS和AVHRR资料推算地面水分含量的方法,应用气象学报,1998,9(2):197-204
    [35]张晓煜等 利用AVHRR资料反演宁夏温度,新疆气象,1998,21(5):27-29
    [36]李云鹏 利用NOAA/AVHRR资料监测准格尔旗植被及土壤墒情,内蒙古气象,1998(3):30-32
    [37]田广荣、田国良 基于GIS的黄淮海平原旱灾遥感监测研究—作物缺水指数模型的实现,生态学报,2000,20(2):224-228
    [38]张晓煜 宁夏土壤湿度遥感监测热惯量模型的建立,宁夏农林科技,1998(3):17-19,8
    [39]陈怀亮等 麦田土壤水分NOAA/AVHRR遥感监测方法研究,遥感技术与应用,1998,13(4):27-35
    [40]陈云浩等 我国西北地区地表反照率的遥感研究,地理科学,2001,21(4):327-333
    [41]陈云浩等 北京海淀区植被覆盖的遥感动态研究,植物生态学报,2000,25(5):588-593
    [42]周咏梅等 NOAA/AVHRR资料在青海省牧区草场旱情监测中的应用,应用气象学报,1998,9(4):496-499
    [43]张树誉等 NOAA/AVHRR资料在陕西省干旱动态监测中的应用,中国农业气象,1998,15(5):26-28,32
    [44]冯锐等 利用AVHRR资料监测植被土壤含水量,辽宁气象,1998(4):30-31
    [45]申广荣、田国良.基于GIS的黄淮海平原旱情监测研究,自然灾害学报,1998,7(2):17-21
    [46]李杏朝.利用遥感资料进行旱情监测的研究,卫星应用,1996,4(4):39-43
    [47]陈怀亮等 地理信息系统(GIS)支持下的冬小麦干旱NOAA/AVHRR遥感监测方法研究,应用气象,1998(4)
    [48]陈维英等 距平植被指数在1992年特大干旱监测中的应用,环境遥感,1994,9(2):394-400
    [49]郭妮等 用NOAA卫星可见光和红外资料估算甘肃省东部农田区土壤湿度,应用气象学报,1997,8(2):212-218
    [50]罗秀陵等 应用NOAA-AVHRR资料监测四川干旱,气象,1996,22(5):35-38
    [51]Kogan F N. Global Drought Watch from Space Bull Amer Meteor Soc, 1997,78(4):621-636.
    [52]郑威,陈述彭 资源遥感纲要,北京:中国科学技术出版社,1995
    [53]陈怀亮等 遥感监测土壤水分的理论、方法及研究进展,遥感技术与应用,1999,14(2):55-65
    [54]Bijleveld R A'TellUs' A Combined Surface Temperature, Soil Moisture and Evaporation Mapping Approach Paper Presented at 12th Int Symp ON Rem Sens of Env, Manila, Philippines,1978:20-26
    [55]刘晶淼等 利用任意时刻AVHRR资料近似估计区域地表温度日较差的试验,南京气象学院学报,2001,24(3):323-329
    
    
    [56]陈秀万等 应用NOAA/AVHRR资料估算土壤含水量,科技通报,1994,10(1):43-46
    [57]刘兴文、冯勇进 应用热惯量编制土壤水分图及土壤水分探测效果,土壤学报,1987,24(3):272-280
    [58]蔡焕杰等 遥感红外温度估算农田土壤水分状况研究,西北农业大学学报,1994,22(1):113-118
    [59]刘培君等 卫星遥感估测土壤水分的一种方法,遥感学报,1997,1(2):135-138
    [60]陆家驹 应用遥感技术连续监测地表土壤含水量,水科学进展,1997,8(3):281-286
    [61]陈怀亮等 单时相极轨气象卫星资料遥感监测干旱研究,河南气象,2000,(3):25-27
    [62]肖乾广等 用气象卫星监测土壤水分的试验研究,应用气象学报,1994,5(2):312-317
    [63]庄季屏 四十年业的中国土壤水分研究,土壤学报,1989,26(3):241-248
    [64]肖乾广等 用气象卫星监测土壤水分的试验研究,应用气象学报,1994,5(3):312-318
    [65]余涛、田国良 热惯量法在监测土壤表层水分变化中的研究,遥感学报,1997,1(1):24-31
    [66]张仁华 土壤含水量的热惯量法模型及其应用,科学通报,1991,36(12):924-927
    [67]喻光明 江汉平原渍害田热力学特性及其遥感研究,环境科学通报,1994,14(4):475-481;
    [68]喻光明 渍害遥感识别的基本原理与方法,环境遥感,1995,10(1):9-14
    [69]陈怀亮等 土壤质地对遥感监测干旱的影响,河南气象,1999(3):28-29
    [70]冯强 中国干旱遥感监测系统的研究 博士后论文,中科院遥感应用研究所2001,6
    [71]The Canadian Acronantica and Space Institate The Hydrology Working Group of the Canadian Advisory Committee on Remote Sensing. Remote Sensing of Soil Moisture and Groudwater, 1976
    [72]陈述彭、赵英时 遥感地学分析,北京:测绘出版社,1990
    [73]金亚和等 多频段微波辐射计对土壤温度的遥感和理论计算,环境遥感,1990(3)
    [74]J. C Price.On the analysis of thermal infrared imagery the limited utility of apparent thermal interia Rom Sens.Environ, 1985, 18(1): 59-73
    [75]A. W. England, J. F, Galantowicz and Schretter. The radiobrightness thermal interia measure of soil moisture IEEE Trans Geosci Remote Sensing, 1992, Vol 30, NO1:132-139
    [76]朱永豪等 不同湿度条件下黄棕壤光谱反射率的变化特征及其遥感意义,土壤学报,1984,21(2):194-202
    [77]徐彬彬、委耿善 土壤光谱反射特性研究及其应用,土壤学进展,1987,15(1):1-9
    [78]Pratt A, Ellyett C D. The Thermal Inertia approach to Mapping of Soil Moisture and Geology Remote Sens Environ, 1979, 8:151-168
    [79]袁运昌主编 当代中国森林资源概况1949—1993 林业部资源和林政管理司 1996年
    [80]李付琴等 植被条件下遥感监测土壤水分的方法探导—田间实验部分 田国良主编 黄河流域典型地区遥感动态研究 北京:科学出版社,1990
    [81]田国良等 用NOAA-AVHRR数字图像和地面气象站资料估算麦田的蒸散和土壤水分 田国良主编 黄河流域典型地区遥感动态研究 北京:科学出版社,1990
    [82]马蔼乃 薛勇 土壤含水量遥感信息模型的研究 田国良主编 黄河流域典型地区遥感动态研究 北京:科学出版社,1990
    [83]王让会 刘培君 干旱区土壤水分遥感监测敏感波段的选择—以新疆阜康平原区为例 新疆气象1995(5):24-25,9
    [84]詹志明 冯兆东 区域遥感土壤水分模型的方法初探 水土保持研究2000(3):227-230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700